Skip to main content

Advertisement

Log in

Techniques for Extraction of Green Tea Polyphenols: A Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Tea is the second most consumed beverage all over the world after water. In recent times, tea has stretched the eyebrows of researchers and catching all the attention towards its health benefits. Tea has been proven beneficial by preventing the risk of some diseases like cancer and cardiovascular problems. Green tea is least processed and gives maximum benefits. The main components of the green tea are polyphenols which include the catechins, epicatechins, epigallocatechins, epicatechingallate, epigallocatechingallate, gallic acid, flavanoids, flavanols, and flavonols. Other than polyphenols, caffeine and theophylline are also present. Among which compounds of catechins family has been widely reported to have most beneficial effects on the health. Currently, the extraction of catechins is catching much higher attention and many techniques have been discovered and modified to extract these compounds. But very limited reviews have been reported discussing the impact of various techniques used for extraction of green tea polyphenols. This review focuses on various techniques employed for the extraction of polyphenols from green tea and other sources (pine bark, grape seed, and pomegranate) with their advantages and limitations. The current trends and future prospects are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelwahed, W., Degobert, G., Trainmesse, S., & Fessi, H. (2006). Freeze-drying of nanoparticles: formulation, process and storage considerations. Advanced Drug Delivery Reviews, 58, 1688–1713.

    Article  CAS  Google Scholar 

  • Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., & Valero, J. R. (2011). Extraction and analysis of polyphenols: recent trends. Critical Reviews in Biotechnology, 31(3), 227–249.

    Article  CAS  Google Scholar 

  • Arceusz, A., Wesolowski, M., & Konieczynsk, P. (2013). Methods for extraction and determination of phenolic acids in medicinal plants: a review. Natural Product Communications, 8(12), 1821–1829.

    CAS  Google Scholar 

  • Basu, A., & Lucas, E.A. (2007). Mechanisms and effects of green tea on cardiovascular health. Nutrition Reviews 65(8).

  • Bazinet, L., Labbé, D., & Tremblay, A. (2007). Production of green tea EGC- and EGCG-enriched fractions by a two-step extraction procedure. Separation and Purification Technology, 56, 53–56.

    Article  CAS  Google Scholar 

  • Bharadwaz, A., & Bhattacharjee, C. (2012). Extraction of polyphenols from dried tea leaves. International Journal of Scientific & Engineering Research, 3(5).

  • Boehm, K., Borrelli, F., & Ernst, E. (2009). Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database of Systematic Reviews, 3, CD005004.

    Google Scholar 

  • Bogdanski, P., Suliburska, J., Szulinska, M., Stepien, M., Pupek-Musialik, D., & Jablecka, A. (2012). Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutrition Research, 32, 421–427.

    Article  CAS  Google Scholar 

  • Both, S., Chemat, F., & Strube, J. (2014). Extraction of polyphenols from black tea—conventional and ultrasound assisted extraction. Ultrasonics Sonochemistry, 21, 1030–1034.

    Article  CAS  Google Scholar 

  • Cabrera, C., Artacho, R., & Giménez, R. (2006). Beneficial effects of green tea—a review. Journal of the American College of Nutrition, 25(2), 79–99.

    Article  CAS  Google Scholar 

  • Cacace, J. E., & Mazza, G. (2002). Extraction of anthocyanins and other phenolics from black currants with sulfured water. Journal of Agricultural and Food Chemistry, 50, 5939–5946.

    Article  CAS  Google Scholar 

  • Cam, M., & Hisil, Y. (2010). Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry, 123, 878–885.

    Article  CAS  Google Scholar 

  • Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: a literature review. Chinese Medicine, 5, 13.

    Article  Google Scholar 

  • Chang, C. J., Chiu, K. L., Chen, Y. L., & Chang, C. Y. (2000). Separation of catechins from green tea using carbon dioxide extraction. Food Chemistry, 68, 109–113.

    Article  CAS  Google Scholar 

  • Chemat, F., Tomao, V., & Virot, M. (2008). Ultrasound-assisted extraction in food analysis, in: S. Ötles (Ed.), Handbook of Food Analysis Instruments, Taylor & Francis, CRC Press, 85–103.

  • Chen, L., & Zhang, H. Y. (2007). Cancer preventive mechanisms of the green tea polyphenol (−)-epigallocatechin-3-gallate. Molecules, 12(5), 946–57.

    Article  CAS  Google Scholar 

  • Chen, L., Lee, M. J., Li, H., & Yang, C. S. (1997). Absorption, distribution, and elimination of tea polyphenols in rats. Drug Metabolism and Disposition, 25(9), 1045–1050.

    CAS  Google Scholar 

  • Cheong, W.J., Park, M.H., Kang, G.W., Ko, J.H., & Seo, Y.J. (2005). Determination of catechin compounds in Korean green tea infusions under various extraction conditions by high performance liquid chromatography. Bulletin- Korean Chemical Society, 26(5).

  • Cho, S. K., Abd El-Aty, A. M., Rahman, M. M., Choi, J. H., & Shim, J. H. (2014). Simultaneous multi-determination and transfer of eight pesticide residues from green tea leaves to infusion using gas chromatography. Food Chemistry. doi:10.1016/j.foodchem.2014.05.145.

    Google Scholar 

  • Choi, M. J., Briancon, S., Andrieu, J., Min, S. G., & Fessi, H. (2004). Effect of freeze-drying process conditions on the stability of nanoparticles. Drying Technology, 22, 335–346.

    Article  CAS  Google Scholar 

  • DerMarderosian, A. (1999). The review of natural products. St. Louis: Facts and Comparisons, Wolters Kluwer Co.

    Google Scholar 

  • Dong, J. J., Ye, J. H., Lu, J. L., Zheng, X. Q., & Liang, Y. R. (2011). Isolation of antioxidant catechins from green tea and its decaffeination. Food and Bioproducts Processing, 89, 62–66.

    Article  CAS  Google Scholar 

  • Druzynska, B., Stepniewska, A., & Wołosiak, R. (2007). The influence of time and type of solvent on efficiency of the extraction of polyphenols from green tea and antioxidant properties obtained extracts. Acta Scientiarum Polonorum Technologia Alimentaria, 6(1), 27–36.

    CAS  Google Scholar 

  • Ellis, L. Z., Liu, W., Luo, Y., Okamoto, M., Qu, D., Dunn, J. H., & Fujita, M. (2011). Green tea polyphenol epigallocatechin-3-gallate suppresses melanoma growth by inhibiting inflammasome and IL-1β secretion. Biochemical and Biophysical Research Communications, 414(3), 551–556.

    Article  CAS  Google Scholar 

  • Eri, I., Hirokazu, T., Susumu, O., Atsushi, K., Yoshikazu, O., & Kouichi, N. (2008). Process for producing green tea polyphenol. EP No 1472932 B1.

  • Escribano-Bailon, M.T., & Santos-Buelga, C. (2003). Polyphenols extraction from foods. In Gary Williamson (eds), Methods in Polyphenol Analysis (pp. 1–16). The Royal Society of Chemistry.

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2012). Nanoencapsulation techniques for food bioactive components: a review. Food and Bioprocess Technology, 6(3), 628–647.

    Article  Google Scholar 

  • Fassina, G., Vene, R., Morini, M., Minghelli, S., Benelli, R., Noonan, D. M., & Albini, A. (2004). Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clinical Cancer Research, 10(14), 4865–73.

    Article  CAS  Google Scholar 

  • Goodarznia, I., & Govar, A. A. (2009). Superheated water extraction of catechins from green tea leaves: modeling and simulation. Chemistry and Chemical Engineering, 16(2), 99–107.

    CAS  Google Scholar 

  • Gramza, A., Korczak, J., & Amarowicz, R. (2005a). Tea polyphenols—their antioxidant properties and biological activity—a review. Pol. Journal of Food and Nutrition Sciences, 14/55(3), 219–235.

    Google Scholar 

  • Gramza, A., Wójciak, R., Korczak, J., Hęś, M., Wiśniewska, J., & Krejpcio, Z. (2005b). Influence of the Fe and Cu presence in tea extracts on antioxidant activity. EJPAU, 8(4), 30.

    Google Scholar 

  • Gudala, S.G. (2008). Effect of extraction parameters on polyphenols of caffeinated and decaffeinated green tea. University of Wisconsin-Stout.

  • Heng, Z., Baokun, T., & Kyungho, R. (2014). Extraction of catechin compounds from green tea with a new green solvent. Chemical Research in Chinese Universities, 30(1), 37–41.

    Article  Google Scholar 

  • Herrero, M., Cifuentes, A., & Ibanez, E. (2006). Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae—a review. Food Chemistry, 98, 136–148.

    Article  CAS  Google Scholar 

  • Hodgson, J. M., Puddey, I. B., Burke, V., Watts, G. F., & Beilin, L. J. (2002). Regular ingestion of black tea improves brachial artery vasodilator function. Clinical Science (London), 102, 195–201.

    Article  Google Scholar 

  • Huang, W.Y., Lin, Y.R., Ho, R.F., Liu, H.Y., & Lin, Y.S. (2013). Effects of water solutions on extracting green tea leaves. The Scientific World Journal, 368350.

  • Hussain, T., Gupta, S., Adhami, V.M., & Mukhtar, H. (2004). Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. International Journal of Cancer.

  • Jassie, L. R., Kierstead, R. T., & Hasty, E. (1997). Microwave-enhanced chemistry. In H. M. Kingston & S. J. Haswell (Eds.), Fundamentals, sample preparation and applications (p. 569). Washington: American Chemical Society.

    Google Scholar 

  • Jun, X., Deji, S., Ye, L., & Rui, Z. (2011). Comparison of in vitro antioxidant activities and bioactive components of green tea extracts by different extraction methods. International Journal of Pharmaceutics, 408, 97–101.

    Article  Google Scholar 

  • Karale, C. K., Dere, P. J., Honde, B. S., Kothule, S., & Kote, A. P. (2011). An overview on supercritical fluid extraction for herbal drugs. Pharmacologyonline, 2, 575–596.

    Google Scholar 

  • Kaur, C. D., & Saraf, S. (2011). Photochemoprotective activity of alcoholic extract of Camellia sinensis. International Journal of Pharmacology, 7, 400–404.

    Article  Google Scholar 

  • Kim, W. J., Kim, J. D., Kim, J., Oh, S. G., & Lee, Y. W. (2008). Selective caffeine removal from green tea using supercritical carbon dioxide extraction. Journal of Food Engineering, 89, 303–309.

    Article  CAS  Google Scholar 

  • Koiwai, H., & Masuzawa, N. (2007a). Extraction of catechins from green tea using ultrasound. Japanese Journal of Applied Physics, 46, 4936–4938.

    Article  CAS  Google Scholar 

  • Koiwai, H., & Masuzawa, N. (2007b). Promotion of extraction of Green tea catechins in water extraction at low temperature using ultrasound. International Congress on Sound and Vibration.

  • Kumar, S., Singh, N., Shweta, & Archana. (2012). Green tea polyphenols: versatile cosmetic ingredient. International Journal of Advanced Research in Pharmaceutical and Bio Sciences, 1(3), 348–362.

    Google Scholar 

  • Lambert, J. D., & Elias, R. J. (2010). The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Archives of Biochemistry and Biophysics, 501, 65–72.

    Article  CAS  Google Scholar 

  • Lee, L. S., Lee, N., Kim, Y. H., Lee, C. H., Hong, S. P., Jeon, Y. W., & Kim, Y. E. (2013). Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. Molecules, 18, 13530–13545. doi:10.3390/molecules181113530.

    Article  CAS  Google Scholar 

  • Li, Z., Huang, D., Tang, Z., & Deng, C. (2010). Microwave-assisted extraction followed by CE for determination of catechin and epicatechin in green tea. Journal of Separation Sciences, 33, 1079–1084.

    CAS  Google Scholar 

  • Lianfu, Z., & Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry, 15(5), 731–737.

    Article  Google Scholar 

  • Liang, H., Liang, Y., Dong, J., & Lu, J. (2007). Tea extraction methods in relation to control of epimerization of tea catechins. Journal of the Science of Food and Agriculture, 87, 1748–1752.

    Article  CAS  Google Scholar 

  • Liu, Y. J., & Pan, B. S. (2004). Inhibition of fish gill lipoxygenase and blood thinning effects of green tea extract. Journal of Agricultural and Food Chemistry, 52(15), 4860–4.

    Article  CAS  Google Scholar 

  • Luque de Castro, M. D., & Garcia-Ayuso, L. E. (1998). Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Analytica Chimica Acta, 369, 1–10.

    Article  CAS  Google Scholar 

  • Mandal, V., Mohan, Y., & Hemalatha, S. (2007). Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1(1), 7–18.

    CAS  Google Scholar 

  • Meterc, D., Petermann, M., & Weidner, E. (2007). Extraction of green tea and drying with a high pressure spray process. Hemijska Industrija, 61(5), 222–228.

    Article  CAS  Google Scholar 

  • Mo, Y. X., Hu, B. X., & Mo, W. M. (2008). Comparison of different techniques for extraction tea-polyphenols from tea leaves. Journal Zhejiang University of Technology, 36(2), 158.

  • Mohamed, R.S., & Mansoori, G.A. (2002). The use of supercritical fluid extraction technology in food processing. Featured Article -Food Technology Magazine, June.

  • Mukhtar, H., & Ahmad, N. (2000). Tea polyphenols: prevention of cancer and optimizing health. American Journal of Clinical Nutrition, 71(6 Suppl), 1698S–1702S.

    CAS  Google Scholar 

  • Murga, R., Ruiz, R., Beltr’an, S., & Cabezas, J. L. (2000). Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. Journal of Agricultural and Food Chemistry, 48, 3408–3412.

    Article  CAS  Google Scholar 

  • Nkhili, E., Tomao, V., Hajji, H. E., Boustani, E. S. E., Chemat, F., & Dangles, O. (2009). Microwave-assisted water extraction of green tea polyphenols. Phytochemical Analysis, 20, 408–415.

    Article  CAS  Google Scholar 

  • Nshimiyimana, D. S., & He, Q. (2010). Radical scavenging capacity of Rwandan CTC tea polyphenols extracted using microwave assisted extraction. Pakistan Journal of Nutrition, 9(6), 589–593.

    Article  CAS  Google Scholar 

  • Osada, K., Takahashi, M., Hoshina, S., Nakamura, M., Nakamura, S., & Sugano, M. (2001). Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 128, 153–164.

    CAS  Google Scholar 

  • Prado, J. M., Veggi, P. C., & Meireles, M. A. A. (2014). Extraction methods for obtaining carotenoids from vegetables—review. Current Analytical Chemistry, 10, 29–66.

    Article  CAS  Google Scholar 

  • Quan, P. T., Hang, T. V., Ha, N. H., De, N. X., & Tuyen, T. N. (2006). Microwave-assisted extraction of polyphenols from fresh tea shoots. Science and Technology Development, 9(8), 69–75.

    Google Scholar 

  • Richter, B. E., Jones, B. A., Ezzell, J. L., & Porter, N. L. (1996). Accelerated solvent extraction: a technique for sample preparation. Analytical Chemistry, 68(6), 1033–1039.

    Article  CAS  Google Scholar 

  • Rosengren, R. J. (2003). Catechins and the treatment of breast cancer: possible utility and mechanistic targets. Drugs, 6, 1073–1078.

    CAS  Google Scholar 

  • Routray, W., & Orsat, V. (2012). Microwave-assisted extraction of flavonoids: a review. Food and Bioprocess Technology, 5, 409–424.

    Article  CAS  Google Scholar 

  • Row, K. H., & Jin, Y. (2006). Recovery of catechin compounds from Korean tea by solvent extraction. Bioresource Technology, 97, 790–793.

    Article  CAS  Google Scholar 

  • Rusak, G., Komes, D., Likic, S., Horzic, D., & Kovac, M. (2008). Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chemistry, 110, 852–858.

    Article  CAS  Google Scholar 

  • Sano, J., Inami, S., Seimiya, K., Ohba, T., Sakai, S., Takano, T., & Mizuno, K. (2004). Effects of green tea intake on the development of coronary artery disease. Circulation Journal, 68(7), 665–70.

    Article  CAS  Google Scholar 

  • Santos-Buelga, C., Francia-Aricha, E. M., & Escribano-Bailon, M. T. (1995). Comparative flavon-3-ol composition of seeds from different grape varieties. Food Chemistry, 53, 197–201.

    Article  CAS  Google Scholar 

  • Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. American Journal of Clinical Nutrition, 81(1), 215S–217S.

    CAS  Google Scholar 

  • Sharif, R., Ahmad, S. W., Anjum, H., Ramzan, N., & Malik, S. R. (2014). Effect of infusion time and temperature on decaffeination of tea using liquid–liquid extraction technique. Journal of Food Process Engineering. doi:10.1111/jfpe.12058.

    Google Scholar 

  • Sharma, V., Gulati, A., Ravindranath, S. D., & Kumar, V. (2005). A simple and convenient method for analysis of tea biochemicals by reverse phase HPLC. Journal of Food Composition and Analysis, 18(6), 583–594.

    Article  CAS  Google Scholar 

  • Shi, J., Nawaz, H., Pohorly, J., Mittal, G., Kakuda, Y., & Jiang, Y. (2005). Extraction of polyphenolics from plant material for functional foods—engineering and technology. Food reviews international, 21, 139–166.

    Article  CAS  Google Scholar 

  • Shimamura, T., Zhao, W. H., & Hu, Z. Q. (2007). Mechanism of action and potential for use of tea catechin as an antiinfective agent. Anti-Infective Agents in Medicinal Chemistry, 6, 57–62.

    Article  CAS  Google Scholar 

  • Shrikande, A.J., Race, E.J., Wightman, J.D., & Sambueso, R.D. (2002). Process for extraction, purification and enrichment of polyphenolic substances from whole grapes, grape seeds and grape pomace. US Patent No. 6,544,581.

  • Spilimbergo, S., Elvassore, N., & Bertucco, A. (2002). Microbial inactivation by high-pressure. Journal of Supercritical Fluids, 22, 55–63.

    Article  CAS  Google Scholar 

  • Starmans, D. A. J., & Nijhuis, H. H. (1996). Extraction of secondary metabolites from plant material: a review. Trends in Food Science & Technology, 71, 191–197.

    Article  Google Scholar 

  • Stephanou, A. (2004). Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury. Journal of Cellular and Molecular Medicine, 8(4), 519–25.

    Article  CAS  Google Scholar 

  • Sterbova, D., Matejicek, D., Vlcek, J., & Kuban, V. (2004). Combined microwave assisted isolation and solid-phase purification procedures prior to the chromatographic determination of phenolic compounds in plant materials. Analytica Chimica Acta, 513, 435–44.

    Article  CAS  Google Scholar 

  • Tang, W. Q., Li, D. C., Lv, Y. X., & Jiang, J. G. (2011). Concentration and drying of tea polyphenols extracted from green tea using molecular distillation and spray drying. Drying Technology An International Journal, 29(5), 584–590.

    Article  CAS  Google Scholar 

  • Tatke, P., & Jaiswal, Y. (2011). An overview of microwave assisted extraction and its applications in herbal drug research. Research Journal of Medicinal Plant, 5, 21–31.

    Article  Google Scholar 

  • Thavanesan, N. (2011). The putative effects of green tea on body fat: an evaluation of the evidence and a view of the potential mechanisms. British Journal of Nutrition, 106(9), 1297–1309.

    Article  CAS  Google Scholar 

  • Turkmen, N., Sari, F., & Velioglu, Y. S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chemistry, 99(4), 835–841.

    Article  CAS  Google Scholar 

  • Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innovative Food Science and Emerging Technologies, 9, 161–169.

    Article  CAS  Google Scholar 

  • Vinson, J. A., Teufel, K., & Wu, N. (2004). Green and black teas inhibit atherosclerosis by lipid, antioxidant, and fibrinolytic mechanisms. Journal of Agricultural and Food Chemistry, 52(11), 3661–5.

    Article  CAS  Google Scholar 

  • Virot, M., Tomao, V., Le Bourvellec, C., Renard, C. M., & Chemat, F. (2010). Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrasonics sonochemistry, 17(6), 1066–1074.

  • Vodnar, D. C., & Socaciu, C. (2012). Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environment and during refrigerated conditions. Chemistry Central Journal, 6(1), 61.

    Article  CAS  Google Scholar 

  • Vuong, Q. V., Golding, J. B., Stathopoulos, C. E., Nguyen, M. H., & Roach, P. D. (2011). Optimizing conditions for the extraction of catechins from green tea using hot water. Journal of Separation Sciences, 34, 3099–3106.

    Article  CAS  Google Scholar 

  • Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17, 300–312.

    Article  CAS  Google Scholar 

  • Weizheng, X., Thick, Y.Y., Town, W.X., & Yanze, L. (2013). Method for quickly extracting beneficial elements and preparing health tea rich in beneficial elements. EP No. CN 103478329.

  • Wheeler, W. B., Thompson, N. P., Edelstein, R. L., Littell, R. C., & Krause, R. T. (1982). Influence of various solvent-water mixtures on the extraction of dieldrin and methomyl residues from radishes. Journal of the Association of Official Analytical Chemists, 65(5), 1112–1117.

    CAS  Google Scholar 

  • Widlansky, M. E., Biegelsen, E. S., Hamburg, N. M., Duffy, S. J., Keaney, J. F., Jr., & Vita, J. A. (2004). Coronary endothelial dysfunction is not rapidly reversible with ascorbic acid. Free Radical Biology and Medicine, 36, 123–130.

    Article  CAS  Google Scholar 

  • Wu, J., Lin, L., & Chau, F. (2001). Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrasonics Sonochemistry, 8, 347–352.

    Article  CAS  Google Scholar 

  • Wu, L. Y., Juan, C. C., Hwang, L. S., Hsu, Y. P., Ho, P. H., & Ho, L. T. (2004). Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. European Journal Nutrition, 43, 116–124.

    Article  CAS  Google Scholar 

  • Xia, T., Shi, S., & Wan, X. (2006). Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion. Journal of Food Engineering, 74, 557–560.

    Article  CAS  Google Scholar 

  • Xiao, W., Han, L., & Shi, B. (2008). Microwave-assisted extraction of flavonoids from Radix astragali. Separation and Purification Technology, 62(3), 614–618.

    Article  CAS  Google Scholar 

  • Yang, F., Oz, H. S., Barve, S., De Villiers, W. J. S., Mcclain, C. J., & Varilek, G. W. (2001). The green tea polyphenol (−)-epigallocatechin-3-gallate blocks nuclear factor-B activation by inhibiting IB kinase activity in the intestinal epithelial cell line IEC-6. Molecular Pharmacology, 60, 528–533.

    CAS  Google Scholar 

  • Zhihui, H., Yingjie, Z., & Yanling, W. (2013). Method for extracting tea polyphenol by aluminium chloride precipitation. EP No CN103113421 A.

Download references

Acknowledgments

The authors wish to thank Prof. Ram Rajasekharan, Director, CSIR-CFTRI, Mysore, India, for his support and help. We gratefully acknowledge the Ministry of Food Processing Industries (MoFPI) for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anandharamakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasrija, D., Anandharamakrishnan, C. Techniques for Extraction of Green Tea Polyphenols: A Review. Food Bioprocess Technol 8, 935–950 (2015). https://doi.org/10.1007/s11947-015-1479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1479-y

Keywords

Navigation