Skip to main content
Log in

Influence of Defined Shear Rates on Structural Changes and Functional Properties of Highly Concentrated Whey Protein Isolate-Citrus Pectin Blends at Elevated Temperatures

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The functional properties of whey proteins can be improved by conjugation with citrus pectin. Although protein-polysaccharide conjugates can be performed using extrusion processing, little is known about the influence of the extrusion conditions (e.g., temperature, shear stress, time) on the reactions taking place. As during extrusion processing, thermal and mechanical stresses are coupled to each other, their influence on the reactions taking place cannot be investigated separately. This study aims to get a deeper understanding of the influence of defined shear rates on structural changes and functional properties of highly concentrated whey protein-citrus pectin blends treated at elevated temperatures by using a closed-cavity rheometer (CCR). The CCR provides the opportunity to examine the impact of thermal and mechanical stresses in highly concentrated systems independently. The analyses of structural changes showed that the formation of disulfide bonds was accelerated with increasing shear. Temperature treatments at 120 °C and 140 °C resulted in the formation of non-disulfide covalent cross-links (e.g., Maillard reaction products and isopeptides), while shear inhibited their formation at treatment conditions up to 140 °C and 2 min. The samples treated at 140 °C and 2 min (with and without the application of shear) exhibited improved emulsifying capacities which is attributed to changes in their interfacial properties. This might be due to high concentrations of fluorescent compounds indicating the formation of Maillard reaction products (e.g., conjugates).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. U. Einhorn-Stoll, M. Ulbrich, S. Sever, H. Kunzek, Food Hydrocoll 19(2), 329–340 (2005)

    Article  CAS  Google Scholar 

  2. M. Akhtar, E. Dickinson, Colloids Surf B Biointerfaces Special Issue 31(1–4), 125–132 (2003)

    Article  CAS  Google Scholar 

  3. N. Neirynck, P. Van der Meeren, S. Bayarri Gorbe, S. Dierckx, K. Dewettinck, Food Hydrocoll 18(6), 949–957 (2004)

    Article  CAS  Google Scholar 

  4. U.S. Schmidt, V.L. Pietsch, C. Rentschler, T. Kurz, H.-U. Endreß, H.P. Schuchmann, Food Hydrocoll 56, 1–8 (2016)

    Article  CAS  Google Scholar 

  5. Q. Wang, B. Ismail, Int Dairy J 25(2), 112–122 (2012)

    Article  Google Scholar 

  6. F.C. de Oliveira, J.S. Coimbra, E.B. de Oliveira, A.D. Zuñiga, E.E. Rojas, Crit. Rev. Food Sci. Nutr. 56(7), 1108–1125  (2014)

  7. C.M. Oliver, L.D. Melton, R.A. Stanley, Crit Rev Food Sci Nutr 46(4), 337–350 (2006)

    Article  CAS  Google Scholar 

  8. L. Jiménez-Castaño, M. Villamiel, R. López-Fandiño, Food Hydrocoll 21(3), 433–443 (2007)

    Article  Google Scholar 

  9. H.A. Schols, A.G.J. Voragen, in: Pectins and their manipulation, ed. By G.B. Seymour, J.P. Knox (Blackwell; Published in U.S. and Canada only by CRC Press, Oxford, Boca Raton, 2002)

  10. H. Armbruster, Untersuchungen zum kontinuierlichen Emulgierprozess in Kolloidmühlen unter Berücksichtigung spezifischer Emulgatoreigenschaften und der Strömungsverhältnisse im Dispergierspalt (Karlsruhe, 1990)

  11. P. Walstra, Chem Eng Sci 48(2), 333–349 (1993)

    Article  CAS  Google Scholar 

  12. M. Akhtar, E. Dickinson, Food Hydrocoll 21(4), 607–616 (2007)

    Article  CAS  Google Scholar 

  13. Y.-W. Shu, S. Sahara, S. Nakamura, A. Kato, J Agric Food Chem 44(9), 2544–2548 (1996)

    Article  CAS  Google Scholar 

  14. J.E. Hodge, J Agric Food Chem 1(15), 928–943 (1953)

    Article  CAS  Google Scholar 

  15. L.-C. Maillard, C R Acad Sci 154, 66–68 (1912)

    CAS  Google Scholar 

  16. D. Zhu, S. Damodaran, J.A. Lucey, J Agric Food Chem 56(16), 7113–7118 (2008)

    Article  CAS  Google Scholar 

  17. A. Kato, R. Mifuru, N. Matsudomi, K. Kobayashi, Biosci Biotechnol Biochem 56(4), 567–571 (1992)

    Article  CAS  Google Scholar 

  18. W.-W. Sun, S.-j. Yu, X.-A. Zeng, X.-Q. Yang, X. Jia, Food Res Int 44(4), 1052–1058 (2011)

    Article  CAS  Google Scholar 

  19. C. Li, H. Xue, Z. Chen, Q. Ding, X. Wang, Food Res Int 57, 1–7 (2014)

    Article  Google Scholar 

  20. L. Koch, M.A. Emin, H.P. Schuchmann, J Food Eng 193, 1–9 (2017)

    Article  CAS  Google Scholar 

  21. P. Guerrero, E. Beatty, J.P. Kerry, K. de la Caba, J. Food Eng. 110(1), 53–59 (2012)

  22. A.S. Bueno, C.M. Pereira, B. Menegassi, J.A.G. Arêas, I.A. Castro, J Food Eng 90(4), 504–510 (2009)

    Article  CAS  Google Scholar 

  23. D.M. Mulvihill, M. Donovan, Irish J Food Sci Technol, 43–75 (1987)

  24. J.A.G. Arêas, Crit. Rev. Food Sci. Nutr. 32(4), 365–392 (1992)

  25. C. Queginer, E. Dumay, J.C. Cheftel, C. Salou-Cavalier, J Food Sci 57(3), 610–616 (1992)

    Article  Google Scholar 

  26. L. Burgess, D. Stanley, Can Inst Food Sci Journal 9(4), 228–231 (1976)

    Article  CAS  Google Scholar 

  27. L. Koch, M.A. Emin, H.P. Schuchmann, Int Dairy J 71, 114–121 (2017)

    Article  CAS  Google Scholar 

  28. G. Morris, T. Foster, S. Harding, Carbohydr Polym 48(4), 361–367 (2002)

    Article  CAS  Google Scholar 

  29. M. Axelos, M. Branger, Food Hydrocoll 7(2), 91–102 (1993)

    Article  CAS  Google Scholar 

  30. T. Spiegel, M. Huss, Int J Food Sci Technol 37(5), 559–568 (2002)

    Article  CAS  Google Scholar 

  31. T. Spiegel, Int J Food Sci Technol 34(5–6), 523–531 (1999)

    Article  CAS  Google Scholar 

  32. A.J. Steventon, Thermal aggregation of whey proteins (Cambridge, 1992)

  33. R.N. Zúñiga, A. Tolkach, U. Kulozik, J.M. Aguilera, J Food Sci 75(5), E261–E268 (2010)

    Article  Google Scholar 

  34. M. Wolz, U. Kulozik, Int Dairy J 49, 95–101 (2015)

    Article  CAS  Google Scholar 

  35. M. Wolz, E. Mersch, U. Kulozik, Food Hydrocoll 56, 396–404 (2016)

    Article  CAS  Google Scholar 

  36. F. Dannenberg, G. Kessler, J Food Sci 53(1), 258–263 (1988)

    Article  CAS  Google Scholar 

  37. M. Verheul, S.P.F.M. Roefs, K.G. de Kruif, J. Agric, Food Chem 46(3), 896–903 (1998)

    Article  CAS  Google Scholar 

  38. J.N. Dewit, G. Klarenbeek, J Dairy Sci 67(11), 2701–2710 (1984)

    Article  CAS  Google Scholar 

  39. C.R. Thomas, D. Geer, Biotechnol Lett 33(3), 443–456 (2011)

    Article  CAS  Google Scholar 

  40. P. Walstra, in: Food colloids, ed. by E. Dickinson, R. Miller (Royal Society of Chemistry, Cambridge, 2001), p. 245–254

  41. M.V. Smoluchowski, Z Phy Chem 92, 129–168 (1916)

    Google Scholar 

  42. D.J. Bell, M. Hoare, P. Dunnill, in: Downstream processing, ed. by D.J. Bell (Springer-Verlag, Berlin, New York, 1983), p. 1–72

  43. M.A.J.S. van Boekel, Kinetic modeling of reactions in foods (CRC Press, Boca Raton, FL, 2009)

    Google Scholar 

  44. M.A.M. Hoffmann, P.J.J.M. van Mil, J. Agric, Food Chem 45(8), 2942–2948 (1997)

    Article  CAS  Google Scholar 

  45. S. Iametti, B. Gregori, G. Vecchio, F. Bonomi, Eur J Biochem 237(1), 106–112 (1996)

    Article  CAS  Google Scholar 

  46. V.A. Yaylayan, J. Fichtali, F.R. van de Voort, Food Res Int 25(3), 175–180 (1992)

    Article  CAS  Google Scholar 

  47. S. Ilo, E. Berghofer, J Food Sci 68(2), 496–502 (2003)

    Article  CAS  Google Scholar 

  48. H. Madeka, J.L. Kokini, J Food Eng 22(1–4), 241–252 (1994)

    Article  Google Scholar 

  49. H. Madeka, J. Kokini, Cereal Chem (USA) 73(4), 433–438 (1996)

    CAS  Google Scholar 

  50. M. Pommet, M.-H. Morel, A. Redl, S. Guilbert, Polymer 45(20), 6853–6860 (2004)

    Article  CAS  Google Scholar 

  51. M.A. Emin, H.P. Schuchmann, Trends Food Sci. Technol. 60, 88-95 (2017)

  52. E. Habeych, A.J. van der Goot, R. Boom, Chem Eng Sci 64(15), 3516–3524 (2009)

    Article  CAS  Google Scholar 

  53. S.B. Matiacevich, M. Pilar Buera, Food Chem 95(3), 423–430 (2006)

    Article  CAS  Google Scholar 

  54. J. Leclère, I. Birlouez-Aragon, J Agric Food Chem 49(10), 4682–4687 (2001)

    Article  Google Scholar 

  55. R.A. Anderson, H.F. Conway, A.J. Peplinski, Starch-Stärke 22(4), 130–135 (1970)

    Article  CAS  Google Scholar 

  56. U.S. Schmidt, K. Schmidt, T. Kurz, H.-U. Endreß, H.P. Schuchmann, Food Hydrocoll 46, 59–66 (2015)

    Article  CAS  Google Scholar 

  57. M.N. Riaz, Extruders in food applications (Technomic Publishing Company, Inc., Lancaster, Pennsylvania, 2000)

    Google Scholar 

  58. W.M. Baisier, T.P. Labuza, J Agric Food Chem 40(5), 707–713 (1992)

    Article  CAS  Google Scholar 

  59. H.R. Adhikari, A.L. Tappel, J Food Sci 38(3), 486–488 (1973)

    Article  CAS  Google Scholar 

  60. H.E. Baker, J.K. Bradford, Seed Sci Res 4(02), 103–107 (1994)

    Article  CAS  Google Scholar 

  61. A. Morales, J.L. Kokini, Biotechnol Prog 13(5), 624–629 (1997)

    Article  CAS  Google Scholar 

  62. K. Arai, M. Konno, Y. Matunaga, S. Saito, J Chem Eng Japan 10(4), 325–330 (1977)

    Article  CAS  Google Scholar 

  63. M. Simmons, P. Jayaraman, P.J. Fryer, J Food Eng 79(2), 517–528 (2007)

    Article  CAS  Google Scholar 

  64. S.M. Taylor, P.J. Fryer, Food Hydrocoll 8(1), 45–61 (1994)

    Article  CAS  Google Scholar 

  65. S. Cairoli, S. Iametti, F. Bonomi, J Protein Chem 13(3), 347–354 (1994)

    Article  CAS  Google Scholar 

  66. Prudencio-Ferreira, Areas, J food Sci 58(2), 378–381 (1993)

    Google Scholar 

  67. N. Erabit, D. Flick, G. Alvarez, J Food Eng 120, 57–68 (2014)

    Article  CAS  Google Scholar 

  68. U.S. Schmidt, H.P. Schuchmann, in: Gums and stabilisers for the food industry 18, ed. by P.A. Williams, G.O. Phillips (2016), p. 115–122

  69. R.M. van den Einde, A. Bolsius, J. van Soest, L. Janssen, A.J. van der Goot, R.M. Boom, Carbohydr Polym 55(1), 57–63 (2004)

    Article  Google Scholar 

  70. W. Cai, L.L. Diosady, L.J. Rubin, J Food Eng 26(3), 289–300 (1995)

    Article  Google Scholar 

  71. N. Sava, I. van der Plancken, W. Claeys, M. Hendrickx, J Dairy Sci 88(5), 1646–1653 (2005)

    Article  CAS  Google Scholar 

  72. G.C. Berry, T. fox, in: Fortschritte der Hochpolymeren-Forschung, ed. By H.-J. Cantow, G. Dall’Asta, J.D. Ferry, W. Kern, G. Natta, C.G. Overberger, W. Prins, G.V. Schulz, W.P. Slichter, A.J. Staverman, J.K. Stille, H.A. Stuart (Springer Berlin Heidelberg, Berlin, Heidelberg, 1967), p. 261–357

  73. J.I. Bhatty, Sep Sci Technol 21(9), 953–967 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

This research project was supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn). Project AIF 18070 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Emin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, L., Hummel, L., Schuchmann, H.P. et al. Influence of Defined Shear Rates on Structural Changes and Functional Properties of Highly Concentrated Whey Protein Isolate-Citrus Pectin Blends at Elevated Temperatures. Food Biophysics 12, 309–322 (2017). https://doi.org/10.1007/s11483-017-9487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9487-2

Keywords

Navigation