Skip to main content
Log in

Composite Hydrogel-Embedded Sucrose Stearate Niosomes: Unique Curcumin Delivery System

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Cold-set egg white-bovine gelatin composite hydrogels were evaluated as potential delivery vehicles for the encapsulation and subsequent release of sucrose stearate–based niosomes loaded with curcumin. The effects of loading blank-niosome or curcumin-niosome and their content (6 and 12 mL) on physicochemical and rheological properties of composite protein hydrogels were analyzed. The results showed that hydrogel protein solutions positive charge with a high volume of niosomal suspension irrespective of its type resulted in higher hardness value and improved storage modulus (G′). Subsequently, the composite hydrogels hardness increased significantly from 1102.95 ± 35.80 g in samples containing 6 mL curcumin-niosomes to 3273 ± 120.34 g in 12 mL curcumin-niosome-loaded ones (p < 0.01). Fourier transform infrared (FTIR) spectroscopy suggested hydrophobic and hydrogen bonding between niosomes and proteins. Furthermore, characteristic peaks related to α-helix structure (1659 cm−1) did not change due to niosome loading, whether blank or curcumin-loaded ones, into protein hydrogels. The most appropriate mathematical model which best represented curcumin release for hydrogels with different levels of curcumin-niosome in simulated gastrointestinal conditions and food simulants was the Korsmeyer-Peppas model, showing the prevalence of super case-II transport mechanism. In addition, increasing curcumin-niosome in hydrogel formulation resulted in slower curcumin release without model parameter alteration. Electronic microscopy indicated a less porous structure for the composite hydrogels loaded with a higher amount of niosomes regardless of their types. These results suggest that niosomal composite protein hydrogel with compact structure and elastic behavior can overcome niosome limitations (aggregation, fusion, and drug leakage) and provides a controlled delivery system for curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  • Abaee, A., & Madadlou, A. (2016). Niosome-loaded cold-set whey protein hydrogels. Food Chemistry, 196, 106–113.

    Article  CAS  PubMed  Google Scholar 

  • Abebe, W., & Ronda, F. (2014). Rheological and textural properties of tef [Eragrostis tef (Zucc.) Trotter] grain flour gels. Journal of Cereal Science, 60(1), 122–130.

  • Abdelbary, A. A., & AbouGhaly, M. H. (2015). Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: Application of Box-Behnken design, in-vitro evaluation and in-vivo skin deposition study. International Journal of Pharmaceutics, 485(1–2), 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Abd El-Hack, M. E., El-Saadony, M. T., Swelum, A. A., Arif, M., Abo Ghanima, M. M., Shukry, M., & El-Tarabily, K. A. (2021). Curcumin, the active substance of turmeric: Its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture, 101(14), 5747–5762.

    Article  CAS  PubMed  Google Scholar 

  • Akbari, J., Saeedi, M., Enayatifard, R., Morteza-Semnani, K., Hashemi, S. M. H., Babaei, A., & Nokhodchi, A. (2020). Curcumin niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. Journal of Drug Delivery Science and Technology, 60, 102035.

    Article  CAS  Google Scholar 

  • Amalini, A. N., Norziah, M. H., Khan, I., & Haafiz, M. K. M. (2018). Exploring the properties of modified fish gelatin films incorporated with different fatty acid sucrose esters. Food Packaging and Shelf Life, 15, 105–112.

    Article  Google Scholar 

  • Alavi, F., Emam-Djomeh, Z., Yarmand, M. S., Salami, M., Momen, S., & Moosavi-Movahedi, A. A. (2018). Cold gelation of curcumin loaded whey protein aggregates mixed with kcarrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids, 85, 267–280.

    Article  CAS  Google Scholar 

  • Araújo, J. F., Bourbon, A. I., Simões, L. S., Vicente, A. A., Coutinho, P. J. G., & Ramos, O. L. (2020). Physicochemical characterisation and release behaviour of curcumin-loaded lactoferrin nanohydrogels into food simulants. Food & Function, 11, 205–317.

    Article  Google Scholar 

  • Azari-Anpar, M., Payeinmahali, H., Daraei Garmakhany, A., & Sadeghi Mahounak, A. (2017). Physicochemical, microbial, antioxidant, and sensory properties of probiotic stirred yoghurt enriched with Aloe vera foliar gel. Journal of Food Processing and Preservation, 41(5), e13209.

    Article  CAS  Google Scholar 

  • Babaei, J., Mohammadian, M., & Madadlou, A. (2019). Gelatin as texture modifier and porogen in egg white hydrogel. Food Chemistry, 270, 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Bagheri, L., Madadlou, A., Yarmand, M., & Mousavi, M. E. (2013). Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Research International, 51(2), 866–871.

    Article  CAS  Google Scholar 

  • Bandekar, J. (1992). Amide modes and protein conformation. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1120(2), 123–143.

  • Bashash, M., Varidi, M., & Varshosaz, J. (2022a). Ultrasound-triggered transglutaminase-catalyzed egg white-bovine gelatin composite hydrogel: Physicochemical and rheological studies. Innovative Food Science & Emerging Technologies, 102936.

  • Bashash, M., Varidi, M., & Varshosaz, J. (2022b). Sucrose stearate based niosomes as an alternative to ordinary vehicles for efficient curcumin delivery. Journal of Food Measurement and Characterization, 1–15.

  • Basiri, L., Rajabzadeh, G., & Bostan, A. (2017). α-Tocopherol-loaded noisome prepared by heating method and its release behavior. Food Chemistry, 221, 620–628.

    Article  CAS  PubMed  Google Scholar 

  • Bitencourt, C. M., Fávaro-Trindade, C. S., Sobral, P. J. A., & Carvalho, R. A. (2014). Gelatin-based films additivated with curcuma ethanol extract: Antioxidant activity and physical properties of films. Food Hydrocolloids, 40, 145–152.

    Article  CAS  Google Scholar 

  • Bucurescu, A., Blaga, A. C., Estevinho, B. N., & Rocha, F. (2018). Microencapsulation of curcumin by a spray-drying technique using gum Arabic as encapsulating agent and release studies. Food and Bioprocess Technology, 11(10), 1795–1806.

    Article  CAS  Google Scholar 

  • Cai, L., Feng, J., Peng, X., Regenstein, J. M., Li, X., Li, J., & Zhao, W. (2016). Effect of egg albumen protein addition on physicochemical properties and nanostructure of gelatin from fish skin. Journal of Food Science and Technology, 53(12), 4224–4233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, Y. Y., Li, D., Wang, L. J., Bi, C. H., & Adhikari, B. (2014). Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels. Carbohydrate Polymers, 108(1), 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, C., Peng, S., Li, Z., Zou, L., Liu, W., & Liu, C. (2016). Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 7, 25978–25986.

    Article  Google Scholar 

  • Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13, 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Dai, L., Li, R., Wei, Y., Sun, C., Mao, L., & Gao, Y. (2018). Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and in vitro release of curcumin. Food Hydrocolloids, 77, 617–628.

    Article  CAS  Google Scholar 

  • Dai, L., Sun, C., Li, R., Mao, L., Liu, F., & Gao, Y. (2017). Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chemistry, 237, 1163–1171.

    Article  CAS  PubMed  Google Scholar 

  • Demirbay, B., Akaoğlu, C., Ulusaraç, İ, & Acar, F. G. (2017). Thermal and UV radiation effects on dynamic viscosity of gelatin-based riboflavin solutions. Journal of Molecular Liquids, 225, 147–150.

    Article  CAS  Google Scholar 

  • Estevinho, B. N., Horciu, I. L., Blaga, A. C., & Rocha, F. (2021). Development of controlled delivery functional systems by microencapsulation of different extracts of plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum. Food and Bioprocess Technology, 1–15.

  • Feng, T., Hu, Z., Wang, K., Zhu, X., Chen, D., Zhuang, H., & Sun, M. (2020). Emulsion-based delivery systems for curcumin: Encapsulation and interaction mechanism between debranched starch and curcumin. International Journal of Biological Macromolecules, 161, 746–754.

    Article  CAS  PubMed  Google Scholar 

  • Fuciños, C., Fuciños, P., Pastrana, L. M., & Rúa, M. L. (2014). Functional characterization of poly (N-isopropylacrylamide) nanohydrogels for the controlled release of food preservatives. Food and Bioprocess Technology, 7(12), 3429–3441.

    Article  CAS  Google Scholar 

  • Gani, A., Benjakul, S., & Nuthong, P. (2018). Effect of virgin coconut oil on properties of surimi gel. Journal of Food Science and Technology, 55(2), 496–505.

    Article  CAS  PubMed  Google Scholar 

  • Giménez, B., Moreno, S., López-Caballero, M. E., Montero, P., & Gómez-Guillén, M. C. (2013). Antioxidant properties of green tea extract incorporated to fish gelatin films after simulated gastrointestinal enzymatic digestion. LWT-Food Science and Technology, 53(2), 445–451.

    Article  CAS  Google Scholar 

  • Hafidz, R. M. R. N., Yaakob, C. M., Amin, I., & Noorfaizan, A. (2011). Chemical and functional properties of bovine and porcine skin gelatin. International Food Research, 18, 787–791. rointestinal enzymatic digestion. LWT-Food Science and Technology, 53, 445–451.

    Google Scholar 

  • Hu, H., Zhu, X., Hu, T., Cheung, I. W., Pan, S., & Li-Chan, E. C. (2015). Effect of ultrasound pre-treatment on formation of transglutaminase-catalysed soy protein hydrogel as a riboflavin vehicle for functional foods. Journal of Functional Foods, 19, 182–193.

  • Hu, Z., Feng, T., Zeng, X., Janaswamy, S., Wang, H., & Campanella, O. (2019). Structural characterization and digestibility of curcumin loaded octenyl succinic nanoparticles. Nanomaterials, 9(8), 1073.

    Article  CAS  PubMed Central  Google Scholar 

  • Hua, C., Yu, W., Yang, M., Cai, Q., Gao, T., Zhang, S., & Liu, Y. (2021). Casein-pectin nanocomplexes as a potential oral delivery system for improving stability and bioactivity of curcumin. Colloid and Polymer Science, 299(10), 1557–1566.

    Article  CAS  Google Scholar 

  • Jaber, N., & Aiedeh, K. (2019). Sorption behavior and release kinetics of iron (II) ions by oleoyl chitosan polymeric nanoparticles. Journal of Drug Delivery Science and Technology, 54, 101354.

    Article  CAS  Google Scholar 

  • Jabczyk, M., Nowak, J., Hudzik, B., & Zubelewicz-Szkodzińska, B. (2021). Curcumin and its potential impact on microbiota. Nutrients, 13(6), 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongjareonrak, A., Benjakul, S., Visessanguan, W., & Tanaka, M. (2006). Fatty acids and their sucrose esters affect the properties of fish skin gelatin-based film. European Food Research and Technology, 222, 650–657.

    Article  CAS  Google Scholar 

  • Kazemi-Taskooh, Z., & Varidi, M. (2021). Designation and characterization of cold-set whey protein-gellan gum hydrogel for iron entrapment. Food Hydrocolloids, 111, 106205.

    Article  CAS  Google Scholar 

  • Kevij, H. T., Salami, M., Mohammadian, M., & Khodadadi, M. (2020). Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocolloids, 108, 106020.

  • Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15(1), 25–35.

    Article  CAS  Google Scholar 

  • Kumar, K., & Rai, A. K. (2012). Proniosomal formulation of curcumin having anti-inflammatory and anti-arthritic activity in different experimental animal models. Die Pharmazie - an International Journal of Pharmaceutical Sciences, 67, 852–857.

    CAS  Google Scholar 

  • Kulkarni, S. A., & Feng, S. S. (2013). Effects of particle size and surface modification on cellular uptake and distribution of nanoparticles for drug delivery. Pharmaceutical Research, 30, 2512–2522.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhang, Y., Fan, Q., Teng, C., Xie, W., Shi, Y., & Yang, Y. (2018). Combination effects of NaOH and NaCl on the rheology and gel characteristics of hen egg white proteins. Food Chemistry, 250, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Wang, C., Zhang, M., Zhai, Y., Zhou, B., Su, Y., & Yang, Y. (2017). Effects of selected phosphate salts on gelling properties and water state of whole egg gel. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2017.08.030

    Article  Google Scholar 

  • Lin, C. C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58(12–13), 1379–1408.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Ying, D., Cai, Y., & Le, X. (2017). Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocolloids, 72, 304–311.

    Article  CAS  Google Scholar 

  • Liu, W., Wilson, D. I., Chen, X. D., & Mercadé-Prieto, R. (2018). Quantification of the local protein content in hydrogels undergoing swelling and dissolution at alkaline pH using fluorescence microscopy. Food and Bioprocess Technology, 11(3), 572–584.

    Article  CAS  Google Scholar 

  • Machado, N. D., & Fern´andez, M.A., H¨aring, M., Sald’ıas, C., D’ıaz D’ıaz, D. (2019). Niosomes encapsulated in biohydrogels for tunable delivery of phytoalexin resveratrol. RSC Advances, 9, 7601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malekjani, N., & Jafari, S. M. (2021). Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Comprehensive Reviews in Food Science and Food Safety, 20(1), 3–47.

    Article  CAS  PubMed  Google Scholar 

  • Mine, Y. (1995). Recent advances in understanding of egg white protein functionality. Trends in Food Science and Technology, 6(7), 225–232.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2017). Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocolloids, 68, 238–245.

    Article  CAS  Google Scholar 

  • Miller, F. A. (2003). Spectra of X-H systems (with emphasis on O-H and N-H groups). In D. W. Mayo, F. A. Miller, & R. W. Hannah (Eds.), Course notes on the interpretation and Raman spectra (pp. 163–178). John Wiley & Sons.

    Google Scholar 

  • Mohammadian, M., Salami, M., Moghadam, M., Amirsalehi, A., & Emam-Djomeh, Z. (2021). Mung bean protein as a promising biopolymeric vehicle for loading of curcumin: Structural characterization, antioxidant properties, and in vitro release kinetics. Journal of Drug Delivery Science and Technology, 61, 102148.

    Article  CAS  Google Scholar 

  • Nagarajan, M., Benjakul, S., Prodpran, T., Songtipya, P., & Kishimura, H. (2012). Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocolloids, 29(2), 389–397.

    Article  CAS  Google Scholar 

  • Nieto-Suazaa, L., Acevedo-Guevaraa, L., Sánchez, L. T., Pinzón, M. I., & Villaa, C. C. (2019). Characterization of Aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles. Food Structure, 22, 100131.

    Article  Google Scholar 

  • Nojima, T., & Iyoda, T. (2018). Egg white-based strong hydrogel via ordered protein condensation. NPG Asia Materials, 10(1), e460–e460. https://doi.org/10.1038/am.2017.219

    Article  Google Scholar 

  • Ozel, B., Aydin, O., Grunin, L., & Oztop, M. H. (2018). Physico-chemical changes of composite whey protein hydrogels in simulated gastric fluid conditions. Journal of Agricultural and Food Chemistry, 66(36), 9542–9555.

    Article  CAS  PubMed  Google Scholar 

  • Pando, D., Beltrán, M., Gerone, I., Matos, M., Pazos, C. (2015). Resveratrol entrapped niosomes as yoghurt additive. Food Chemistry 170281-287. https://doi.org/10.1016/j.foodchem.2014.08.082

    Article  CAS  PubMed  Google Scholar 

  • Peppas, N. A., & Narasimhan, B. (2014). Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 190, 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Peanparkdee, M., Iwamoto, S., & Yamauchi, R. (2017). Preparation and release behavior of gelatin-based capsules of antioxidants from ethanolic extracts of Thai Riceberry bran. Food and Bioprocess Technology, 10(9), 1737–1748.

    Article  Google Scholar 

  • Rafiee, Z., Nejatian, M., Daeihamed, M., & Jafari, S. M. (2019). Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food Science and Nutrition, 59(21), 3468–3497. https://doi.org/10.1080/10408398.2018.1495174

    Article  CAS  PubMed  Google Scholar 

  • Savaghebi, D., Ghaderi-Ghahfarokhi, M., & Barzegar, M. (2021). Encapsulation of Sargassum boveanum algae extract in nano-liposomes: Application in functional mayonnaise production. Food and Bioprocess Technology, 1–15.

  • Song, Q., Li, D., Zhou, Y., Yang, J., Yang, W., Zhou, G., & Wen, J. (2014). Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. International Journal of Nanomedicine, 9, 2157–2165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, X. D., & Arntfield, S. D. (2010). Gelation properties of salt-extracted pea protein induced by heat treatment. Food Research International, 43, 509–515.

    Article  CAS  Google Scholar 

  • Sz˝uts, A., Szabó-Révész, P. (2012). Sucrose esters as natural surfactants in drug delivery systems—A mini-review. International Journal of Pharmaceutics, 433, 1–9.

    Article  CAS  Google Scholar 

  • Targhi, A. A., Moammeri, A., Jamshidifar, E., Abbaspour, K., Sadeghi, S., Lamakani, L., & Akbarzadeh, I. (2021). Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorganic Chemistry, 115, 105116.

    Article  CAS  PubMed  Google Scholar 

  • Tawani, A., Chavan, G., Vedpathak, S., Chakole, R., & Charde, M. (2021). Niosomes: A promising nanocarrier approach for drug delivery. Journal of Advanced Scientific Research, 12(04 Suppl 1), 39–57.

    Article  CAS  Google Scholar 

  • Ueki, N., Matsuoka, Y., Wan, J., & Watabe, S. (2018). The effects of endogenous proteases within abdominal muscle parts on the rheological properties of thermally induced gels from white croaker (Pennahia argentata). Food Chemistry, 268, 498–503.

    Article  CAS  PubMed  Google Scholar 

  • Vankayala, J. S., Battula, S. N., Kandasamy, R., Mariya, G. A., Franklin, M. E. E., Pushpadass, H. A., & Naik, L. N. (2018). Surfactants and fatty alcohol based novel nanovesicles for resveratrol: Process optimization, characterization and evaluation of functional properties in RAW 264.7 macrophage cells. Journal of Molecular Liquids, 261, 387–396.

    Article  CAS  Google Scholar 

  • Von Staszewski, M., Pilosof, A. M., & Jagus, R. J. (2011). Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins. Food Chemistry, 125(1), 186–192.

    Article  CAS  Google Scholar 

  • Wang, W., Zhang, X., Teng, A., & Liu, A. (2017). Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration. International Journal of Biological Macromolecules, 103, 226–233.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Sun, X., Guo, X., Ji, M., Wang, J., Cheng, C., Chen, L., Wen, C., & Zhang, Q. (2018). Physicochemical, antioxidant, in vitro release, and heat sealing properties of fish gelatin films incorporated with β-cyclodextrin/curcumin complexes for apple juice preservation. Food and Bioprocess Technology, 11, 447–461.

    Article  CAS  Google Scholar 

  • Xu, G., Wang, C., & Yao, P. (2017). Stable emulsion produced from casein and soy polysaccharide compacted complex for protection and oral delivery of curcumin. Food Hydrocolloids, 71, 108–117.

    Article  CAS  Google Scholar 

  • Xue, H., Xu, M., Lio, M., Luo, W., Zhang, G., Tu, Y., & Zhao, Y. (2021). Effect of tea and illicium verum braise on physicochemical characteristics, microstructure, and molecular structure of heat-induced egg white protein gel. Food Hydrocolloids, 110, 106181.

    Article  CAS  Google Scholar 

  • Yan, W., Yin, L., Li, J., Yadav, M. P., & Jia, X. (2020). Development of corn fiber gum–soybean protein isolate double network hydrogels through synergistic gelation. Food and Bioprocess Technology, 13(3), 511–521.

    Article  CAS  Google Scholar 

  • Yuan, C., Du, L., Zhang, G., Jin, Z., & Liu, H. (2016). Influence of cyclodextrins on texture behavior and freeze-thaw stability of kappa-carrageenan gel. Food Chemistry, 210, 600–605.

    Article  CAS  PubMed  Google Scholar 

  • Zandi, M., Mohebbi, M., Varidi, M., & Ramezanian, M. (2014). Evaluation of diacetyl encapsulated alginate–whey protein microspheres release kinetics and mechanism at simulated mouth conditions. Food Research International, 56, 211–217.

    Article  CAS  Google Scholar 

  • Zhu, Y., Vanga, S. K., Wang, J., & Raghavan, V. (2018). Effects of ultrasonic and microwave processing on avidin assay and secondary structures of egg white protein. Food and Bioprocess Technology, 11(11), 1974–1984. https://doi.org/10.1007/s11947-018-2158-6

    Article  CAS  Google Scholar 

  • Zhang, Y., Dutilleul, P., Orsat, V., & Simpson, B. K. (2018). Alcalase assisted production of novel high alpha-chain gelatin and the functional stability of its hydrogel as influenced by thermal treatment. International Journal of Biological Macromolecules, 118, 2278–2286.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Zhu, J., Zhou, H., Guo, X., Tian, T., Cui, S., Zhen, Y., Zhang, S., & Xu, Y. (2018). Sucrose ester based cationic liposomes as effective non-viral gene vectors for gene delivery. Colloids and Surfaces B: Biointerfaces, 145, 455–461.

    Google Scholar 

  • Zheng, B., Zhang, Z., Chen, F., Luo, X., & McClements, D. J. (2017). Impact of delivery system type on curcumin stability: Comparison of curcumin degradation in aqueous solutions, emulsions, and hydrogel beads. Food Hydrocolloids, 71, 187–197.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Halal Gelatin Pharmaceutical Processing, Qazvin, Iran; Dineh Iran Industries Complex, Tehran, Iran; and Sisterna Company, Roosendaal, Netherlands, for providing the gift sample of gelatin, curcumin, and sucrose stearate, respectively.

Funding

This study was supported by Ferdowsi University of Mashhad (FUM), Mashhad, Iran (grant number 48187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Varidi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashash, M., Varidi, M. & Varshosaz, J. Composite Hydrogel-Embedded Sucrose Stearate Niosomes: Unique Curcumin Delivery System. Food Bioprocess Technol 15, 2020–2034 (2022). https://doi.org/10.1007/s11947-022-02857-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02857-6

Keywords

Navigation