Calcium Addition, pH and High Hydrostatic Pressure Effects on Soybean Protein Isolates—Part 2: Emulsifying Properties

Abstract

Soybean protein isolates (SPI) represent an important source of proteins that are used to prepare oil-in-water (o/w) emulsions. The influence of an innovative treatment (high hydrostatic pressure, HHP) combined with calcium addition at different pH levels and protein concentrations on the formation and stability of o/w SPI emulsions was evaluated in this work. When applied separately, calcium addition or HHP treatment produced different effect at pHs 5.9 and 7.0. Calcium addition led to stable emulsions with decreased flocculation index (FI) at pH 5.9 and low protein concentration (5 g L−1), whereas at pH 7.0, this effect was observed at high protein concentration (10 g L−1). In these conditions, calcium would favor the arrival of big aggregates to interface, which would be modified and adsorbed during homogenization. Treatment with HHP decreased FI and stabilized emulsions during storage at pH 7.0 (but not at pH 5.9) when prepared from 10 g L−1 protein dispersions. In these conditions, protein unfolding due to HHP-induced denaturation, and high ζ-potential would be responsible for emulsion improvement. Combination of calcium addition and HHP treatment impaired both formation and stabilization abilities of SPI at both pHs. Bridging flocculation was enhanced in these samples while interfacial protein concentration and percentage of adsorbed protein were increased. Thus, soybean proteins that were subjected to combined calcium addition and HHP treatment exhibited a great ability to associate each other, what can be useful to improve other functional properties such as gelation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Agboola, S. O., & Dalgleish, D. G. (1995). Calcium-induced destabilization of oil-in-water emulsions stabilized by caseinate or by β-lactoglobulin. Journal of Food Science, 60(2), 399–404.

    CAS  Article  Google Scholar 

  2. Añón, M. C., de Lamballerie, M., & Speroni, F. (2012). Effect of high pressure on solubility and aggregability of calcium-added soybean proteins. Innovative Food Science and Emerging Technologies, 16, 155–162.

    Article  CAS  Google Scholar 

  3. Bouaouina, H., Desrumaux, A., Liosel, C., & Legrand, J. (2006). Functional properties of whey proteins as affected by dynamic high-pressure treatment. International Dairy Journal, 16(4), 275–284.

    CAS  Article  Google Scholar 

  4. Castellani, O., David-Briand, E., Guérin-Dubiard, C., & Anton, M. (2005). Effect of aggregation and sodium salt on emulsifying properties of egg yolk phosvitin. Food Hydrocolloids, 19(4), 769–776.

    CAS  Article  Google Scholar 

  5. Castellani, O., Al-Assaf, S., Axelos, M., Phillips, G. O., & Anton, M. (2009). Hydrocolloids with emulsifying capacity. Part 2- adsorption properties at the n-hexadecane – water interface. Food Hydrocolloids, 24, 161–174.

    Google Scholar 

  6. Chapleau, N., & de Lamballerie-Anton, M. (2003). Improvement of emulsifying properties of lupin proteins by high pressure induced aggregation. Food Hydrocolloids, 17(3), 273–280.

    CAS  Article  Google Scholar 

  7. Cui, Z., Chen, Y., Kong, X., & Hua, Y. (2014). Emulsifying properties and oil/water (o/w) interface adsorption behavior of heat soy proteins: effects of heating, concentration, homogenizer rotating speed, and salt addition level. Journal of Agricultural and Food Chemistry, 62, 1634–1642.

    CAS  Article  PubMed  Google Scholar 

  8. Delbyshire, E., Wright, D. J., & Boulter, D. (1976). Legumin and vicilin storage protein of legume seeds. Phytochemistry, 15(1), 3–24.

    Article  Google Scholar 

  9. Dickinson, E. (2010). Flocculation of protein-stabilized oil-in-water emulsions. Colloids Surf B Biointerfaces, 81, 130–140.

    CAS  Article  PubMed  Google Scholar 

  10. Dickinson, E., & Davies, E. (1999). Influence of ionic calcium on stability of sodium caseinate emulsions. Colloids and Surfaces B: Biointerfaces, 12(3–6), 203–212.

    CAS  Article  Google Scholar 

  11. Dickinson, E., & Semenova, M. G. (1992). Emulsifying behaviour of protein in the presence of polysaccharide under conditions of thermodynamic incompatibility. Journal of the Chemical Society, Faraday Transactions, 88(6), 849–854.

    CAS  Article  Google Scholar 

  12. Floury, J., Desrumaux, A., & Legrand, J. (2002). Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions. Journal of Food Science, 67(9), 3388–3395.

    CAS  Article  Google Scholar 

  13. Galán, M. G., & Drago, S. R. (2014). Effects of soy protein and calcium levels on mineral bioaccessibility and protein digestibility from enteral formulas. Plants Foods for Human Nutrition, 69(3), 283–289.

    Article  CAS  Google Scholar 

  14. Graham, D. E., & Phillips, M. C. (1979). Proteins at liquid interfaces: I. Kinetics of adsorption and surface denaturation. Journal of Colloids and Interface Science, 70, 403–414.

    CAS  Article  Google Scholar 

  15. Jones, O. G. (2016). Recent advances in the functionality of non-animal-sourced proteins contributing to their use in meat analogues. Current Opinion in Food Science, 7, 7–13.

    Article  Google Scholar 

  16. Keowmaneechai, E., & McClements, D. J. (2002). Influence of EDTA and citrate on physicochemical properties of whey protein-stabilized oil-in-water emulsions containing CaCl2. Journal of Agricultural and Food Chemistry, 50(24), 7145–7153.

    CAS  Article  PubMed  Google Scholar 

  17. Li, H., Zhu, K., Zhou, H., & Peng, W. (2011). Effects of high hydrostatic pressure on some functional and nutritional properties of soy protein isolate for infant formula. Journal of Agricultural and Food Chemistry, 59(22), 12028–12036.

    CAS  Article  PubMed  Google Scholar 

  18. Manassero, C. A., Vaudagna, S. R., Añón, M. C., & Speroni, F. (2015). High hydrostatic pressure improves protein solubility and dispersion stability of mineral-added soybean protein isolate. Food Hydrocolloids, 43, 629–635.

    CAS  Article  Google Scholar 

  19. Manassero, C. A., David-Briand, E., Vaudagna, S. R., Anton, M., & Speroni, F. (2018). Calcium addition, pH and high hydrostatic pressure effects on soybean protein isolates – Part 1: colloidal stability improvement. Food and Bioprocess Technology. Article in press, 11(6), 1125–1138. https://doi.org/10.1007/s11947-018-2084-7.

    CAS  Article  Google Scholar 

  20. Markwell, M. A., Haas, S. M., Bieber, L. L., & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry, 87(1), 206–210.

    CAS  Article  PubMed  Google Scholar 

  21. Márquez, A. L., Medrano, A., Panizzolo, L. A., & Wagner, J. R. (2010). Effect of calcium salts and surfactant concentration on the stability of water-in-oil (w/o) emulsions prepared with polyglycerol polyricinoleate. Journal of Colloid and Interface Science, 341(1), 101–108.

    Article  CAS  PubMed  Google Scholar 

  22. McClements, D. J. (2005). Food emulsions. Principles, practices, and techniques. Second edition. Boca Raton: CRC Press.

  23. Palou, E., López-Malo, A., Barbosa-Cánovas, G. V. & Welti-Chanes, J. (2000). High hydrostatic pressure and minimal processing. In: S. M. Alzamora, M. S. Tapia, A. López-Malo (Ed.), Minimally Processed Fruits and Vegetables. Fundamentals and applications (pp. 205–222). Gaithersburg: Aspen Publishers.

    Google Scholar 

  24. Patton, S., & Huston, G. H. (1986). A method for isolation of milk fat globules. Lipids, 21(2), 170–174.

    CAS  Article  PubMed  Google Scholar 

  25. Puppo, M. C., Speroni, F., Chapleau, N., de Lamballerie, M., Añón, M. C., & Anton, M. (2005). Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hydrocolloids, 19(2), 289–296.

    CAS  Article  Google Scholar 

  26. Rodríguez Patino, J. M., Molina Ortiz, S. E., Carrera Sánchez, C., Rodríguez Niño, M. R., & Añón, M. C. (2003a). Behavior of soy globulin films at the air-water interface. Structural and dilatational properties of spread films. Industrial & Engineering Chemistry Research, 42, 5011–5017.

    Article  Google Scholar 

  27. Rodríguez Patino, J. M., Molina Ortiz, S. E., Carrera Sánchez, C., Rodríguez Niño, M. R., & Añón, M. C. (2003b). Dynamic properties of soy globulin adsorbed films at the air-water interface. Journal of Colloid and Interface Science, 268(1), 50–57.

    Article  CAS  PubMed  Google Scholar 

  28. Speroni, F., Jung, S., & de Lamballerie, M. (2010a). Effects of calcium and pressure treatment on thermal gelation of soybean protein. Journal of Food Science, 75, 30–38.

    Article  CAS  Google Scholar 

  29. Speroni, F., Milesi, V., & Añón, M. C. (2010b). Interactions between isoflavones and soybeans proteins: Applications in soybean-protein-isolate production. LWT-Food Science and Technology, 43(8), 1265–1270.

    CAS  Article  Google Scholar 

  30. Swientek, R. J. (1992). High hydrostatic pressure for food preservation. Food Processing, 53, 90–91.

    Google Scholar 

  31. Tang, C.-H. (2017). Emulsifying properties of soy proteins: a critical review with emphasis on the role of conformational flexibility. Critical Reviews in Food Science and Nutrition, 57(12), 2636–2679.

    CAS  Article  PubMed  Google Scholar 

  32. Utsumi, S., Matsumura, Y. & Mori, T. (1997). Structure-function relationships of soy proteins. In: S. P. A. Damodaran (Ed.), Food Proteins and their applications (pp. 257–291). First edition. New York: Marcel Dekker.

  33. Walstra, P. (1983). Formation of emulsion. In: P.Becher (Ed.), Encyclopedia of Emulsion Technology, Volume 1 Basic Theory (pp. 57–127). New York: Marcel Dekker.

    Google Scholar 

  34. Walstra, P. (1993). Principles of emulsion formation. Chemical Engineering Science, 48(2), 333–349.

    CAS  Article  Google Scholar 

  35. Wang, J.-M., Xia, N., Yang, X.-Q., Yin, S.-W., Qi, J.-R., He, X.-T., Yuan, D.-B., & Wang, L.-J. (2012). Adsorption and dilatational rheology of heat-treated soy protein at the oil−water interface: relationship to structural properties. Journal of Agricultural and Food Chemistry, 60(12), 3302–3310.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, C.-Y., Huang, H.-W., Hsu, C.-P., & Yang, B. B. (2016). Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition, 56(4), 527–540.

    Article  PubMed  Google Scholar 

  37. Wang, X., Zeng, M., Qin, F., Adhikari, B., He, Z., & Chen, J. (2018). Enhanced CaSO4-induced gelation properties of soy protein isolate emulsion by pre-aggregation. Food Chemistry, 242, 459–465.

    CAS  Article  PubMed  Google Scholar 

  38. Ye, A., & Singh, H. (2000). Influence of calcium chloride addition on the properties of emulsions stabilized by whey protein concentrate. Food Hydrocolloids, 14(4), 337–346.

    CAS  Article  Google Scholar 

  39. Ye, A., & Singh, H. (2001). Interfacial composition and stability of sodium caseinate emulsions as influenced by calcium ions. Food Hydrocolloids, 15(2), 195–207.

    CAS  Article  Google Scholar 

  40. Yuan, D. B., Yang, X. Q., Tang, C. H., Zheng, Z. X., Wei-Min, Ahmad, I., & Yin, S. W. (2009). Physicochemical and functional properties of acidic and basic polypeptides of soy glycinin. Food Research International, 42(5–6), 700–706.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Marie de Lamballerie for facilitating the use of HHP equipment installed in ONIRIS. The stay of Carlos A. Manassero in Biopolymères Interactions Assemblages-INRA was funded by Bec. Ar program of Argentina.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco Speroni.

Electronic Supplementary Material

ESM 1

(DOCX 337 kb)

ESM 2

(DOCX 471 kb)

ESM 3

(DOCX 599 kb)

ESM 4

(DOCX 422 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manassero, C.A., Beaumal, V., Vaudagna, S.R. et al. Calcium Addition, pH and High Hydrostatic Pressure Effects on Soybean Protein Isolates—Part 2: Emulsifying Properties. Food Bioprocess Technol 11, 2079–2093 (2018). https://doi.org/10.1007/s11947-018-2164-8

Download citation

Keywords

  • Bridging flocculation
  • Emulsion stability
  • Interfacial protein concentration
  • Coalescence