Skip to main content
Log in

Impact of Blue LED Illumination and Natural Photosensitizer on Bacterial Pathogens, Enzyme Activity and Quality Attributes of Fresh-Cut Pineapple Slices

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Fresh-cut fruits are susceptible for microbial contamination during handling and storage. Hence, there is a need for minimal processing of such foods using non-thermal technology that can inactivate both bacterial pathogens and undesirable enzymes while retaining the quality. In this regard, synergistic effect of light emitting diode (LED) based blue light (BL) and natural exogenous photosensitizer- curcumin (PS) on the inactivation of bacterial pathogens (Escherichia coli, Staphylococcus aureus), and enzymes (polyphenol oxidase, peroxidase, bromelain) of fresh-cut pineapple slices were evaluated. The effect of photodynamic treatment (PS+BL) on quality attributes like color, phenolics, flavonoids, ascorbic acid content and antioxidant activity was also investigated. The PS+BL treatment at optimized conditions resulted in 3 and 4 log reduction of E. coli and S. aureus, respectively. PS(100 μM)+BL treatment led to partial inactivation of polyphenol oxidase (33.5%) and peroxidase (25.7%), synergistically, but preserved desired enzyme bromelain. The PS+BL didn’t show any significant (p<0.05) consequence on color, phenolics, flavonoids and antioxidant activity, while it affected the ascorbic acid content negatively (reduced by ~30%). The current investigation showed that the photodynamic inactivation of E. coli and S. aureus using LED-based photosensitization in fresh-cut fruit slices could be used as a potential method for microbial control although some phytochemical losses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadian-Kouchaksaraie, Z., Niazmand, R., & Najafi, M. N. (2016). Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis. Innovative Food Science & Emerging Technologies, 36, 234–244.

    Article  CAS  Google Scholar 

  • Al-Asmari, F., Mereddy, R., & Sultanbawa, Y. (2018). The effect of photosensitization mediated by curcumin on storage life of fresh date (Phoenix dactylifera L.) fruit. Food Control, 93, 305–309.

    Article  CAS  Google Scholar 

  • Aurum, F. S., & Nguyen, L. T. (2019). Efficacy of photoactivated curcumin to decontaminate food surfaces under blue light emitting diode. Journal of Food Process Engineering, 42(3), e12988.

  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76.

    Article  CAS  Google Scholar 

  • Bertoloni, G., Reddi, E., Gatta, M., Burlini, C., & Jori, G. (1989). Factors influencing the haematoporphyrin-sensitized photoinactivation of Candida albicans. Microbiology, 135(4), 957–966.

    Article  CAS  Google Scholar 

  • Bhavya, M. L., & Hebbar, H. U. (2017). Pulsed light processing of foods for microbial safety. Food Quality and Safety, 1(3), 187–202.

    Article  CAS  Google Scholar 

  • Bhavya, M. L., & Hebbar, H. U. (2019a). Sono-photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. Ultrasonics Sonochemistry, 57, 108–115.

    Article  CAS  Google Scholar 

  • Bhavya, M. L., & Hebbar, H. U. (2019b). Efficacy of blue LED in microbial inactivation: Effect of photosensitization and process parameters. International Journal of Food Microbiology, 290, 296–304.

    Article  CAS  Google Scholar 

  • Carstens, C., Salazar, J. K., & Darkoh, C. (2019). Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Frontiers in Microbiology, 10, 2667.

    Article  Google Scholar 

  • Chaurasiya, R. S., Sakhare, P. Z., Bhaskar, N., & Hebbar, H. U. (2015). Efficacy of reverse micellar extracted fruit bromelain in meat tenderization. Journal of Food Science and Technology, 52(6), 3870–3880.

    CAS  PubMed  Google Scholar 

  • Davies, M. J., & Truscott, R. J. (2001). Photo-oxidation of proteins and its role in cataractogenesis. Journal of Photochemistry and Photobiology B: Biology, 63(1-3), 114–125.

    Article  CAS  Google Scholar 

  • D’Souza, C., Yuk, H. G., Khoo, G. H., & Zhou, W. (2015). Application of light‐emitting diodes in food production, postharvest preservation, and microbiological food safety. Comprehensive Reviews in Food Science and Food Safety, 14(6), 719–740.

  • Falguera, V., Pagán, J., Garza, S., Garvín, A., & Ibarz, A. (2012). Inactivation of polyphenol oxidase by ultraviolet irradiation: Protective effect of melanins. Journal of Food Engineering, 110(2), 305–309.

    Article  CAS  Google Scholar 

  • Ghate, V., Kumar, A., Kim, M. J., Bang, W. S., Zhou, W., & Yuk, H. G. (2017). Effect of 460 nm light emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures. Journal of Food Engineering, 196, 130–138.

    Article  Google Scholar 

  • Gleeson, E., & O’Beirne, D. (2005). Effects of process severity on survival and growth of Escherichia coli and Listeria innocua on minimally processed vegetables. Food Control, 16(8), 677–685.

    Article  Google Scholar 

  • Hernández, Y., Lobo, M. G., & González, M. (2006). Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food Chemistry, 96(4), 654–664.

    Article  Google Scholar 

  • Hirschler, R. (2012). Whiteness, yellowness, and browning in food colorimetry. Color in Food: Technological and Psychophysical Aspects. Editorial JL Caivano & Buera MP EE. UU, 93–104.

  • Kathrin, V., Snehasis, C., Bhalerao, P. P., Reinhold, C., Frank, J., & Steingass, C. B. (2020). Effect of pulsed light treatment on natural microbiota, enzyme activity, and phytochemical composition of pineapple (Ananas comosus [L.] Merr.) juice. Food and Bioprocess Technology, 13(7), 1095–1109.

    Article  Google Scholar 

  • Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138–155.

    Article  CAS  Google Scholar 

  • Lanciotti, R., Sinigaglia, M., Gardini, F., Vannini, L., & Guerzoni, M. E. (2001). Growth/no growth interfaces of Bacillus cereus, Staphylococcus aureus and Salmonella enteritidis in model systems based on water activity, pH, temperature and ethanol concentration. Food Microbiology, 18(6), 659–668.

    Article  CAS  Google Scholar 

  • Luksiene, Z., & Paskeviciute, E. (2011). Novel approach to the microbial decontamination of strawberries: chlorophyllin-based photosensitization. Journal of Applied Microbiology, 110(5), 1274–1283.

    Article  CAS  Google Scholar 

  • Luksiene, Z., & Zukauskas, A. (2009). Prospects of photosensitization in control of pathogenic and harmful micro-organisms. Journal of Applied Microbiology, 107(5), 1415–1424.

    Article  CAS  Google Scholar 

  • Maclean, M., MacGregor, S. J., Anderson, J. G., & Woolsey, G. (2009). Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Applied and Environmental Microbiology, 75(7), 1932–1937.

    Article  CAS  Google Scholar 

  • Mamelona, J., Pelletier, E., Girard-Lalancette, K., Legault, J., Karboune, S., & Kermasha, S. (2007). Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chemistry, 104(3), 1040–1047.

    Article  CAS  Google Scholar 

  • Manzocco, L., Quarta, B., & Dri, A. (2009). Polyphenoloxidase inactivation by light exposure in model systems and apple derivatives. Innovative Food Science & Emerging Technologies, 10(4), 506–511.

    Article  CAS  Google Scholar 

  • Müller, A., Noack, L., Greiner, R., Stahl, M. R., & Posten, C. (2014). Effect of UV-C and UV-B treatment on polyphenol oxidase activity and shelf life of apple and grape juices. Innovative Food Science & Emerging Technologies, 26, 498–504.

    Article  Google Scholar 

  • Muthukumaran, P., & Rajalakshmi, N. (2014). Modulation of Banana Polyphenol Oxidase (PPO) activity by naturally occurring compounds. International Journal of Pharmaceutical Research and Allied Sciences, 3, 41–44.

    Google Scholar 

  • Nüesch-Inderbinen, M., & Stephan, R. (2016). Fresh fruit and vegetables as vehicles of bacterial foodborne disease: A review and analysis of outbreaks registered by proMED-mail associated with fresh produce. Journal of Food Safety and Food Quality, 67(2), 32–39.

    Google Scholar 

  • Oms-Oliu, G., Martín-Belloso, O., & Soliva-Fortuny, R. (2010). Pulsed light treatments for food preservation. A review. Food and Bioprocess Technology, 3(1), 13.

    Article  Google Scholar 

  • Ota, S., Fu, T. H., & Hirohata, R. (1961). Studies on bromelain. The Journal of Biochemistry, 49(6), 532–537.

    Article  CAS  Google Scholar 

  • Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49(10), 4619–4626.

    Article  CAS  Google Scholar 

  • Palmer, J. M. (2010). Radiometry and photometry: Units and conversions. Handbook of Optics, 3, 7–1.

    Google Scholar 

  • Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.

    Article  CAS  Google Scholar 

  • Penha, C. B., Bonin, E., da Silva, A. F., Hioka, N., Zanqueta, É. B., Nakamura, T. U., de Abreu Filho, B. A., Campanerut-Sá, P. A. Z., & Mikcha, J. M. G. (2017). Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. LWT- Food Science and Technology, 76, 198–202.

    Article  CAS  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cationde colorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237.

    Article  CAS  Google Scholar 

  • Reis, S. F., Rai, D. K., & Abu-Ghannam, N. (2012). Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chemistry, 135(3), 1991–1998.

    Article  CAS  Google Scholar 

  • Shewale, S. R., & Hebbar, H. U. (2017). Effect of infrared pretreatment on low-humidity air drying of apple slices. Drying Technology, 35(4), 490–499.

    Article  CAS  Google Scholar 

  • Tao, R., Zhang, F., Tang, Q. J., Xu, C. S., Ni, Z. J., & Meng, X. H. (2019). Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples. Food Chemistry, 274, 415–421.

    Article  CAS  Google Scholar 

  • Verma, S., Dixit, R., & Pandey, K. C. (2016). Cysteine proteases: modes of activation and future prospects as pharmacological targets. Frontiers in Pharmacology, 7, 107.

    Article  Google Scholar 

  • Winter, S., Tortik, N., Kubin, A., Krammer, B., & Plaetzer, K. (2013). Back to the roots: photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer. Photochemical & Photobiological Sciences, 12(10), 1795–1802.

    Article  CAS  Google Scholar 

  • Yen, G. C., & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27–32.

    Article  CAS  Google Scholar 

  • Zerdin, K., Horsham, M. A., Durham, R., Wormell, P., & Scully, A. D. (2009). Photodynamic inactivation of bacterial spores on the surface of a photoactive polymer. Reactive and Functional Polymers, 69(11), 821–827.

Download references

Acknowledgments

The authors thank the Director, CSIR-CFTRI for his support and co-operation. Bhavya ML thank UGC, New Delhi for her senior research fellowship. Authors also thank Dr. Poornima Priyadarshini C G, Department of Molecular Nutrition, CSIR-CFTRI for her help in extending facilities for microbial trials.

Author information

Authors and Affiliations

Authors

Contributions

Bhavya: Conceptualization, Methodology, Data curation, Investigation, Writing- Original draft preparation. Shewale: Data curation, Writing- Original draft preparation. Rajoriya: Data curation, Formal analysis. Hebbar: Conceptualization, Supervision, Writing- Reviewing and Editing.

Corresponding author

Correspondence to H. Umesh Hebbar.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavya, M.L., Shewale, S.R., Rajoriya, D. et al. Impact of Blue LED Illumination and Natural Photosensitizer on Bacterial Pathogens, Enzyme Activity and Quality Attributes of Fresh-Cut Pineapple Slices. Food Bioprocess Technol 14, 362–372 (2021). https://doi.org/10.1007/s11947-021-02581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02581-7

Keywords

Navigation