Skip to main content
Log in

Natural Deep Eutectic Solvents and Microwave-Assisted Green Extraction for Efficient Recovery of Bioactive Compounds from By-Products of Date Fruit (Phoenix dactylifera L.) Processing: Modeling, Optimization, and Phenolic Characterization

  • Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, eight different natural deep eutectic solvents (NADESs) were utilized in combination with microwave-assisted extraction (MAE) as a green technique for the optimal extraction and achieve enhanced antioxidant activity of bioactive compounds from date seed powder (DSP). The two most efficient NADESs (choline chloride-lactic acid (ChCl-LA) and choline chloride-xylose (ChCl-Xylo) were further optimized for (MAE) using response surface methodology (RSM). Three factors considered for optimization were temperature (20, 55, and 80 ℃), irradiation time (5, 12.5, and 20 min), and percentage NADES contents (25, 55, and 85%). Total phenolic compounds (TPC), ferric reducing antioxidant power (FRAP), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity were used as response factors. The optimal conditions were temperature (80 °C), irradiation time (5 min), and NADES contents (63%) for ChCl-LA, and temperature (80 °C), irradiation time (20 min), and NADES contents (50%) for ChCl-Xylo, respectively. At the optimized conditions, the highest values for FRAP, DPPH, and TPC obtained were 771.54 and 734.34 mM TE/g powder, 503.75 and 396.73 mM TE/g powder, and 147.92 and 234.65 mg GAE/g powder respectively, for ChCl-LA and ChCl-Xylo. The main phenolic compounds found in the selected extracts were catechin, 3,4-dihydroxybenzoic acid, and caffeic acid. This study infers that the utilization of MAE with appropriate NADESs as green extraction approach under optimized conditions can produce enhanced yield of bioactive compounds from date seeds. The synthesized NADES after appropriate toxicity studies could be used in replacement of conventional solvents which could be utilized in the food, pharmaceutical, and cosmetic industry as green and safe ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Abbott, A. P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of American Chemical Society, 126, 9142–9147.

    Article  CAS  Google Scholar 

  • Al-Farsi, M., Alasalvar, C., Al-Abid, M., Al-Shoaily, K., Al-Amry, M., & Al-Rawahy, F. (2007). Compositional and functional characteristics of dates, syrups, and their by-products. Food Chemistry, 104, 943–947.

    Article  CAS  Google Scholar 

  • Almusallam, I. A., Ahmed, I. A. M., Babiker, E. E., Al Juhaimi, F. Y., Fadimu, G. J., Osman, M. A., Al Maiman, S. A., Ghafoor, K., & Alqah, H. A. (2021). Optimization of ultrasound-assisted extraction of bioactive properties from date palm (Phoenix dactylifera L.) spikelets using response surface methodology. LWT-Food Science and Technology, 140, 110816.

  • AlOmar, M. K., Hayyan, M., Alsaadi, M. A., Akib, S., Hayyan, A., & Hashim, M. A. (2016). Glycerol-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 215, 98–103.

    Article  CAS  Google Scholar 

  • Ardekani, M. R. S., Khanavi, M., Hajimahmoodi, M., Jahangiri, M., & Hadjiakhoondi, A. (2010). Comparison of antioxidant activity and total phenol contents of some date seed varieties from Iran. Journal of Pharmaceutical Research, 9, 141–146.

    Google Scholar 

  • Awad, M. A., Al-Qurashi, A. D., & Mohamed, S. A. (2011). Biochemical changes in fruit of an early and a late date palm cultivar during development and ripening. International Journal of Fruit Science, 11, 167–183.

    Article  Google Scholar 

  • Aydin, F., Yilmaz, E., & Soylak, M. (2018). Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples. Food Chemistry, 243, 442–447.

    Article  CAS  PubMed  Google Scholar 

  • Bajkacz, S., & Adamek, J. (2018). Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Analytical Methods, 11(5), 1330–1344.

    Article  Google Scholar 

  • Bener, M., Şen, F. B., Önem, A. N., Bekdeşer, B., Çelik, S. E., Lalikoglu, M., Aşçı, Y. S., Capanoglu, E., & Apak, R. (2022). Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chemistry, 132633.

  • Benfica, J., Miranda, J. S., Morais, E. S., Freire, M. G., Coutinho, J. A., & de Cássia Superbi de Sousa, R. (2020). Enhanced extraction of levodopa from mucuna pruriens seeds using aqueous solutions of eutectic solvents. ACS Sustainable Chemistry and Engineering, 8, 6682–6689.

  • Benvenutti, L., Zielinski, A. A. F., & Ferreira, S. R. S. (2019). Which is the best food emerging solvent: IL, DES or NADES? Trends in Food Science and Technology, 90, 133–146.

    Article  CAS  Google Scholar 

  • Bi, W., Tian, M., & Row, K. H. (2013). Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. Journal of Chromatography A, 1285, 22–30.

    Article  CAS  PubMed  Google Scholar 

  • Bijami, A., Rezanejad, F., Oloumi, H., & Mozafari, H. (2020). Minerals, antioxidant compounds and phenolic profile regarding date palm (Phoenix dactylifera L.) seed development. Scientia Horticulturae, 262, 109017.

  • Bosiljkov, T., Dujmić, F., Bubalo, M. C., Hribar, J., Vidrih, R., Brnčić, M., Zlatic, E., Redovniković, I. R., & Jokić, S. (2017). Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food and Bioproducts Processing, 102, 195–203.

    Article  CAS  Google Scholar 

  • Chanioti, S., Katsouli, M., & Tzia, C. (2021). Novel processes for the extraction of phenolic compounds from olive pomace and their protection by encapsulation. Molecules, 26(6), 1781–1781. https://doi.org/10.3390/molecules26061781

  • Chen, J., Liu, M., Wang, Q., Du, H., & Zhang, L. (2016). Deep eutectic solvent-based microwave-assisted method for extraction of hydrophilic and hydrophobic components from radix salviae miltiorrhizae. Molecules, 21, 1383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, Y. H., van Spronsen, J., Dai, Y., Verberne, M., Hollmann, F., Arends, I. W., Witkamp, G. J., & Verpoorte, R. (2011). Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiology, 156, 1701–1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, Q., Liu, J. Z., Wang, L. T., Kang, Y. F., Meng, Y., Jiao, J., & Fu, Y. J. (2018). Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves. Journal of Cleaner Production, 184, 826–835.

    Article  CAS  Google Scholar 

  • Cunha, S. C., & Fernandes, J. O. (2018). Extraction techniques with deep eutectic solvents. TrAC Trends in Analytical Chemistry, 105, 225–239.

    Article  CAS  Google Scholar 

  • Dai, Y., van Spronsen, J., Witkamp, G. J., Verpoorte, R., & Choi, Y. H. (2013). Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766, 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Dai, Y., Verpoorte, R., & Choi, Y. H. (2014). Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chemistry, 159, 116–121.

    Article  CAS  PubMed  Google Scholar 

  • Davis, E. J., Spadoni Andreani, E., & Karboune, S. (2021). Production of extracts composed of pectic oligo/polysaccharides and polyphenolic compounds from cranberry pomace by microwave-assisted extraction process. Food and Bioprocess Technology, 14(4), 634–649.

    Article  CAS  Google Scholar 

  • de Oliveira, A., da Conceição, E., & Leles, M. (2016). Multiresponse optimization of an extraction procedure of carnosol and rosmarinic and carnosic acids from rosemary. Food Chemistry, 211, 465–473.

    Article  CAS  PubMed  Google Scholar 

  • De Trizio, L., & Manna, L. (2016). Forging colloidal nanostructures via cation exchange reactions. Chemical Reviews, 116, 10852–10887.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado De La Torre, M., Ferreiro-Vera, C., Priego-Capote, F., & Luque de Castro, M. (2013). Anthocyanidins, proanthocyanidins, and anthocyanins profiling in wine lees by solid-phase extraction–liquid chromatography coupled to electrospray ionization tandem mass spectrometry with data-dependent methods. Journal of Agriculture and Food Chemistry, 61, 12539–12548.

    Article  CAS  Google Scholar 

  • Doldolova, K., Bener, M., Lalikoğlu, M., Aşçı, Y. S., Arat, R., & Apak, R. (2021). Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chemistry, 353, 129337.

    Article  CAS  PubMed  Google Scholar 

  • Dorta, E., Lobo, M. G., & González, M. (2013). Optimization of factors affecting extraction of antioxidants from mango seed. Food and Bioprocess Technology, 6(4), 1067–1081.

    Article  CAS  Google Scholar 

  • Echegaray, N., Pateiro, M., Gullon, B., Amarowicz, R., Misihairabgwi, J. M., & Lorenzo, J. M. (2011). Phoenix dactylifera products in human health – A review. Trends in Food Science and Technology, 105, 238–250.

    Article  Google Scholar 

  • Fadimu, G. J., Ghafoor, K., Babiker, E. E., Al-Juhaimi, F., Abdulraheem, R. A., & Adenekan, M. K. (2020). Ultrasound-assisted process for optimal recovery of phenolic compounds from watermelon (Citrullus lanatus) seed and peel. Journal of Food Measurement and Characteristics, 14, 1784–1793.

    Article  Google Scholar 

  • Firatligil-Durmus, E., & Evranuz, O. (2010). Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT-Food Science and Technology, 43, 226–231.

    Article  CAS  Google Scholar 

  • Florindo, C., Oliveira, M. M., Branco, L. C., & Marrucho, I. M. (2017). Carbohydrates-based deep eutectic solvents: Thermophysical properties and rice straw dissolution. Journal of Molecular Liquids, 247, 441–447.

    Article  CAS  Google Scholar 

  • Gabriele, F., Chiarini, M., Germani, R., Tiecco, M., & Spreti, N. (2019). Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. Journal of Molecular Liquids, 291, 111301.

    Article  CAS  Google Scholar 

  • García, A., Rodríguez-Juan, E., Rodríguez-Gutiérrez, G., Rios, J. J., & Fernández-Bolaños, J. (2016). Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chemistry, 197, 554–561.

    Article  PubMed  Google Scholar 

  • Gullón, B., Lú-Chau, T. A., Moreira, M. T., Lema, J. M., & Eibes, G. (2017). Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science and Technology, 67, 220–235.

    Article  Google Scholar 

  • Hiemenz, P. C., & Lodge, T. P. (2007). Polymer chemistry. CRC Press.

    Book  Google Scholar 

  • Higdon, J. V., & Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition, 43, 89–143.

    Article  CAS  PubMed  Google Scholar 

  • Hemwimon, S., Pavasant, P., & Shotipruk, A. (2007). Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Separation and Purification Technology, 54(1), 44–50.

    Article  CAS  Google Scholar 

  • Hmidani, A., Bourkhis, B., Khouya, T., Ramchoun, M., Filali-Zegzouti, Y., & Alem, C. (2020). Phenolic profile and anti-inflammatory activity of four Moroccan date (Phoenix dactylifera L.) seed varieties. Heliyon, 6(2), e03436.

  • Ivanović, M., Alañón, M., Arráez-Román, D., & Segura-Carretero, A. (2018). Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Research International, 111, 67–76.

    Article  PubMed  Google Scholar 

  • Ivanović, M., Islamčević Razboršek, M., & Kolar, M. (2020). Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants, 9(11), 1428.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji, Y. B., Dong, F., Ma, D. B., Miao, J., Jin, L. N., Liu, Z. F., & Zhang, L. W. (2012). Optimizing the extraction of anti-tumor polysaccharides from the fruit of capparis spionosa l. by response surface methodology. Molecules, 17, 7323–7335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing- Process Intensification, 137, 1–11.

    Article  CAS  Google Scholar 

  • Kala, H. K., Mehta, R., Sen, K. K., Tandey, R., & Mandal, V. (2016). Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. TrAC Trends in Analytical Chemistry, 85, 140–152.

    Article  CAS  Google Scholar 

  • Karabegović, I. T., Stojičević, S. S., Veličković, D. T., Nikolić, N. Č, & Lazić, M. L. (2013). Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Separation and Purification Technology, 120, 429–436.

    Article  Google Scholar 

  • Khezeli, T., Daneshfar, A., & Sahraei, R. (2016). A green ultrasonic-assisted liquid–liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta, 150, 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.-O., & Lee, C. Y. (2004). Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Critical Reviews in Food Science and Nutrition, 44(4), 253–273.

    Article  CAS  PubMed  Google Scholar 

  • Krishnaswamy, K., Orsat, V., Gariépy, Y., & Thangavel, K. (2013). Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food and Bioprocess Technology, 6(2), 441–455.

    Article  CAS  Google Scholar 

  • Kutlu, N., Isci, A., Sakiyan, O., & Yilmaz, A. E. (2021). Extraction of phenolic compounds from cornelian cherry (Cornus mas L.) using microwave and ohmic heating assisted microwave methods. Food and Bioprocess Technology, 14(4), 650–664.

  • Lanjekar, K. J., & Rathod, V. K. (2021). Green extraction of glycyrrhizic acid from Glycyrrhiza glabra using choline chloride based natural deep eutectic solvents (NADESs). Process Biochemistry, 102, 22–32.

    Article  CAS  Google Scholar 

  • Li, J., Zu, Y. G., Fu, Y. J., Yang, Y. C., Li, S. M., Li, Z. N., & Wink, M. (2010). Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge.) kernel and evaluation of its antioxidant activity. Innovative Food Science and Emerging Technologies, 11, 637–643.

    Article  CAS  Google Scholar 

  • Liu, F., Zhang, S., Li, J., McClements, D. J., & Liu, X. (2018). Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles. Trends in Food Science and Technology, 79, 67–77.

    Article  CAS  Google Scholar 

  • Maqsood, S., Adiamo, O., Ahmad, M., & Mudgil, P. (2020). Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chemistry, 308, 125522.

    Article  CAS  PubMed  Google Scholar 

  • Mendes, M., Carvalho, A. P., Magalhães, J. M., Moreira, M., Guido, L., Gomes, A. M., & Delerue-Matos, C. (2016). Response surface evaluation of microwave-assisted extraction conditions for Lycium barbarum bioactive compounds. Innovative Food Science and Emerging Technologies, 33, 319–326.

    Article  CAS  Google Scholar 

  • Moro, K. I. B., Bender, A. B. B., da Silva, L. P., & Penna, N. G. (2021). Green extraction methods and microencapsulation technologies of phenolic compounds from grape pomace: A Review. Food and Bioprocess Technology, 14(8), 1407–1431.

    Article  CAS  Google Scholar 

  • Mostafa, H., Airouyuwa, J. O., & Maqsood, S. (2022a). A novel strategy for producing nano-particles from date seeds and enhancing their phenolic content and antioxidant properties using ultrasound-assisted extraction: A multivariate based optimization study. Ultrasonics Sonochemistry, 87, 106017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafa, H., Hamdi, M., Airouyuwa, J. O., & Maqsood, S. (2022b). Efficient valorization of date fruit processing by-product through nano-and green-extraction technology: A response surface methodology-based optimization study. Biomass Conversion and Biorefinery, 1–19.

  • Naseem, Z., Iqbal, J., Zahid, M., Shaheen, A., Hussain, S., & Yaseen, W. (2021). Use of hydrogen-bonded supramolecular eutectic solvents for eco-friendly extraction of bioactive molecules from Cymbopogon citratus using Box-Behnken design. Journal of Food Measurement and Characterization, 15(2), 1487–1498.

    Article  Google Scholar 

  • Naseem, Z., Zahid, M., Hanif, M. A., & Shahid, M. (2020). Environmentally friendly extraction of bioactive compounds from Mentha arvensis using deep eutectic solvent as green extraction media. Polish Journal of Environmental Studies, 29(5), 3749–3757.

    Article  CAS  Google Scholar 

  • Olatunde, O. O., Benjakul, S., & Vongkamjan, K. (2018). Antioxidant and antibacterial properties of guava leaf extracts as affected by solvents used for prior dechlorophyllization. Journal of Food Biochemistry, 42, e12600.

  • Pan, X., Niu, G., & Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification, 42(2), 129–133.

  • Panja, P. (2018). Green extraction methods of food polyphenols from vegetable materials. Current Opinion in Food Science, 23, 173–182.

    Article  Google Scholar 

  • Parnham, E. R., Drylie, E. A., Wheatley, P. S., Slawin, A. M., & Morris, R. E. (2006). Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angewandte Chemie, 118, 5084–5088.

    Article  Google Scholar 

  • Pasrija, D., & Anandharamakrishnan, C. (2015). Techniques for extraction of green tea polyphenols: A review. Food and Bioprocess Technology, 8(5), 935–950.

    Article  CAS  Google Scholar 

  • Payet, B., Sing, S. C., & A., & Smadja, J. (2005). Assessment of antioxidant activity of cane brown sugars by abts and dpph radical scavenging assays: Determination of their polyphenolic and volatile constituents. Journal of Agriculture and Food Chemistry, 53, 10074–10079.

    Article  CAS  Google Scholar 

  • Périno-Issartier, S., Abert-Vian, M., & Chemat, F. (2011). Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food and Bioprocess Technology, 4(6), 1020–1028.

    Article  Google Scholar 

  • Picot-Allain, C., Mahomoodally, M. F., Ak, G., & Zengin, G. (2021). Conventional versus green extraction techniques—A comparative perspective. Current Opinion in Food Science, 40, 144–156.

    Article  CAS  Google Scholar 

  • Platat, C., Habib, H. M., Hashim, I. B., Kamal, H., AlMaqbali, F., Souka, U., & Ibrahim, W. H. (2015). Production of functional pita bread using date seed powder. Journal of Food Science and Technology, 52, 6375–6384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranasinghe, M., Manikas, I., Maqsood, S., & Stathopoulos, C. (2022). Date components as promising plant-based materials to be incorporated into baked goods—A review. Sustainiablility, 14, 605.

    Article  CAS  Google Scholar 

  • Rathnasamy, S. K., Sri Rajendran, D., Balaraman, H. B., & Viswanathan, G. (2019). Functional deep eutectic solvent-based chaotic extraction of phycobiliprotein using microwave-assisted liquid-liquid micro-extraction from Spirulina (Arthrospira platensis) and its biological activity determination. Algal Research, 44, 101709.

    Article  Google Scholar 

  • Rico, X., Gullón, B., & Yáñez, R. (2022). A comparative assessment on the recovery of pectin and phenolic fractions from aqueous and DES extracts obtained from melon peels. Food and Bioprocess Technology, 1–16.

  • Routray, W., & Orsat, V. (2012). Microwave-assisted extraction of flavonoids: A review. Food and Bioprocess Technology, 5(2), 409–424.

    Article  CAS  Google Scholar 

  • Shang, X., Ma, S., Pan, Q., Li, J., Sun, Y., Ji, K., & Sun, L. (2019). Process analysis of extractive distillation for the separation of ethanol–water using deep eutectic solvent as entrainer. Chemical Engineering Research and Design, 148, 298–311.

    Article  CAS  Google Scholar 

  • Tang, B., Zhang, H., & Row, K. H. (2015). Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Jouranl of Separation Science, 38, 1053–1064.

    Article  CAS  Google Scholar 

  • Wang, T., Jiao, J., Gai, Q. Y., Wang, P., Guo, N., Niu, L. L., & Fu, Y. J. (2017). Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents. Journal of Pharmaceutical and Biomedical Analysis, 145, 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., You, J., Yu, Y., Qu, C., Zhang, H., Ding, L., Zhang, H., & Li, X. (2008). Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction. Food Chemistry, 110, 161–167.

    Article  CAS  PubMed  Google Scholar 

  • Weremfo, A., Adulley, F., & Adarkwah-Yiadom, M. (2020). Simultaneous optimization of microwave-assisted extraction of phenolic compounds and antioxidant activity of avocado (persea americana mill.) seeds using response surface methodology. Journal of Analytical Methods in Chemistry, 2020, 1–11.

    Article  Google Scholar 

  • Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940–949.

    Article  Google Scholar 

  • Yao, X.-H., Zhang, D.-Y., Duan, M.-H., Cui, Q., Xu, W.-J., Luo, M., Li, C.-Y., Zu, Y.-G., & Fu, Y.-J. (2015). Preparation and determination of phenolic compounds from Pyrola incarnata Fisch. with a green polyols based-deep eutectic solvent. Separation and Purification Technology, 149, 116–123.

    Article  CAS  Google Scholar 

  • Yolmeh, M., & Jafari, S. M. (2017). Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology, 10(3), 413–433.

    Article  CAS  Google Scholar 

  • Zhao, B. Y., Xu, P., Yang, F. X., Wu, H., Zong, M. H., & Lou, & W.Y. (2015). Biocompatible deep eutectic solvents based on choline chloride: Characterization and application to the extraction of rutin from sophora japonica. ACS Sustainable Chemistry and Engineering, 3, 2746–2755.

    Article  CAS  Google Scholar 

  • Zhao, W., Yu, Z., Liu, J., Yu, Y., Yin, Y., Lin, S., & Chen, F. (2011). Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design. Journal of the Science of Food and Agriculture, 91, 2201–2209.

    CAS  PubMed  Google Scholar 

  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559.

    Article  CAS  Google Scholar 

  • Zhuang, B., Dou, L. L., Li, P., & Liu, & E.H. (2017). Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi Cacumen. Journal of Pharmaceutical and Biomedical Analysis, 134, 214–219.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Project PI, Sajid Maqsood is thankful to United Arab Emirates University for funding this grant through a strategic center-based grant (National Water and Energy Center) Fund code: 12R055. The authors also acknowledge Horizon 2020 with grant agreement 952594 through the project DRIFT-FOOD.

Author information

Authors and Affiliations

Authors

Contributions

J. Airouyuwa conducted the experiments and wrote the first draft. H. Mostafa assisted in experimentation and revised the manuscript. A. Riaz and C. Stathopoulos revised the manuscript. S. Maqsood conceptualized and designed the experiment, guided and supervised the research, and revised thoroughly the manuscript.

Corresponding author

Correspondence to Sajid Maqsood.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Airouyuwa, J.O., Mostafa, H., Riaz, A. et al. Natural Deep Eutectic Solvents and Microwave-Assisted Green Extraction for Efficient Recovery of Bioactive Compounds from By-Products of Date Fruit (Phoenix dactylifera L.) Processing: Modeling, Optimization, and Phenolic Characterization. Food Bioprocess Technol 16, 824–843 (2023). https://doi.org/10.1007/s11947-022-02960-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02960-8

Keywords

Navigation