Skip to main content

Advertisement

Log in

Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The alteration in human micro-flora results in an increase in the population of the pathogenic bacteria, which further gives rise to the gastrointestinal diseases and disorders. To this extent, the supplementation of food products with probiotics may eliminate the pathogenic microbiota from the adhesion sites and regulate the immune response via the stimulation of the specific genes within the human’s gastrointestinal tract (GIT). Nonetheless, due to the sensitivity of probiotics to the environmental conditions during food manufacture/storage, it is a challenge to develop probiotic products with a desirable shelf life that maintain the viability of the probiotic cells. The spray drying of bacteria is a sustainable process and enables bulk production with lower energy costs. This is also a promising way to encapsulate bacteria within various protective matrices to ensure their improved resistance during storage, technological processes, and digestive stresses. This review assembles and summarizes the scientific data on various aspects of probiotic bacteria encapsulated using conventional spray drying and incorporated into different functional food products, as well as the aspects of safety, toxicity, and regulations of adding encapsulated probiotics into functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Adhikari, K., Mustapha, A., Grün, I. U., & Fernando, L. (2000). Viability of microencapsulated Bifidobacteria in set yogurt during refrigerated storage. Journal of Dairy Science, 83(9), 1946–1951.

    Article  CAS  PubMed  Google Scholar 

  • Agudelo, J., Cano, A., González-Martínez, C., & Chiralt, A. (2017). Disaccharide incorporation to improve survival during storage of spray dried Lactobacillus rhamnosus in whey protein-maltodextrin carriers. Journal of Functional Foods, 37, 416–423. https://doi.org/10.1016/j.jff.2017.08.014

    Article  CAS  Google Scholar 

  • Akanny, E., Bourgeois, S., Bonhommé, A., Commun, C., Doleans-Jordheim, A., Bessueille, F., & Bordes, C. (2020). Development of enteric polymer-based microspheres by spray drying for colonic delivery of Lactobacillus rhamnosus GG. International Journal of Pharmaceutics584, 119414.

  • Alves, N. N., Messaoud, G. B., Desobry, S., Costa, J. M. C., & Rodrigues, S. (2016). Effect of drying technique and feed flow rate on bacterial survival and physicochemical properties of a non-dairy fermented probiotic juice powder. Journal of Food Engineering, 189, 45–54.

    Article  CAS  Google Scholar 

  • Amara, A. A., & Shibl, A. (2015). Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharmaceutical Journal, 23(2), 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Anekella, K., & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT-Food Science and Technology, 50(1), 17–24.

    Article  CAS  Google Scholar 

  • Antunes, A. E. C., Liserre, A. M., Coelho, A. L. A., Menezes, C. R., Moreno, I., Yotsuyanagi, K., & Azambuja, N. C. (2013). Acerola nectar with added microencapsulated probiotic. LWT-Food Science and Technology, 54(1), 125–131.

    Article  CAS  Google Scholar 

  • Aragón-Rojas, S., Quintanilla-Carvajal, M. X., & Hernández-Sánchez, H. (2018). Multifunctional role of the whey culture medium in the spray drying microencapsulation of lactic acid bacteria. Food Technology and Biotechnology, 56(3), 381–397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arepally, D., & Goswami, T. K. (2019). Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT-Food Science and Technology, 99, 583–593.

    Article  CAS  Google Scholar 

  • Arslan-Tontul, S., Erbas, M., & Gorgulu, A. (2019). The Use of probiotic-loaded single-and double-layered microcapsules in cake production. Probiotics and Antimicrobial Proteins, 11(3), 840–849.

    Article  CAS  PubMed  Google Scholar 

  • Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT-Food Science and Technology63(1), 685–690.

  • Arslan-Tontul, S., & Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT-Food Science and Technology, 81, 160–169.

    Article  CAS  Google Scholar 

  • Assadpour, E., & Jafari, S. M. (2019). Advances in spray drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. Annual Review of Food Science and Technology, 10, 103–131.

    Article  CAS  PubMed  Google Scholar 

  • Avila-Reyes, S. V., Garcia-Suarez, F. J., Jiménez, M. T., San Martín-Gonzalez, M. F., & Bello-Perez, L. A. (2014). Protection of L. rhamnosus by spray drying using two prebiotics colloids to enhance the viability. Carbohydrate Polymers, 102, 423–430.

    Article  CAS  PubMed  Google Scholar 

  • Azam, M., Saeed, M., Pasha, I., & Shahid, M. (2020). A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosusFood Bioscience37, 100679.

  • Barajas-Álvarez, P., González-Ávila, M., & Espinosa-Andrews, H. (2022). Microencapsulation of Lactobacillus rhamnosus HN001 by spray drying and its evaluation under gastrointestinal and storage conditions. LWT153, 112485.

  • Barbosa, J., Borges, S., Amorim, M., Pereira, M. J., Oliveira, A., Pintado, M. E., & Teixeira, P. (2015). Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. Journal of Functional Foods, 17, 340–351.

    Article  CAS  Google Scholar 

  • Behboudi-Jobbehdar, S., Soukoulis, C., Yonekura, L., & Fisk, I. (2013). Optimization of spray drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Drying Technology31(11), 1274–1283.

  • Belvis, J., Tompkins, T. A., Wallace, T. A., Casavant, L., Fortin, C., & Caron, C. (2006). Stability of probiotic bacteria in food stuffs. In CIFST Meeting, Montréal, May (Vol. 30).

  • Bhagwat, A., Bhushette, P., & Annapure, U. S. (2020). Spray drying studies of probiotic Enterococcus strains encapsulated with whey protein and maltodextrin. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 1–8.

    Article  Google Scholar 

  • Broeckx, G., Vandenheuvel, D., Claes, I. J., Lebeer, S., & Kiekens, F. (2016). Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. International Journal of Pharmaceutics, 505(1–2), 303–318.

    Article  CAS  PubMed  Google Scholar 

  • Broeckx, G., Vandenheuvel, D., Henkens, T., Kiekens, S., van den Broek, M. F., Lebeer, S., & Kiekens, F. (2017). Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage. International Journal of Pharmaceutics, 534(1–2), 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Bustamante, M., Oomah, B. D., Rubilar, M., & Shene, C. (2017). Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linumusitatissimum L.) mucilage and soluble protein by spray drying. Food Chemistry, 216, 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Chaikham, P., Kemsawasd, V., & Seesuriyachan, P. (2017). Spray drying probiotics along with maoluang juice plus Tiliacoratriandra gum for exposure to the in vitro gastrointestinal environments. LWT-Food Science and Technology, 78, 31–40.

    Article  CAS  Google Scholar 

  • Choudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4), 426–442.

    Article  CAS  Google Scholar 

  • Cuddihy, S. L., Parker, A., Harwood, D. T., Vissers, M. C., & Winterbourn, C. C. (2008). Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Free Radical Biology and Medicine, 44(8), 1637–1644.

    Article  CAS  PubMed  Google Scholar 

  • De Castro-Cislaghi, F. P., Carina Dos Reis, E. S., Fritzen-Freire, C. B., Lorenz, J. G., & Sant’Anna, E. S. (2012). Bifidobacterium Bb-12 microencapsulated by spray drying with whey: Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. Journal of Food Engineering, 113(2), 186–193.

    Article  CAS  Google Scholar 

  • Dias, C. O., de Almeida, J. D. S. O., Pinto, S. S., de Oliveira Santana, F. C., Verruck, S., Müller, C. M. O., Prudêncio, E. S., & Amboni, R. D. D. M. C. (2018). Development and physico-chemical characterization of microencapsulated bifidobacteria in passion fruit juice: A functional non-dairy product for probiotic delivery. Food Bioscience, 24, 26–36.

    Article  CAS  Google Scholar 

  • Dimitrellou, D., Kandylis, P., Petrović, T., Dimitrijević-Branković, S., Lević, S., Nedović, V., & Kourkoutas, Y. (2016). Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT-Food Science and Technology, 71, 169–174.

    Article  CAS  Google Scholar 

  • Dong, L. M., Luan, N. T., & Thuy, D. T. K. (2020). The viability of encapsulated Lactobacillus plantarum during cupcake baking process, storage, and simulated gastric digestion. Journal of Microbiology, Biotechnology and Food Sciences, 9(6), 1157–1161.

    Article  CAS  Google Scholar 

  • Doron, S., & Snydman, D. R. (2015). Risk and safety of probiotics. Clinical Infectious Diseases60(suppl_2), S129-S134.

  • Eratte, D., McKnight, S., Gengenbach, T. R., Dowling, K., Barrow, C. J., & Adhikari, B. P. (2015). Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. Journal of Functional Foods, 19, 882–892.

    Article  CAS  Google Scholar 

  • Ermis, E. (2021). A review of drying methods for improving the quality of probiotic powders and characterization. Drying Technology, 1–18.

  • Fahimdanesh, M., Mohammadi, N., Ahari, H., Zanjani, M. K., Hargalani, F. Z., & Behrouznasab, K. (2012). Effect of microencapsulation plus resistant starch on survival of Lactobacillus casei and Bifidobacterium bifidum in mayonnaise sauce. African Journal of Microbiology Research, 6(40), 6853–6858.

    Google Scholar 

  • Fazilah, N. F., Hamidon, N. H., Ariff, A. B., Khayat, M. E., Wasoh, H., & Halim, M. (2019). Microencapsulation of Lactococcus lactis Gh1 with Gum Arabic and Synsepalumdulcificum via Spray Drying for Potential Inclusion in Functional Yogurt. Molecules, 24(7), 1422.

    Article  CAS  PubMed Central  Google Scholar 

  • Fijan, S. (2014). Microorganisms with claimed probiotic properties: An overview of recent literature. International Journal of Environmental Research and Public Health, 11(5), 4745–4767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu, N., Huang, S., Xiao, J., & Chen, X. D. (2018). Producing powders containing active dry probiotics with the aid of spray drying. In Advances in Food and Nutrition Research (Vol. 85, pp. 211–262). Academic Press.

  • Gardiner, G. E., Bouchier, P., O’Sullivan, E., Kelly, J., Collins, J. K., Fitzgerald, G., Collins, J. K., & Stanton, C. (2002). A spray dried culture for probiotic Cheddar cheese manufacture. International Dairy Journal, 12(9), 749–756.

    Article  CAS  Google Scholar 

  • Gbassi, G. K., & Vandamme, T. (2012). Probiotic encapsulation technology: From microencapsulation to release into the gut. Pharmaceutics, 4(1), 149–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerez, C. L., Font de Valdez, G., Gigante, M. L., & Grosso, C. R. F. (2012). Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Letters in Applied Microbiology, 54(6), 552–556.

    Article  CAS  PubMed  Google Scholar 

  • Ghandi, A., Powell, I. B., Howes, T., Chen, X. D., & Adhikari, B. (2012). Effect of shear rate and oxygen stresses on the survival of Lactococcus lactis during the atomization and drying stages of spray drying: A laboratory and pilot scale study. Journal of Food Engineering, 113(2), 194–200.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  • Granato, D., Branco, G. F., Cruz, A. G., Faria, J. D. A. F., & Shah, N. P. (2010). Probiotic dairy products as functional foods. Comprehensive Reviews in Food Science and Food Safety, 9(5), 455–470.

    Article  CAS  PubMed  Google Scholar 

  • Guerin, J., Petit, J., Burgain, J., Borges, F., Bhandari, B., Perroud, C., Desobry, S., Scher, J., & Gaiani, C. (2017). Lactobacillus rhamnosus GG encapsulation by spray drying: Milk proteins clotting control to produce innovative matrices. Journal of Food Engineering, 193, 10–19.

    Article  CAS  Google Scholar 

  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., & H.J., Salminen, S., Calder, P. C. & Sanders, M.E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514.

    Article  Google Scholar 

  • Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111(1), 50–55.

    Article  CAS  Google Scholar 

  • Hosseini A, Jafari SM, Mirzaei H, Asghari A, Akhavan S (2015) Application of image processing to assess emulsion stability and emulsification properties of Arabic gum.Carbohydrate Polymers, 126,1–8.

  • Huang, S., Vignolles, M. L., Chen, X. D., Le Loir, Y., Jan, G., Schuck, P., & Jeantet, R. (2017). Spray drying of probiotics and other food-grade bacteria: A review. Trends in Food Science & Technology, 63, 1–17.

    Article  CAS  Google Scholar 

  • Joint FAO/WHO Working Group. (2014). Guidelines for the evaluation of probiotics in food: Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food (p. 2002). Ontario, Canada.

    Google Scholar 

  • Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: Technology and potential applications. Current Issues in Intestinal Microbiology, 3(2), 39–48.

    CAS  PubMed  Google Scholar 

  • Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Science and Technology, 39(10), 1221–1227.

    Article  CAS  Google Scholar 

  • Kalal, A. Y., Hiregoudar, S., Nidoni, U., Ramachandra, C. T., Naik, N., & Roopabai, R. S. (2017). Nanoencapsulation of Lactobacillus casei in Bitter Gourd Juice using Spray Drying. Advances in Bioresearch8(6).

  • Kalita, D., Saikia, S., Gautam, G., Mukhopadhyay, R., & Mahanta, C. L. (2018). Characteristics of synbiotic spray dried powder of litchi juice with Lactobacillus plantarum and different carrier materials. LWT-Food Science and Technology, 87, 351–360.

    Article  CAS  Google Scholar 

  • Kearney, N., Meng, X. C., Stanton, C., Kelly, J., Fitzgerald, G. F., & Ross, R. P. (2009). Development of a spray dried probiotic yoghurt containing Lactobacillus paracasei NFBC 338. International Dairy Journal, 19(11), 684–689.

    Article  CAS  Google Scholar 

  • Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018). Benefaction of probiotics for human health: A review. Journal of Food and Drug Analysis, 26(3), 927–939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khem, S., Bansal, V., Small, D. M., & May, B. K. (2016a). Comparative influence of pH and heat on whey protein isolate in protecting Lactobacillus plantarum A17 during spray drying. Food Hydrocolloids, 54, 162–169.

    Article  CAS  Google Scholar 

  • Khem, S., Small, D. M., & May, B. K. (2016b). The behaviour of whey protein isolate in protecting Lactobacillus plantarum. Food Chemistry, 190, 717–723.

    Article  CAS  PubMed  Google Scholar 

  • Kingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., & Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT-Food Science and Technology, 62(1), 847–853.

    Article  CAS  Google Scholar 

  • Kokott, S. (2004). Microencapsulation and supply of Bifidobacterium lactis DSM 10140 in fermented traditional African beverages (Doctoral dissertation, Cape Peninsula University of Technology) MTech (Food Technology) Available from: http://hdl.handle.net/20.500.11838/824. Accessed 2020 April 9.

  • Krasaekoopt, W., & Kitsawad, K. (2010). Sensory characteristics and consumer acceptance of fruit juice containing probiotics beads in Thailand. Assumption University Journal of Technology, 14(1), 33–38.

    Google Scholar 

  • Kumar, M., Rakesh, S., Nagpal, R., Hemalatha, R., Ramakrishna, A., Sudarshan, V., Ramagoni, R., Shujauddin, M., Verma, V., Kumar, A., Tiwari, A., Singh, B., & Rajesh Kumar, R. (2013). Probiotic Lactobacillus rhamnosus GG and Aloe vera gel improve lipid profiles in hypercholesterolemic rats. Nutrition, 29(3), 574–579.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, R., & Seth, D. (2016). Optimization of microencapsulation of probiotics in carambola fruit juice by spray drying. In: International Conference on Emerging Technologies in Agricultural and Food Engineering (ETAE 2016), IIT Kharagpur, December 27–30.

  • Lai, K., How, Y., & Pui, L. (2021). Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. Journal of Microencapsulation, 38(2), 134–148.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. K. (2009). Selection and maintenance of probiotic microorganisms. In Y. K. Lee & S. Salminen (Eds.), Handbook of Probiotics and Prebiotics (pp. 177–187). Wiley-VCH.

    Google Scholar 

  • Liao, L. K., Wei, X. Y., Gong, X., Li, J. H., Huang, T., & Xiong, T. (2017). Microencapsulation of Lactobacillus casei LK-1 by spray drying related to its stability and in vitro digestion. LWT-Food Science and Technology, 82, 82–89.

    Article  CAS  Google Scholar 

  • Lieu, M. D., Dang, T. K. T., & Nguyen, T. H. (2017). Viability of microencapsulated Lactobacillus casei in synbiotic mayonnaise. Food Research, 1(6), 234–239.

    Article  Google Scholar 

  • Liu, H., Gong, J., Chabot, D., Miller, S. S., Cui, S. W., Zhong, F., & Wang, Q. (2018). Improved survival of Lactobacillus zeae LB1 in a spray dried alginate-protein matrix. Food Hydrocolloids, 78, 100–108.

    Article  CAS  Google Scholar 

  • Liu, H., Gong, J., Chabot, D., Miller, S. S., Cui, S. W., et al. (2015). Protection of heat-sensitive probiotic bacteria during spray drying by sodium caseinate stabilized fat particles. Food Hydrocolloids, 51, 459–467.

    Article  CAS  Google Scholar 

  • Maciel, G. M., Chaves, K. S., Grosso, C. R. F., & Gigante, M. L. (2014). Microencapsulation of Lactobacillus acidophilus La-5 by spray drying using sweet whey and skim milk as encapsulating materials. Journal of Dairy Science, 97(4), 1991–1998.

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385.

    Article  CAS  Google Scholar 

  • Malmo, C., La Storia, A., & Mauriello, G. (2013). Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cell in a chocolate soufflé. Food and Bioprocess Technology, 6(3), 795–805.

    Article  CAS  Google Scholar 

  • Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.

    Article  PubMed Central  CAS  Google Scholar 

  • Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15–25.

    Article  CAS  Google Scholar 

  • Mattila-Sandholm, T., Myllarinen, P., Crittenden, R., Mogensen, G., Fonden, R., & Saarela, M. (2002). Technological challenges for future probiotic food. International Dairy Journal, 12(2), 173–182.

    Article  CAS  Google Scholar 

  • Moayyedi, M., Eskandari, M. H., Rad, A. H. E., Ziaee, E., Khodaparast, M. H. H., & Golmakani, M. T. (2018). Effect of drying methods (electrospraying, freeze drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. Journal of Functional Foods, 40, 391–399.

    Article  CAS  Google Scholar 

  • Mokhtari, S., Jafari, S. M., & Khomeiri, M. (2019). Survival of encapsulated probiotics in pasteurized grape juice and evaluation of their properties during storage. Food Science and Technology International, 25(2), 120–129.

    Article  CAS  PubMed  Google Scholar 

  • Mokhtari, S., Jafari, S. M., Khomeiri, M., Maghsoudlou, Y., & Ghorbani, M. (2017a). The cell wall compound of Saccharomyces cerevisiae as a novel wall material for encapsulation of probiotics. Food Research International, 96, 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Mokhtari, S., Khomeiri, M., Jafari, S. M., Maghsoudlou, Y., & Ghorbani, M. (2017b). Descriptive analysis of bacterial profile, physicochemical and sensory characteristics of grape juice containing Saccharomyces cerevisiae cell wall-coated probiotic microcapsules during storage. International Journal of Food Science & Technology, 52(4), 1042–1048.

    Article  CAS  Google Scholar 

  • Muthukumarasamy, P., & Holley, R. A. (2006). Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. International Journal of Food Microbiology, 111(2), 164–169.

    Article  CAS  PubMed  Google Scholar 

  • Nambiar, R. B., Sellamuthu, P. S., & Perumal, A. B. (2018). Development of milk chocolate supplemented with microencapsulated Lactobacillus plantarum HM47 and to determine the safety in a Swiss albino mice model. Food Control, 94, 300–306.

    Article  CAS  Google Scholar 

  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., & Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806–1815.

    Article  CAS  Google Scholar 

  • Ningtyas, D. W., Bhandari, B., Bansal, N., & Prakash, S. (2019). The viability of probiotic Lactobacillus rhamnosus (non-encapsulated and encapsulated) in functional reduced-fat cream cheese and its textural properties during storage. Food Control, 100, 8–16.

    Article  CAS  Google Scholar 

  • Nunes, G. L., de Araújo Etchepare, M., Cichoski, A. J., Zepka, L. Q., Lopes, E. J., Barin, J. S., Marlon, É., de Moraes Flores, E. M., & de Bona da Silva, C., & de Menezes, C. R. (2018). Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT-Food Science and Technology, 89, 128–133.

    Article  CAS  Google Scholar 

  • Páez, R., Lavari, L., Audero, G., Cuatrin, A., Zaritzky, N., Reinheimer, J., & Vinderola, G. (2013). Study of the effects of spray drying on the functionality of probiotic lactobacilli. International Journal of Dairy Technology, 66(2), 155–161.

    Article  CAS  Google Scholar 

  • Paim, D. R., Costa, S. D., Walter, E. H., & Tonon, R. V. (2016). Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT-Food Science and Technology, 74, 21–25.

    Article  CAS  Google Scholar 

  • Pandey, K. R., & Vakil, B. V. (2017). Encapsulation of probiotic Bacillus coagulans for enhanced shelf life. Jornal of Appied Biology and Biotechnology, 5, 57–65.

    CAS  Google Scholar 

  • Peighambardoust, S. H., Tafti, A. G., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: A review. Trends in Food Science & Technology, 22(5), 215–224.

    Article  CAS  Google Scholar 

  • Pérez-Chabela, M. L., Lara-Labastida, R., Rodriguez-Huezo, E., & Totosaus, A. (2013). Effect of spray drying encapsulation of thermotolerant lactic acid bacteria on meat batter properties. Food and Bioprocess Technology, 6(6), 1505–1515.

    Article  Google Scholar 

  • Petreska-Ivanovska, T., Petrushevska-Tozi, L., Grozdanov, A., Petkovska, R., Hadjieva, J., Popovski, E., & Mladenovska, K. (2014). From optimization of synbiotic microparticles prepared by spray drying to development of new functional carrot juice. Chemical Industry and Chemical Engineering Quarterly, 20(4), 549–564.

    Article  CAS  Google Scholar 

  • Picot, A., & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 14(6), 505–515.

    Article  CAS  Google Scholar 

  • Pinto, S. S., Verruck, S., Vieira, C. R., Prudêncio, E. S., Amante, E. R., & Amboni, R. D. (2015). Influence of microencapsulation with sweet whey and prebiotics on the survival of Bifidobacterium-BB-12 under simulated gastrointestinal conditions and heat treatments. LWT-Food Science and Technology, 64(2), 1004–1009.

    Article  CAS  Google Scholar 

  • Pispan, S., Hewitt, C. J., & Stapley, A. G. F. (2013). Comparison of cell survival rates of E. coli K12 and L. acidophilus undergoing spray drying. Food and Bioproducts Processing91(4), 362–369.

  • Prakash, K. S., Bashir, K., & Mishra, V. (2017). Development of synbiotic litchi juice drink and its physiochemical, viability and sensory analysis. Journal of Food Processing and Technology8(12).

  • Putta, S., Yarla, N. S., Lakkappa, D. B., Imandi, S. B., Malla, R. R., Chaitanya, A. K., & Aliev, G. (2018). Probiotics: Supplements, food, pharmaceutical industry. In Therapeutic, Probiotic, and Unconventional Foods (pp. 15–25). Academic Press.

  • Quintana, G., Gerbino, E., & Gómez-Zavaglia, A. (2018). Valorization of okara oil for the encapsulation of Lactobacillus plantarum. Food Research International, 106, 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Radulović, Z., Miočinović, J., Mirković, N., Mirković, M., Paunović, D., Ivanović, M., & Seratlić, S. (2017). Survival of spray-dried and free-cells of potential probiotic Lactobacillus plantarum 564 in soft goat cheese. Animal Science Journal, 88(11), 1849–1854.

    Article  PubMed  CAS  Google Scholar 

  • Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT-Food Science and Technology, 60(2), 773–780.

    Article  CAS  Google Scholar 

  • Ranadheera, C. S., Vidanarachchi, J. K., Rocha, R. S., Cruz, A. G., & Ajlouni, S. (2017). Probiotic delivery through fermentation: dairy vs. non-dairy beverages. Fermentation3(4), 67.

  • Ranadheera, R. D. C. S., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1–7.

    Article  CAS  Google Scholar 

  • Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2013). Production of probiotic ice cream from goat’s milk and effect of packaging materials on product quality. Small Ruminant Research, 112(1–3), 174–180.

    Article  Google Scholar 

  • Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2015). Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat's milk. Small Ruminant Research123(1), 155–159.

  • Rodklongtan, A., & Chitprasert, P. (2017). Combined effects of holy basil essential oil and inlet temperature on lipid peroxidation and survival of Lactobacillus reuteri KUB-AC5 during spray drying. Food Research International, 100, 276–283.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, F. J., Cedran, M. F., Bicas, J. L., & Sato, H. H. (2020). Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications-a narrative review. Food Research International137(109682.10), 1016.

  • Rokka, S., & Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. European Food Research and Technology, 231(1), 1–12.

    Article  CAS  Google Scholar 

  • Romano, N., Mobili, P., Zuñiga-Hansen, M. E., & Gómez-Zavaglia, A. (2018). Physico-chemical and structural properties of crystalline inulin explain the stability of Lactobacillus plantarum during spray drying and storage. Food Research International, 113, 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Saarela, M., Mogensen, G., Fonden, R., Mättö, J., & Mattila-Sandholm, T. (2000). Probiotic bacteria: Safety, functional and technological properties. Journal of Biotechnology, 84(3), 197–215.

    Article  CAS  PubMed  Google Scholar 

  • Saarela, M., Kirkajarvi, I., Alkomi, H. L., Sigvart-Mattila, P., & Matto, J. (2006). Stability and functionality of freeze-dried probiotic Bifidobacterium cells during storage in juice and milk. International Dairy Journal, 16, 1477–1482.

    Article  CAS  Google Scholar 

  • Salmeron, I. (2017). Fermented cereal beverages: From probiotic, prebiotic and synbiotic towards Nanoscience designed healthy drinks. Letters in Applied Microbiology, 65(2), 114–124.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, M. E., Akkermans, L. M., Haller, D., Hammerman, C., Heimbach, J. T., Hörmannsperger, G., & Huys, G. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164–185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarabandi, K., Gharehbeglou, P., & Jafari, S. M. (2020). Spray drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Drying Technology, 38(5–6), 577–595.

    Article  CAS  Google Scholar 

  • Siemons, I., Vaessen, E. M. J., van Peski, S. O., Boom, R. M., & Schutyser, M. A. I. (2021). Protective effect of carrier matrices on survival of Lactobacillus plantarum WCFS1 during single droplet drying explained by particle morphology development. Journal of Food Engineering, 292, 110263.

  • Šipailienė, A., & Petraitytė, S. (2018). Encapsulation of probiotics: Proper selection of the probiotic strain and the influence of encapsulation technology and materials on the viability of encapsulated microorganisms. Probiotics and Antimicrobial Proteins, 10(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Sosnik, A., & Seremeta, K. P. (2015). Advantages and challenges of the spray drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science, 223, 40–54.

    Article  CAS  PubMed  Google Scholar 

  • Spigno, G., Garrido, G. D., Guidesi, E., & Elli, M. (2015). Spray drying encapsulation of probiotics for ice-cream application. Chemical Engineering Transactions, 43, 49–54.

    Google Scholar 

  • Surnis, S. A., Huparikar, K. B., & Pramod, A. K. (2016). Microencapsulation of Probiotics (Lactobacillus Casei and Bifidobacterium Longum) in Pineapple Jam by Spray Drying and its Comparitive Study. International Journal of Engineering Research & Technology, 5(3), 675–677.

    Google Scholar 

  • Tarrah, A., De Castilhos, J., Rossi, R. C., Duarte, V. D. S., Ziegler, D., Corich, V., & Giacomini, A. (2018). In vitro probiotic potential and anti-cancer activity of newly isolated folate-producing Streptococcus thermophilus strains. Frontiers in Microbiology, 9, 2214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7), 1591.

    Article  CAS  PubMed Central  Google Scholar 

  • Trabelsi, I., Slima, S. B., Ktari, N., Triki, M., Abdehedi, R., Abaza, W., HafedhMoussac, H., Abdeslam, A., & Salah, R. B. (2019). Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Science, 154, 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Verruck, S., de Carvalho, M. W., de Liz, G. R., Amante, E. R., Vieira, C. R. W., Amboni, R. D. D. M. C., & Prudencio, E. S. (2017). Survival of Bifidobacterium BB-12 microencapsulated with full-fat goat’s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments. Small Ruminant Research, 153, 48–56.

    Article  Google Scholar 

  • Vivek, K., Mishra, S., & Pradhan, R. C. (2020). Characterization of spray dried probiotic Sohiong fruit powder with Lactobacillus plantarumLWT-Food Science and Technology, 117, 108699.

  • Ying, D., Sanguansri, L., Weerakkody, R., Bull, M., Singh, T. K., & Augustin, M. A. (2016). Effect of encapsulant matrix on stability of microencapsulated probiotics. Journal of Functional Foods, 25, 447–458.

    Article  CAS  Google Scholar 

  • Ying, D., Schwander, S., Weerakkody, R., Sanguansri, L., Gantenbein-Demarchi, C., & Augustin, M. A. (2013). Microencapsulated Lactobacillus rhamnosusGG in whey protein and resistant starch matrices: Probiotic survival in fruit juice. Journal of Functional Foods, 5(1), 98–105.

    Article  CAS  Google Scholar 

  • Ying, D., Sun, J., Sanguansri, L., Weerakkody, R., & Augustin, M. A. (2012). Enhanced survival of spray-dried microencapsulated Lactobacillus rhamnosus GG in the presence of glucose. Journal of Food Engineering, 109(3), 597–602.

    Article  CAS  Google Scholar 

  • Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6, 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanjani, M. A. K., Tarzi, B. G., Sharifan, A., Mohammadi, N., Bakhoda, H., & Madanipour, M. M. (2012). Microencapsulation of Lactobacillus casei with calcium alginate-resistant starch and evaluation of survival and sensory properties in cream-filled cake. African Journal of Microbiology Research, 6(26), 5511–5517.

    CAS  Google Scholar 

  • Zhang, Y., Lin, J., & Zhong, Q. (2015). The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Research International, 71, 9–15.

    Article  CAS  Google Scholar 

  • Zhang, Y., Lin, J., & Zhong, Q. (2016). Effects of media, heat adaptation, and outlet temperature on the survival of Lactobacillus salivarius NRRL B-30514 after spray drying and subsequent storage. LWT-Food Science and Technology, 74, 441–447.

    Article  CAS  Google Scholar 

  • Zheng, X., Fu, N., Huang, S., Jeantet, R., & Chen, X. D. (2016). Exploring the protective effects of calcium-containing carrier against drying-induced cellular injuries of probiotics using single droplet drying technique. Food Research International, 90, 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Ziaee, A., Albadarin, A. B., Padrela, L., Femmer, T., O’Reilly, E., & Walker, G. (2019). Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. European Journal of Pharmaceutical Sciences, 127, 300–318.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seid Mahdi Jafari.

Ethics declarations

Conflicts of Interests

All authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Rashidinejad, A. & Jafari, S.M. Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. Food Bioprocess Technol 15, 2135–2154 (2022). https://doi.org/10.1007/s11947-022-02803-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02803-6

Keywords

Navigation