Skip to main content
Log in

Effects of Sulfur-Containing Amino Acids and High Hydrostatic Pressure on Structure and Gelation Properties of Sweet Potato Protein

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The structural modification and gelation properties of sweet potato protein (SPP) affected by sulfur-containing amino acids (L-cysteine or L-cystine) and high hydrostatic pressure (HHP) were investigated. Additives altered the denaturation temperature and reduced the denaturation enthalpy of SPP. Higher α-helical contents were observed in untreated or HHP-treated SPP with L-cysteine or L-cystine, while β-sheet and random coil structure unit were decreased. FTIR spectra showed a weak absorbance in HHP-treated SPP with L-cysteine and L-cystine. Storage modulus (G′) of untreated or HHP-treated SPP was enhanced by L-cysteine and L-cystine. Textural properties of SPP gels were improved by sulfur-containing amino acids and HHP, especially for L-cysteine. Decrease in T2b relaxation time and increase in A21 proportion peak area by low-field NMR suggested that water bound more closely to SPP molecules in the presence of L-cysteine and L-cystine, and more immobilized water fraction was trapped in SPP gel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SPP:

Sweet potato protein

HHP:

High hydrostatic pressure

CD:

Circular dichroism

FTIR :

Fourier transform infrared

DSC:

Differential scanning calorimetry

G′ :

Storage modulus

NMR:

Nuclear magnetic resonance relaxation

References

  • Ahmed, J., Al-Ruwaih, N., Mulla, M., & Rahman, M. H. (2018). Effect of high pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. LWT - Food Science and Technology, 91, 191–197.

    Article  CAS  Google Scholar 

  • Akin, Z., & Ozcan, T. (2017). Functional properties of fermented milk produced with plant proteins. LWT - Food Science and Technology, 86, 25–30.

    Article  CAS  Google Scholar 

  • Arogundade, L. A., Mu, T. H., & Añón, M. C. (2012). Heat-induced gelation properties of isoelectric and ultrafiltered sweet potato protein isolate and their gel microstructure. Food Research International, 49(1), 216–225.

    Article  CAS  Google Scholar 

  • Buchert, J., Ercili Cura, D., Ma, H., Gasparetti, C., Monogioudi, E., Faccio, G., et al. (2010). Crosslinking food proteins for improved functionality. Annual review of Food Science and Technology, 1, 113–138.

    Article  CAS  Google Scholar 

  • Cando, D., Herranz, B., Borderías, A. J., & Moreno, H. M. (2015). Effect of high pressure on reduced sodium chloride surimi gels. Food Hydrocolloids, 51, 176–187.

    Article  CAS  Google Scholar 

  • Cando, D., Herranz, B., Borderías, A. J., & Moreno, H. M. (2016a). Different additives to enhance the gelation of surimi gel with reduced sodium content. Food Chemistry, 196, 791–799.

    Article  CAS  Google Scholar 

  • Cando, D., Moreno, H. M., Borderías, A. J., & Skåra, T. (2016b). Combined effect of high hydrostatic pressure and lysine or cystine addition in low-grade surimi gelation with low salt content. Food and Bioprocess Technology, 9(8), 1391–1398.

    Article  CAS  Google Scholar 

  • Chao, D. F., Jung, S., & Aluko, R. E. (2018). Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science & Emerging Technologies, 45, 179–185.

  • Colovic, M. B., Vasic, V. M., Djuric, D. M., & Krstic, D. Z. (2018). Sulphur-containing amino acids: protective role against free radicals and heavy metals. Current Medicinal Chemistry, 25(3), 324–335.

    Article  CAS  Google Scholar 

  • De Maria, S., Ferrari, G., & Maresca, P. (2016). Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin. Innovative Food Science & Emerging Technologies, 33, 67–75.

    Article  Google Scholar 

  • Dong, X. P., Li, Y., Song, L., Wang, Y., Tan, M. Q., & Zhu, B. W. (2017). Changes of water distribution and physicochemical properties of abalone (Haliotis discus) myofibrillar proteins during heat-induced gelation. Journal of Food Processing and Preservation, 41(4), e13069.

    Article  Google Scholar 

  • FAOSTAT. (2017). Production quantity [Internet]. Food and Agricultural Organization. http://www.fao.org/faostat/en/#data/QC. Accessed 01/06/19.

  • Grossi, A., Olsen, K., Bolumar, T., Rinnan, A., Øgendal, L. H., & Orlien, V. (2016). The effect of high pressure on the functional properties of pork myofibrillar proteins. Food Chemistry, 196, 1005–1015.

    Article  CAS  Google Scholar 

  • Han, Z., Zhang, J., Zheng, J., Li, X., & Shao, J. H. (2019). The study of protein conformation and hydration characteristics of meat batters at various phase transition temperatures combined with low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy. Food Chemistry, 280, 263–269.

    Article  CAS  Google Scholar 

  • Khan, N. M., Mu, T. H., Ali, F., Arogundade, L. A., Khan, Z. U., Zhang, M., Ahmad, S., & Sun, H. N. (2015). Effects of high hydrostatic pressure on emulsifying properties of sweet potato protein in model protein–hydrocolloids system. Food Chemistry, 169, 448–454.

    Article  CAS  Google Scholar 

  • Liang, Y., Guo, B., Zhou, A., Xiao, S., & Liu, X. (2017). Effect of high pressure treatment on gel characteristics and gel formation mechanism of bighead carp (Aristichthys nobilis) surimi gels. Journal of Food Processing and Preservation, 41(5), e13155.

    Article  Google Scholar 

  • Lin, D., Lu, W., Kelly, A. L., Zhang, L., Zheng, B., & Miao, S. (2017). Interactions of vegetable proteins with other polymers: structure-function relationships and applications in the food industry. Trends in Food Science & Technology, 68, 130–144.

    Article  CAS  Google Scholar 

  • Ma, F., Chen, C., Zheng, L., Zhou, C., Cai, K., & Han, Z. (2013). Effect of high pressure processing on the gel properties of salt-soluble meat protein containing CaCl2 and κ-carrageenan. Meat Science, 95(1), 22–26.

    Article  CAS  Google Scholar 

  • Miklos, R., Cheong, L. Z., Xu, X., Lametsch, R., & Larsen, F. H. (2015). Water and fat mobility in myofibrillar protein gels explored by low-field NMR. Food Biophysics, 10(3), 316–323.

    Article  Google Scholar 

  • Murekatete, N., Hua, Y., Chamba, M. V. M., Djakpo, O., & Zhang, C. (2014). Gelation behavior and rheological properties of salt- or acid-induced soy proteins soft tofu-type gels. Journal of Texture Studies, 45(1), 62–73.

    Article  Google Scholar 

  • O'sullivan, J., Murray, B., Flynn, C., & Norton, I. (2016). The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocolloids, 53, 141–154.

    Article  CAS  Google Scholar 

  • Peyrano, F., Speroni, F., & Avanza, M. V. (2016). Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 33, 38–46.

    Article  CAS  Google Scholar 

  • Stangierski, J., & Baranowska, H. M. (2015). The influence of heating and cooling process on the water binding in transglutaminase-modified chicken protein preparation, assessed using low-field NMR. Food and Bioprocess Technology, 8(12), 2359–2367.

    Article  CAS  Google Scholar 

  • Sun, M. J., Mu, T. H., Zhang, M., & Arogundade, L. A. (2012). Nutritional assessment and effects of heat processing on digestibility of Chinese sweet potato protein. Journal of Food Composition and Analysis, 26(1-2), 104–110.

    Article  CAS  Google Scholar 

  • Tabilo-Munizaga, G., Gordon, T. A., Villalobos-Carvajal, R., Moreno-Osorio, L., Salazar, F. N., Pérez-Won, M., & Acuña, S. (2014). Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine. Food Chemistry, 155, 214–220.

    Article  CAS  Google Scholar 

  • Tang, C. H., & Ma, C. Y. (2009). Effect of high pressure treatment on aggregation and structural properties of soy protein isolate. LWT-Food Science and Technology, 42(2), 606–611.

    Article  CAS  Google Scholar 

  • Visschers, R. W., & De Jongh, H. H. (2005). Disulphide bond formation in food protein aggregation and gelation. Biotechnology Advances, 23(1), 75–80.

    Article  CAS  Google Scholar 

  • Wei, J., Zhang, Z., Cai, Q., & Peng, B. (2018). Effects of high hydrostatic pressure on structural and physical properties of nisin-SPI film. International journal of Biological Macromolecules, 111, 976–982.

    Article  CAS  Google Scholar 

  • Wanezaki, S., Tachibana, N., Nagata, M., Saito, S., Nagao, K., Yanagita, T., & Kohno, M. (2015). Soy β-conglycinin improves obesity-induced metabolic abnormalities in a rat model of nonalcoholic fatty liver disease. Obesity Research & Clinical Practice, 9(2), 168–174.

    Article  Google Scholar 

  • Yang, H., Zhang, W., Li, T., Zheng, H., Khan, M. A., Xu, X., & Zhou, G. (2016). Effect of protein structure on water and fat distribution during meat gelling. Food Chemistry, 204, 239–245.

    Article  CAS  Google Scholar 

  • Zhang, M., & Mu, T. H. (2017). Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 43, 92–101.

    Article  Google Scholar 

  • Zhang, Z., Yang, Y., Tang, X., Chen, Y., & You, Y. (2015). Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 188, 111–118.

    Article  CAS  Google Scholar 

  • Zhao, J., & Jiang, X. (2018). The application of sulfur-containing peptides in drug discovery. Chinese Chemical Letters, 29(7), 1079–1087.

    Article  CAS  Google Scholar 

  • Zhao, Z. K., Mu, T. H., Zhang, M., & Richel, A. (2018a). Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure. Food and Bioprocess Technology, 11(9), 1719–1732.

    Article  CAS  Google Scholar 

  • Zhao, Z. K., Mu, T. H., Zhang, M., & Richel, A. (2018b). Effect of salts combined with high hydrostatic pressure on structure and gelation properties of sweet potato protein. LWT - Food Science and Technology, 93, 36–44.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received the earmarked fund from China Agriculture Research System (CARS-10-B21) and National Key R & D Program of China (2016YFE0133600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tai-Hua Mu or Aurore Richel.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZK., Mu, TH., Zhang, M. et al. Effects of Sulfur-Containing Amino Acids and High Hydrostatic Pressure on Structure and Gelation Properties of Sweet Potato Protein. Food Bioprocess Technol 12, 1863–1873 (2019). https://doi.org/10.1007/s11947-019-02343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02343-6

Key words

Navigation