Skip to main content
Log in

Effects of Soy Protein and Calcium Levels on Mineral Bioaccessibility and Protein Digestibility from Enteral Formulas

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Enteral formulas (EF) are complex food systems which have all the nutrients in their matrix for the complete human nourishment. However, there are components in EF which can interact with minerals, reducing their absorption, and thereof the EF nutritional quality. The effect of soy protein (SP) and Ca content on Fe, Zn, and Ca bioaccessibility and protein digestibility (%DP) was assessed using a response surface design in EF. Tested SP levels were 2.5–5.0 g/100 mL of total protein. Ca levels were adjusted with Ca citrate within a range between 50 and 100 mg/100 mL. SP content negatively influenced %DP and Fe, Zn and Ca bioaccessibility. As SP content increased, mineral bioaccessibility and %DP decreased, probably due to the increased levels of phytic acid and trypsin inhibitors from SP. Ca content only affected %DCa, which had a direct relationship with Ca levels, while did not affect Fe and Zn bioaccessibility or %DP. Since Ca citrate did not impair Fe and Zn bioaccessibility, it could be an appropriate Ca source for EF fortification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

CCD:

Central composite design

EF:

Enteral formulas

%DCa:

Ca dialyzability

%DFe:

Fe dialyzability

%DZn:

Zn dialyzability

%DP:

Protein digestibility

SP:

Soy protein

References

  1. Suchner U, Senftleben U, Eckaw T, Scholz M, Beck K, Murr R et al. (1996) Enteral versus parenteral nutrition: effects on gastrointestinal function and metabolism. Nutrition 12(1):13–22. doi:10.1016/0899-9007(95)00016-X

    Article  CAS  Google Scholar 

  2. Lochs H, Pichard C, Alison SP (2006) Evidence supports nutritional support. Clin Nutr 25(2):177–179. doi:10.1016/j.clnu.2006.02.002

    Article  CAS  Google Scholar 

  3. Harvey L (2001) Mineral bioavailability. Nutrition & Food Science 31(4):179–182. doi:10.1108/00346650110392253

    Article  Google Scholar 

  4. Hurrell RF, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91(5):1461S–1467S. doi:10.3945/ajcn.2010.28674F

    Article  CAS  Google Scholar 

  5. Pizarro F, Boccio J, Salgueiro M, Olivares M, Carmuega E, Weill R (2012) Bioavailability of stabilised ferrous gluconate with glycine in fresh cheese matrix: a novel iron compound for food fortification. Biol Trace Elem Res 151(3):441–445. doi:10.1007/s12011-012-9574-7

    Article  Google Scholar 

  6. Brazaca SGC, da Silva FC (2003) Enhancers and inhibitors of iron availability in legumes. Plant Foods Hum Nutr 58(3):1–8

    Article  Google Scholar 

  7. Lönnerdal B (1997) Effects of milk and milk components on calcium, magnesium and trace elements absorption during infancy. Physiol Rev 77(3):643–69

    Google Scholar 

  8. Li H, Zhu K, Zhou H, Peng W, Guo X (2013) Comparative study about some physical properties, in vitro digestibility and immunoreactivity of soybean protein isolate for infant formula. Plant Foods for Hum Nutr 68(2):124–130. doi:10.1007/s11130-013-0358-9

    Article  CAS  Google Scholar 

  9. Jenkins DJ, Mirrahimi A, Srichaikul K, Berryman CE, Wang L, Carleton A et al (2010) Soy protein reduces serum cholesterol by both intrinsic and food displacement mechanisms. J Nutr 140(12):2302S–2311S. doi:10.3945/jn.110.124958

    Article  CAS  Google Scholar 

  10. Radcliffe JD, Czajka-Narins DM (1998) Partial replacement of dietary casein with soy protein isolate can reduce the severity of retinoid-induced hypertriglyceridemia. Plant Foods Hum Nutr 52:97–108. doi:10.1023/A:1008092906465

    Article  CAS  Google Scholar 

  11. Sirtori CR, Lovati MR (2001) Soy proteins and cardiovascular disease. Curr Atheroscler Rep 3(1):47–53. doi:10.1007/s11883-001-0010-2

    Article  CAS  Google Scholar 

  12. Lynch SR, Dasenko SA, Cook JMA, Hurrell RF (1994) Inhibitory effect of a soybean-protein-related moiety on iron absorption in humans. Am J Clin Nutr 60(4):567–572

    CAS  Google Scholar 

  13. Drago SR, Valencia ME (2004) Influence of components of infant formulas on in vitro iron, zinc, and calcium availability. J Agric Food Chem 52(10):3202–3207. doi:10.1021/jf035191e

    Article  CAS  Google Scholar 

  14. Bernardi C, Freyre M, Sambucetti ME, Pirovani ME (2004) Use of ascorbic and citric acids to increase dialyzable iron from vinal (Prosopis ruscifolia) pulp. Plant Foods Hum Nutr 59(4):175–179. doi:10.1007/s11130-004-0047-9

    Article  CAS  Google Scholar 

  15. AOAC (2000) Official Methods of Analysis, 17th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  16. Drago SR, Binaghi MJ, de Ferrer PA R, Valencia ME (2005) Assessment of iron, zinc and calcium dialyzability in infant formulas and iron fortified milks. In: Arthur PR (ed) Food Research, Safety and Policies. Nova Science Publishers Inc, New York, pp 113–132

    Google Scholar 

  17. Rudloff S, Lönnerdal B (1992) Solubility and digestibility of milk proteins in infant formulas exposed to different heat treatments. J Pediatric Gastroenterol Nutr 15(1):25–33

    Article  CAS  Google Scholar 

  18. AACC (1982) American Association of Cereal Chemist. Approved methods. Method 71–10. St Paul, MN

  19. Sanz-Penella JM, Laparra JM, Sanz Y, Haros M (2012) Bread supplemented with amaranth (Amaranthus cruentus): effect of phytates on in vitro iron absorption. Plant Foods Hum Nutr 67:50–56. doi:10.1007/s11130-011-0269-6

    Article  CAS  Google Scholar 

  20. Lönnerdal B (1985) Dietary factors affecting trace element bioavailability from human milk, cow’s milk and infant formulas. Prog Food Nutr Sci 9(1–2):35–62

    Google Scholar 

  21. Ma G, Jin Y, Piao J, Kok F, Guusje B, Jacobsen E (2005) Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in china. J Agric Food Chem 53(26):10285–10290. doi:10.1021/jf052051r

    Article  CAS  Google Scholar 

  22. Hallberg L, Brune M, Erlandsson M, Sandberg A-S, Rossander-Hulten L (1991) Calcium: effect of different amounts on non heme- and heme-iron absorption in humans. Am J Clin Nutr 53(1):112–119

    CAS  Google Scholar 

  23. Hallberg L, Rossander-Hulte L, Brune M, Gleerup A (1993) Inhibition of haem-iron absorption in man by calcium. Br J Nutr 69(2):533–540. doi:10.1079/BJN19930053

    Article  CAS  Google Scholar 

  24. Kalkwarf HJ, Harrast SD (1998) Effects of calcium supplementation and lactation on iron status. Am J Clin Nutr 67(6):1244–1249

    CAS  Google Scholar 

  25. Minihane AM, Fairweather-Tait SJ (1998) Effect of calcium supplementation on daily non heme-iron absorption and long- term iron status. Am J Clin Nutr 68(1):96–102

    CAS  Google Scholar 

  26. Hallberg L, Rossanser-Hultén L, Brune M, Gleerup A (1992) Calcium and iron absorption: mechanism of action and nutritional importance. Eur J Clin Nutr 46(5):317–327

    CAS  Google Scholar 

  27. Pérez-Llamas F, Larqué E, Marín JF, Zamora S (2001) Disponibilidad in vitro de minerales en fórmulas infantiles con distinta fuente proteica. Nutr Hosp 16(5):157–161

    Google Scholar 

  28. Lönnerdal B, Cederblad A, Davidsson L, Sandstrom B (1984) The effect of individual components of soy formula and cows’ milk formula on zinc bioavailability. Am J Clin Nutr 40(5):1064–1070

    Google Scholar 

  29. Wood RJ, Zheng J (1997) High dietary calcium intakes reduce zinc absorption and balance in humans. Am J Clin Nutr 65(6):1803–1809

    CAS  Google Scholar 

  30. Dawson-Hughes B, Seligson FH, Hughes VA (1986) Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women. Am J Clin Nutr 44(1):83–88

    CAS  Google Scholar 

  31. Roig MJ, Alegría A, Barberá R, Farré R, Lagarda MJ (1999) Calcium bioavailability in human milk, cow milk and infant formulas comparison between dialysis and solubility methods. Food Chem 65(3):353–357. doi:10.1016/S0308-8146(98)00232-5

    Article  CAS  Google Scholar 

  32. de Oliveira CK, Canniatti-Brazaca SG (2011) Disponibilidade de ferro, digestibilidade de proteína e teor de β-caroteno em formulados alternativos de baixo custo para alimentação enteral de idosos. Ciênc Tecnol Aliment 31(1):41–55

    Article  Google Scholar 

Download references

Declaration of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvina Rosa Drago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galán, M.G., Drago, S.R. Effects of Soy Protein and Calcium Levels on Mineral Bioaccessibility and Protein Digestibility from Enteral Formulas. Plant Foods Hum Nutr 69, 283–289 (2014). https://doi.org/10.1007/s11130-014-0432-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-014-0432-y

Keywords

Navigation