Skip to main content
Log in

Novel Combined Use of Red-White LED Illumination and Modified Atmosphere Packaging for Maintaining Storage Quality of Postharvest Pakchoi

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Light-emitting diode (LED) irradiation is a promising way of food non-thermal preservation in recent years, and modified atmosphere packaging (MAP) is a traditional preservation method that can realize long-term storage. To maximize the shelf life of pakchoi and maintain its quality, pakchoi was packaged and stored under modified atmosphere with and without red and white LED illumination. The initial gas partial pressure (kPa) of O2/CO2 in the three modified atmospheres was 5/10, 5/5, and 10/5. At the end of 30-day refrigerated storage period, LED illumination + 5 kPa O2 + 5 kPa CO2 showed better effects than other treatments in delaying losses of mass, chlorophylls, soluble sugars, and ascorbic acid and ultimately maintained the package gas partial pressure at O2/CO2 = 5.11/5.09. Furthermore, the treatment alleviated the accumulation of malondialdehyde, reduced the activity of the polyphenol oxidase and peroxidase, and better maintained DPPH radical scavenging activity. In addition, the combined treatment significantly reduced the amount of soluble quinone accumulated in pakchoi at the end of the storage period. The optimal treatment was effectively distinguished from other treatments by principal component analysis (PCA). The analysis confirmed that the freshness of the jointly treated samples was least different from the start day samples. Through correlation analysis, respiratory rate was highly positively correlated with soluble sugar content, color index, and DPPH radical scavenging activity. In conclusion, the combined treatment of LED irradiation and MAP led to the cumulative effect of different indicators, effectively alleviated the occurrence of browning of pakchoi, enhanced the preservation effect, and extended the shelf life of pakchoi to 30 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data are available from the corresponding author upon suitable request.

References

  • Ali, S., Sattar Khan, A., Ullah Malik, A., Anjum, M. A., Nawaz, A., & Shoaib Shah, H. M. (2019). Modified atmosphere packaging delays enzymatic browning and maintains quality of harvested litchi fruit during low temperature storage. Scientia Horticulturae, 254, 14–20.

    Article  CAS  Google Scholar 

  • Edwards, A. M., & E. S. (2001). Effect of visible light on selected enzymes, vitamins and amino acids. Journal of Photochemistry and Photobiology B: Biology, 63, 126–131.

    Article  CAS  Google Scholar 

  • Bhavya, M. L., Shewale, S. R., Rajoriya, D., & Hebbar, H. U. (2021). Impact of blue LED illumination and natural photosensitizer on bacterial pathogens, enzyme activity and quality attributes of fresh-cut pineapple slices. Food and Bioprocess Technology, 14(2), 362–372.

    Article  CAS  Google Scholar 

  • Braidot, E., Petrussa, E., Peresson, C., & Patui, S. (2014). Low-intensity light cycles improve the quality lamb’s lettuce (Valerianella olitorio L.Pollich) during storageat low temperature. Postharvest Biology and Technology, 90, 15–23.

    Article  CAS  Google Scholar 

  • Castillejo, N., Martinez-Zamora, L., Gomez, P. A., Pennisi, G., Crepaldi, A., Fernandez, J. A., Orsini, F., & Artes-Hernandez, F. (2021). Postharvest LED lighting: Effect of red, blue and far red on quality of minimally processed broccoli sprouts. Journal of the Science of Food and Agriculture, 101(1), 44–53.

    Article  CAS  PubMed  Google Scholar 

  • Charles, F., Guillaume, C., & Gontard, N. (2008). Effect of passive and active modified atmosphere packaging on quality changes of fresh endives. Postharvest Biology and Technology, 48(1), 22–29.

    Article  CAS  Google Scholar 

  • Chen, F., Zhang, M., & Yang, C. H. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrason Sonochem, 63, 104953.

  • Chen, J., Hu, Y., Wang, J., Hu, H., & Cui, H. (2016). Combined effect of ozone treatment and modified atmosphere packaging on antioxidant defense system of fresh-cut green peppers. Journal of Food Processing and Preservation, 40(5), 1145–1150.

    Article  CAS  Google Scholar 

  • Chitravathi, K., Chauhan, O. P., Raju, P. S., & Madhukar, N. (2015). Efficacy of aqueous ozone and chlorine in combination with passive modified atmosphere packaging on the postharvest shelf-life extension of green chillies (Capsicum annuum L.). Food and Bioprocess Technology, 8(6), 1386–1392.

  • Degl’Innocenti, E., Pardossi, A., Tognoni, F., & Guidi, L. (2007). Physiological basis of sensitivity to enzymatic browning in ‘lettuce’, ‘escarole’ and ‘rocket salad’ when stored as fresh-cut products. Food Chemistry, 104(1), 209–215.

    Article  Google Scholar 

  • Dhakal, R., & Baek, K. H. (2014). Metabolic alternation in the accumulation of free amino acids and γ-aminobutyric acid in postharvest mature green tomatoes following irradiation with blue light. Horticulture, Environment, and Biotechnology, 55(1), 36–41.

    Article  CAS  Google Scholar 

  • Echeverría, G., Graell, J., Lara, I., & López, M. L. (2008). Physicochemical measurements in ‘Mondial Gala®’ apples stored at different atmospheres: Influence on consumer acceptability. Postharvest Biology and Technology, 50(2–3), 135–144.

    Article  Google Scholar 

  • Fan, K., Zhang, M., Guo, C., Dan, W., & Devahastin, S. (2021). Laser-induced microporous modified atmosphere packaging and chitosan carbon-dot coating as a novel combined preservation method for fresh-cut cucumber. Food and Bioprocess Technology, 14(5), 968–983.

    Article  CAS  Google Scholar 

  • Fang, Z., Zhang, M., & Sun, Y. (2007). Polyphenol oxidase from baybenry (Myrica rubra Sieb. et Zucc.) and its role in anthocyanin degradation. Food Chemistry, 103(2), 268–273.

  • Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155, 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Garrido, Y., Tudela, J. A., Hernández, J. A., & Gil, M. I. (2016). Modified atmosphere generated during storage under light conditions is the main factor responsible for the quality changes of baby spinach. Postharvest Biology and Technology, 114, 45–53.

    Article  CAS  Google Scholar 

  • Goelge, S. (2009). Glucosinolates in crucifers and their potential effects against cancer: Review. Canadian Journal of Plant Science, 89, 953–959.

    Article  Google Scholar 

  • Hägele, F., Nübling, S., Schweiggert, R. M., Baur, S., Weiss, A., Schmidt, H., Menegat, A., Gerhards, R., & Carle, R. (2016). Quality improvement of fresh-cut endive (Cichorium endivia L.) and recycling of washing water by low-dose UV-C irradiation. Food and Bioprocess Technology, 9(12), 1979–1990.

  • Hasperué, J. H., Guardianelli, L., Rodoni, L. M., Chaves, A. R., & Martínez, G. A. (2016). Continuous white–blue LED light exposition delays postharvest senescence of broccoli. LWT - Food Science and Technology, 65, 495–502.

    Article  Google Scholar 

  • Hasperué, J. H., Rodoni, L. M., Guardianelli, L. M., Chaves, A. R., & Martínez, G. A. (2016). Use of LED light for Brussels sprouts postharvest conservation. Scientia Horticulturae, 213, 281–286.

    Article  Google Scholar 

  • Huang, J. Y., Xu, F., & Zhou, W. (2018). Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit. Journal of the Science of Food and Agriculture, 98(14), 5486–5493.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y. C., Yang, Y. H., Sridhar, K., & Tsai, P. J. (2021). Synergies of modified atmosphere packaging and high-voltage electrostatic field to extend the shelf-life of fresh-cut cabbage and baby corn. LWT, 138.

  • Huyskens-Keil, S., Eichholz-Dündar, I., Hassenberg, K., & Herppich, W. B. (2020). Impact of light quality (white, red, blue light and UV-C irradiation) on changes in anthocyanin content and dynamics of PAL and POD activities in apical and basal spear sections of white asparagus after harvest. Postharvest Biology and Technology, 161.

  • Ilić, Z. S., & Fallik, E. (2017). Light quality manipulation improves vegetable quality at harvest and postharvest: A review. Environmental and Experimental Botany, 139, 79–90.

    Article  Google Scholar 

  • Kasim, M. U., & Kasim, R. (2017). While continuous white LED lighting increases chlorophyll content (SPAD), green LED light reduces the infection rate of lettuce during storage and shelf-life conditions. Journal of Food Processing and Preservation, 41(6).

  • Kim, M. J., Bang, W. S., & Yuk, H. G. (2017). 405 +/- 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration. Food Microbiology, 62, 124–132.

    Article  CAS  PubMed  Google Scholar 

  • Kobori, C. N., Huber, L. S., Sarantopoulos, C. I., & Rodriguez-Amaya, D. B. (2011). Behavior of flavonols and carotenoids of minimally processed kale leaves during storage in passive modified atmosphere packaging. Journal of Food Science, 76(2), H31-37.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S. S., Arya, M., Nagbhushan, P., Giridhar, P., Shetty, N. P., Yannam, S. K., & Mahadevappa, P. (2020). Evaluation of various drying methods on bioactives, ascorbic acid and antioxidant potentials of Talinum triangulare L., foliage. Plant Foods Human Nutrition, 75(2), 283–291.

  • Leng, F., Sun, S., & Jing, Y. (2016). A rapid and sensitive method for determination of trace amounts of glucose by anthrone-sulfuric acid method. Bulgarian Chemical Communications, 48(1), 109–113.

    Google Scholar 

  • Lewis, J., & Fenwick, G. R. (1987). Glucosinolate content of Brassica vegetables: Analysis of twenty-four cultivars of calabrese (green sprouting broccoli, Brassica oleracea L. var. botrytis subvar, cymosa Lain.). 25, 259–268.

  • Lewis, J., & Fenwick, G. R. (1988). Glucosinolate content of Brassica vegetables -Chinese cabbages pe-tsai (Brassica pekinensis) and pak-choi (Brassica chinensis). Journal of the Science of Food and Agriculture, 45, 379–386.

    Article  CAS  Google Scholar 

  • Liu, R., Yang, G., & Wu, Y. (2015). Effects of light intensity on associated enzyme activity and gene expression during callus formation of Vitis vinifera. Chinese Journal of Biotechnology, 31(8), 1219–1229.

    CAS  PubMed  Google Scholar 

  • Luo, Q. (2016). Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. International Joumal of Biological Macromolecules, 89, 219–227.

    Article  CAS  Google Scholar 

  • Luo, Z., Xu, C., & Chen, F. (2021). Effects of LED light on chlorophyll synthesis and metabolism of modified atmosphere cabbage. Storage and Process, 21(7), 8–16.

    CAS  Google Scholar 

  • Ma, G., Zhang, L., Setiawan, C. K., Yamawaki, K., Asai, T., Nishikawa, F., Maezawa, S., Sato, H., Kanemitsu, N., & Kato, M. (2014). Effect of red and blue LED light irradiation on ascorbate content and expression of genes related to ascorbate metabolism in postharvest broccoli. Postharvest Biology and Technology, 94, 97–103.

    Article  CAS  Google Scholar 

  • Manzocco, L., Quarta, B., & Dri, A. (2009). Polyphenoloxidase inactivation by light exposure in model systems and apple derivatives. Innovative Food Science & Emerging Technologies, 10(4), 506–511.

    Article  CAS  Google Scholar 

  • Meng, X., Zhang, M., Zhan, Z., & Adhikari, B. (2013). Changes in quality characteristics of fresh-cut cucumbers as affected by pressurized argon treatment. Food and Bioprocess Technology, 7(3), 693–701.

    Article  Google Scholar 

  • Meng, X., Zhang, M., & Adhikari, B. (2012). Extending shelf-life of fresh-cut green peppers using pressurized argon treatment. Postharvest Biology and Technology, 71, 13–20.

    Article  CAS  Google Scholar 

  • Muneer, S., Kim, E. J., Park, J. S., & Lee, J. H. (2014). Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International Journal Molecular Sciences, 15(3), 4657–4670.

  • Mustafa, M. A., Ali, A., Manickam, S., & Siddiqui, Y. (2013). Ultrasound-assisted chitosan–surfactant nanostructure assemblies: Towards maintaining postharvest quality of tomatoes. Food and Bioprocess Technology, 7(7), 2102–2111.

    Article  Google Scholar 

  • Nassarawa, S. S., Abdelshafy, A. M., Xu, Y., Li, L., & Luo, Z. (2021). Effect of light-emitting diodes (LEDs) on the quality of fruits and vegetables during postharvest period: A review. Food and Bioprocess Technology, 14(3), 388–414.

    Article  CAS  Google Scholar 

  • Noichinda, S., Bodhipadma, K., Mahamontri, C., Narongruk, T., & Ketsa, S. (2007). Light during storage prevents loss of ascorbic acid, and increases glucose and fructose levels in Chinese kale (Brassica oleracea var. alboglabra). Postharvest Biology and Technology, 44(3), 312–315.

  • Peng, H., Sthapit Kandel, J., Michelmore, R. W., & Simko, I. (2020). Identification of factors affecting the deterioration rate of fresh-cut lettuce in modified atmosphere packaging. Food and Bioprocess Technology, 13(11), 1997–2011.

    Article  CAS  Google Scholar 

  • Peng, X., Li, R., Zou, R., Chen, J., Zhang, Q., Cui, P., Chen, F., Fu, Y., Yang, J., & Xia, X. (2013). Allicin inhibits microbial growth and oxidative browning of fresh-cut lettuce (Lactuca sativa) during refrigerated storage. Food and Bioprocess Technology, 7(6), 1597–1605.

    Article  Google Scholar 

  • Ruiz de Larrinaga, L., Resco de Dios, V., Fabrikov, D., Guil-Guerrero, J. L., Becerril, J. M., Garcia-Plazaola, J. I., & Esteban, R. (2019). Life after harvest: Circadian regulation in photosynthetic pigments of rocket leaves during supermarket storage affects the nutritional quality. Nutrients, 11(7).

  • Shen, X., Zhang, M., Fan, K., & Guo, Z. (2019). Effects of ε-polylysine/chitosan composite coating and pressurized argon in combination with MAP on quality and microorganisms of fresh-cut potatoes. Food and Bioprocess Technology, 13(1), 145–158.

    Article  Google Scholar 

  • Shi, L., Cao, S., Shao, J., Chen, W., Yang, Z., & Zheng, Y. (2016). Chinese bayberry fruit treated with blue light after harvest exhibit enhanced sugar production and expression of cryptochrome genes. Postharvest Biology and Technology, 111, 197–204.

    Article  CAS  Google Scholar 

  • Sidransky, H., Ito, N., & Verney, E. (1966). Influence of alpha-naphthyl-isothiocyanate on liver tumorigenesis in rats ingesting ethionine and N-2-fluorenylacetamide. Journal of the National Cancer Institute, 37(5), 677.

    CAS  PubMed  Google Scholar 

  • Song, Y., Qiu, K., Gao, J., & Kuai, B. (2020) Molecular and physiological analyses of the effects of red and blue LED light irradiation on postharvest senescence of pak choi. Postharvest Biology and Technology, 164.

  • Toledo, M. E. A., Ueda, Y., Imahori, Y., & Ayaki, M. (2003). l-ascorbic acid metabolism in spinach (Spinacia oleracea L.) during postharvest storage in light and dark. Postharvest Biology and Technology, 28(1), 47–57.

  • Vamos-Vigyazo, L. (1981). Polyphenol oxidase and peroxidase in fruits and vegetables. Critical Reviews in Food Science and Nutrition, 15(1), 49–127.

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven, D. T., Verhagen, H., Goldbohm, R. A., van den Brandt, P. A., & van Poppel, G. (1997). Mini review-A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chemico-Biological Interactions, 103, 79–129.

  • Vollmer, K., Chakraborty, S., Bhalerao, P. P., Carle, R., Frank, J., & Steingass, C. B. (2020). Effect of pulsed light treatment on natural microbiota, enzyme activity, and phytochemical composition of pineapple (Ananas comosus [L.] Merr.) juice. Food and Bioprocess Technology, 13(7), 1095–1109.

  • Vunnam, R., Hussain, A., Nair, G., Bandla, R., Gariepy, Y., Donnelly, D. J., Kubow, S., & Raghavan, G. S. (2014). Physico-chemical changes in tomato with modified atmosphere storage and UV treatment. Journal of Food Science and Technology, 51(9), 2106–2112.

    Article  CAS  PubMed  Google Scholar 

  • Waghmare, R. B., & Annapure, U. S. (2015). Integrated effect of sodium hypochlorite and modified atmosphere packaging on quality and shelf life of fresh-cut cilantro. Food Packaging and Shelf Life, 3, 62–69.

    Article  Google Scholar 

  • Wilawan, N., Ngamwonglumlert, L., Devahastin, S., & Chiewchan, N. (2019). Changes in enzyme activities and amino acids and their relations with phenolic compounds contents in okra treated by LED lights of different colors. Food and Bioprocess Technology, 12(11), 1945–1954.

    Article  CAS  Google Scholar 

  • Wilson, M. D., Stanley, R. A., Eyles, A., & Ross, T. (2019). Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables. Critical Reviews in Food Science and Nutrition, 59(3), 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Q., Gao, H., Zhang, Z., Li, T., Qu, H., Jiang, Y., & Yun, Z. (2020). Deciphering the metabolic pathways of pitaya peel after postharvest red light irradiation. Metabolites, 10(3).

  • Xu, F., & Liu, S. (2017). Control of postharvest quality in blueberry fruit by combined 1-methylcyclopropene (1-MCP) and UV-C irradiation. Food and Bioprocess Technology, 10(9), 1695–1703.

    Article  CAS  Google Scholar 

  • Xu, F., Shi, L., Chen, W., Cao, S., Su, X., & Yang, Z. (2014). Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Scientia Horticulturae, 175, 181–186.

    Article  CAS  Google Scholar 

  • Yan, Z., Zuo, J., Zhou, F., Shi, J., Xu, D., Hu, W., Jiang, A., Liu, Y., & Wang, Q. (2020). Integrated analysis of transcriptomic and metabolomic data reveals the mechanism by which LED light irradiation extends the postharvest quality of pak-choi (Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee). Biomolecules, 10(2).

  • Yang, D., Li, D., Xu, W., Liao, R., Shi, J., Fu, Y., Wang, J., Wang, Y., & He, X. (2018). Design and application of a passive modified atmosphere packaging for maintaining the freshness of Chinese cabbage. LWT, 94, 136–141.

    Article  CAS  Google Scholar 

  • Yang, J., Zhu, Z., Wang, Z., & Zhu, B. (2009). Effects of storage temperature on the contents of carotenoids and glucosinolates in pakchoi (Brassica rapa L. ssp.Chinensis var .communis) Journal of Food Biochemistry, 34(2010), 1186–1204.

  • Yang, L., Liu, J., Wang, X., Wang, R., Ren, F., Zhang, Q., Shan, Y., & Ding, S. (2019). Characterization of volatile component changes in jujube fruits during cold storage by using headspace-gas chromatography-ion mobility spectrometry. Molecules, 24(21).

  • Zhan, L., Hu, J., Ai, Z., Pang, L., Li, Y., & Zhu, M. (2013). Light exposure during storage preserving soluble sugar and l-ascorbic acid content of minimally processed romaine lettuce (Lactuca sativa L.var. longifolia). Food Chemistry, 136(1), 273–278.

  • Zhan, L., Hu, J., Lim, L. T., Pang, L., Li, Y., & Shao, J. (2013). Light exposure inhibiting tissue browning and improving antioxidant capacity of fresh-cut celery (Apium graveolens var. dulce). Food Chemistry, 141(3), 2473–2478.

  • Zhan, L., Hu, J., Pang, L., Li, Y., & Shao, J. (2014). Effects of light exposure on chlorophyll, sugars and vitamin C content of fresh-cut celery (Apium graveolensvar. dulce) petioles. International Journal of Food Science & Technology, 49(2), 347–353.

  • Zhan, L., Li, J., Huang, W., Song, C., Li, J., Pang, L., & Li, Y. (2020). Light irradiation affects the total antioxidant capacity, total phenolic compounds, phenolic acids, and related enzyme activities of minimally processed spinach (Spinacia oleracea L.). Journal of Food Processing and Preservation, 44(10).

  • Zhan, L., Li, Y., Hu, J., Pang, L., & Fan, H. (2012). Browning inhibition and quality preservation of fresh-cut romaine lettuce exposed to high intensity light. Innovative Food Science & Emerging Technologies, 14, 70–76.

    Article  CAS  Google Scholar 

  • Zhang, M., Zhan, Z. G., Wang, S. J., & Tang, J. M. (2008). Extending the shelf-life of asparagus spears with a compressed mix of argon and xenon gases. LWT - Food Science and Technology, 41(4), 686–691.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, M., Devahastin, S., & Guo, Z. (2019). Effect of combined ultrasonication and modified atmosphere packaging on storage quality of pakchoi (Brassica chinensis L.). Food and Bioprocess Technology, 12(9), 1573–1583.

  • Zhou, F., Gu, S., Zuo, J., Gao, L., Wang, Q., & Jiang, A. (2019). LED irradiation delays the postharvest senescence of garland chrysanthemum (Chrysanthemum carinatum Schousb.). Journal of Food Measurement and Characterization, 13(4), 3005–3014.

Download references

Funding

We acknowledge the financial supports from National Key R&D Program of China (No. 2018YFD0700303), Jiangsu Province Key Laboratory Project of Advanced Food Manufacturing Equipment and Technology (No. FMZ202003), Jiangsu Province (China) Key Project in Agriculture (Contract No. BE2015310217), and National First-Class Discipline Program of Food Science and Technology (No. JUFSTR20180205). All these above enable us to carry out and promote this research smoothly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xj., Zhang, M., Chitrakar, B. et al. Novel Combined Use of Red-White LED Illumination and Modified Atmosphere Packaging for Maintaining Storage Quality of Postharvest Pakchoi. Food Bioprocess Technol 15, 590–605 (2022). https://doi.org/10.1007/s11947-022-02771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02771-x

Keywords

Navigation