Skip to main content
Log in

Quality-Based Thermokinetic Optimization of Ready-to-Eat Whole Edible Crab (Cancer pagurus) Pasteurisation Treatments

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Traditional processing practices used in the manufacture of ready-to-eat edible crab products include a double-heat treatment involving an initial cooking step followed by washing and packaging and finally, a second heat pasteurisation. The latter, pasteurisation step, results in the most severe impact on product quality. The main objective of this research was to optimise this pasteurisation step using quality index degradation kinetic approach. Preliminary work involved the characterisation of temperature rise in the crab cold-spot during pasteurisation. Equivalent treatments (F90°C10°C = 10 min) were defined in order to assess the impact of pasteurisation temperature on different crab quality indexes in both crab meat types, white and brown. Colour degradation of crab white meat was defined as the critical quality parameter to be monitored during thermal pasteurisation. The effect of time and temperature on the kinetics of white meat colour change (ΔE*) were characterised and fitted to an exponential equation. Following this, an industry focus group was used to define white meat colour change vs product quality and defined ‘good’ (ΔE* ≤ 7), ‘acceptable’ (7 < ΔE* < 9) and ‘unacceptable’ (ΔE* ≥ 9) quality. Finally, using the developed equations, optimal pasteurisation conditions were defined and validated. To produce ‘good’ quality crab, optimal temperatures ranged between 96 and 100 °C while temperatures between 104 and 108 °C produced ‘acceptable’ quality in crabs of 400 and 800 g, respectively. Overall, the results show that the equations obtained could be used in a decision support system (DSS) to define heat pasteurisation conditions to optimise the quality of ready-to-eat edible crab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507.

    Article  CAS  Google Scholar 

  • Anacleto, P., Teixeira, B., Marques, P., Pedro, S., Nunes, M. L., & Marques, A. (2011). Shelf-life of cooked edible crab (Cancer pagurus) stored under refrigerated conditions. LWT - Food Science and Technology, 44(6), 1376–1382.

    Article  CAS  Google Scholar 

  • AOAC (2000). Official methods of analysis of the AOAC journal of the association of Official Analytical Chemists (17th edition), Arlington, Virginia.

  • Barrento, S., Marques, A., Pedro, S., Vaz-Pires, P., & Nunes, M. L. (2008). The trade of live crustaceans in Portugal: space for technological improvements. ICES Journal of Marine Science: Journal du Conseil, 65(4), 551–559.

    Article  Google Scholar 

  • Barrento, S., Marques, A., Teixeira, B., Anacleto, P., Carvalho, M. L., Vaz-Pires, P., & Nunes, M. L. (2009). Macro and trace elements in two populations of brown crab Cancer pagurus: ecological and human health implications. Journal of Food Composition and Analysis, 22(1), 65–71.

    Article  CAS  Google Scholar 

  • Barrento, S., Marques, A., Vaz-Pires, P., & Nunes, M. L. (2010). Live shipment of immersed crabs Cancer pagurus from England to Portugal and recovery in stocking tanks: stress parameter characterization. ICES Journal of Marine Science: Journal du Conseil, 67(3), 435–443.

    Article  Google Scholar 

  • Condón-Abanto, S., Arroyo, C., Álvarez, I., Brunton, N., Whyte, P., & Lyng, J. G. (2018). An assessment of the application of ultrasound in the processing of ready-to-eat whole brown crab (Cancer pagurus). Ultrasonics Sonochemistry, 40(Part A), 497–504.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, E. & Early, J.C. (2001). Catching, handling and processing crabs. Torry advisory note No. 26, Ministry of technology, Torry research station, Her majesty’s stationery office.

  • EUROSTAT (2015) http://ec.europa.eu/eurostat/data/database ( last accessed 4.05.2016).

  • Fante, L., & Noreña, C. P. Z. (2012). Enzyme inactivation kinetics and colour changes in garlic (Allium sativum L.) blanched under different conditions. Journal of Food Engineering, 108(3), 436–443.

    Article  CAS  Google Scholar 

  • FDA, (2000). Kinetics of microbial inactivation for alternative food processing technologies. https://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/UCM545175.pdf. Last accessed March 2018.

  • FDA (2011). Fish and fishery products hazards and controls guidance, fourth edn. Technical report. US Department of Health and Human Services.

  • Gökoðlu, N., & Yerlikaya, P. (2003). Determinaton of proximate composition and mineral contents of blue crab (Callinectes sapidus) and swim crab (Portunus pelagicus) caught off the Gulf of Antalya. Food Chemistry, 80(4), 495–498.

    Article  Google Scholar 

  • Hadjal, T., Dhuique-Mayer, C., Madani, K., Dornier, M., & Achir, N. (2013). Thermal degradation kinetics of xanthophylls from blood orange in model and real food systems. Food Chemistry, 138(4), 2442–2450.

    Article  CAS  PubMed  Google Scholar 

  • Haefner, J. W. (2005). Modelling biological systems: principles and applications. New York: Springer 463pp.

    Google Scholar 

  • Hong, G. P., Flick, G. J., & Knobl, G. M. (1993). Development of a prediction computer model for blue crab meat yield based on processing and biological variables. Journal of Aquatic Food Product Technology, 1(3-4), 109–132.

    Article  CAS  Google Scholar 

  • Huss, H. H. (1997). Control of indigenous pathogenic bacteria in seafood. Food Control, 8(2), 91–98.

    Article  Google Scholar 

  • IFT (2013). Kinetic models for microbial survival during processing. http://www.ift.org/knowledge-center/read-ift-publications/science-reports/research-summits/kinetic-models.aspx. Last accesed January 2018.

  • Jaiswal, A. K., Gupta, S., & Abu-Ghannam, N. (2012). Kinetic evaluation of colour, texture, polyphenols and antioxidant capacity of Irish York cabbage after blanching treatment. Food Chemistry, 131(1), 63–72.

    Article  CAS  Google Scholar 

  • Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT - Food Science and Technology, 41(7), 1210–1222.

    Article  CAS  Google Scholar 

  • Kong, F., Tang, J., Rasco, B., & Crapo, C. (2007). Kinetics of salmon quality changes during thermal processing. Journal of Food Engineering, 83(4), 510–520.

    Article  Google Scholar 

  • Liaotrakoon, W., De Clercq, N., Van Hoed, V., Van de Walle, D., Lewille, B., & Dewettinck, K. (2013). Impact of thermal treatment on physicochemical, antioxidative and rheological properties of white-flesh and red-flesh dragon fruit (Hylocereus spp.) purees. Food and Bioprocess Technology, 6(2), 416–430.

    Article  CAS  Google Scholar 

  • Ling, B., Tang, J., Kong, F., Mitcham, E., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: a review. Food and Bioprocess Technology, 8(2), 343–358.

    Article  CAS  Google Scholar 

  • Linton, M., Mc Clements, J. M. J., & Patterson, M. F. (2003). Changes in the microbiological quality of shellfish, brought about by treatment with high hydrostatic pressure. International Journal of Food Science & Technology, 38(6), 713–727.

    Article  CAS  Google Scholar 

  • Mafart, P. (1994). Ingenieria industrial alimentaria: Procesos fisicis de conservacion. (1st edn.). Technique et Documentation-Lavoisier. Editorial Acribia, S.A.

  • Maoka, T. (2011). Carotenoids in marine animals. Marine Drugs, 9(2), 278–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez, M. A., Velazquez, G., Cando, D., Núñez-Flores, R., Borderías, A. J., & Moreno, H. M. (2017). Effects of high pressure processing on protein fractions of blue crab (Callinectes sapidus) meat. Innovative Food Science & Emerging Technologies, 41, 323–329.

    Article  CAS  Google Scholar 

  • Maulvault, A. L., Anacleto, P., Lourenço, H. M., Carvalho, M. L., Nunes, M. L., & Marques, A. (2012). Nutritional quality and safety of cooked edible crab (Cancer pagurus). Food Chemistry, 133(2), 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Mondal, I. H., & Dash, K. K. (2017). Textural, color kinetics, and heat and mass transfer modeling during deep fat frying of Chhena Jhili. Journal of Food Processing and Preservation, 41(2), e12828.

    Article  CAS  Google Scholar 

  • Ovissipour, M., Rasco, B., Tang, J., & Sablani, S. S. (2013). Kinetics of quality changes in whole blue mussel (Mytilus edulis) during pasteurization. Food Research International, 53(1), 141–148.

    Article  CAS  Google Scholar 

  • Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36–60.

    Article  CAS  Google Scholar 

  • Requena, D. D., Hale, S. A., Green, D. P., McClure, W. F., & Farkas, B. E. (1999). Detection of discoloration in thermally processed blue crab meat. Journal of the Science of Food and Agriculture, 79(5), 786–791.

    Article  CAS  Google Scholar 

  • Uglow, R. F., Hosie, D. A., Johnson, I. T., & Macmullen, P. H. (1986). Live handling and transport of crustacean shellfish: an investigation of mortalities. Seafish technology SR280 (p. 24). London: MAFF R & D Commission.

    Google Scholar 

  • van Boekel, M. A. J. S., & Tijskens, L. M. M. (2001). Kinetic modelling. In L. M. M. Tijskens, M. L. A. T. M. Hertog, & B. M. Nicolai (Eds.), Food process modelling (pp. 35–59). Boca Raton: Woodhead PublishingLimited and CRC Press.

  • Woll, A. K. (2006). Handbook: the edible crab-biology, grading and handling live crabs. Volda: Møreforsking Marine.

    Google Scholar 

  • Yu, K., Wu, Y., Hu, Z., Cui, S., & Yu, X. (2011). Modeling thermal degradation of litchi texture: comparison of WeLL model and conventional methods. Food Research International, 44(7), 1970–1976.

    Article  Google Scholar 

  • Zabbia, A., Buys, E. M., & De Kock, H. L. (2012). Undesirable sulphur and carbonyl flavor compounds in UHT Milk: a review. Critical Reviews in Food Science and Nutrition, 52(1), 21–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors wish to acknowledge the financial support from the Food Institutional Research Measure (FIRM) funded by the Irish Department of Agriculture, Food and the Marine (project no. R13885) and to the European Regional Development Fund, MINECO-CICYT (AGL2015-69565-P) and the Department of Innovation Research and University of the Aragon Government and European Social Fund (ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Álvarez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The Figures and captions/legends at the original version of this article are displaced.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Condón-Abanto, S., Raso, J., Arroyo, C. et al. Quality-Based Thermokinetic Optimization of Ready-to-Eat Whole Edible Crab (Cancer pagurus) Pasteurisation Treatments. Food Bioprocess Technol 12, 436–446 (2019). https://doi.org/10.1007/s11947-018-2222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2222-2

Keywords

Navigation