Skip to main content
Log in

An Approach to Standardize Methods for Fluence Determination in Bench-Scale Pulsed Light Experiments

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pulsed light (PL) is a fast non-thermal technology for decontamination based on the application of pulses of high-intensity polychromatic light including UV-C light. Continuous-wave (CW) ultraviolet (UV) light technology is based on the application of monochromatic or polychromatic low-intensity light for long times. Appropriate UV dosimetry is fundamental in order to intercompare results and for scaling up. There are standard methods for bench-top CW UV treatments but not for tests involving PL dosimetry. The present article introduces the fundamentals of photochemistry and photophysics, adapts a protocol for CW UV dosimetry to PL tests, and critically revises current ways of reporting results of PL tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Artíguez, M. L., Lasagabaster, A., & Martínez de Marañón, I. (2011). Factors affecting microbial inactivation by pulsed light in a continuous flow-through unit for liquid products treatment. Procedia Food Science, 1, 786–791.

    Article  Google Scholar 

  • Baranda, A. B., Barranco, A., & Martínez de Marañón, I. (2012). Fast atrazine photodegradation in water by pulsed light. Water Research, 46, 669–678.

    Article  CAS  Google Scholar 

  • Beck, S. E., Wright, H. B., Hargy, T. M., Larason, T. C., & Linden, K. G. (2015). Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems. Water Research, 70, 27–37.

    Article  CAS  Google Scholar 

  • Blatchley, E. R., III. (1997). Numerical modelling of UV intensity: application to collimated-beam reactors and continuous-flow systems. Water Research, 31, 2205–2218.

    Article  CAS  Google Scholar 

  • Bohrerova, Z., Shemer, H., Lantis, R., Impellitteri, C. A., & Linden, K. G. (2008). Comparative disinfection efficiency of pulsed and continuous-wave UV irradiation technologies. Water Research, 42, 2975–2982.

    Article  CAS  Google Scholar 

  • Bolton, J. R. (2013). Ultraviolet Applications Handbook, 3rd Ed. (updated), ICC Lifelong Learn Inc., Edmonton, Canada.

  • Bolton, J. R., & Linden, K. G. (2003). Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 129, 209–215.

    Article  CAS  Google Scholar 

  • Bolton, J. R., Linden, K. G., & Mayor-Smith, I. (2015). Rethinking the concepts of fluence (UV dose) and fluence rate: the importance of photon-based units—a systemic review. Photochemistry and Photobiology, 91, 1252–1262.

    Article  CAS  Google Scholar 

  • Braslavsky, S. E. (2007). Glossary of terms used in photochemistry. Pure & Applied Chemistry, 79, 293–465.

    Article  CAS  Google Scholar 

  • Chaine, A., Levy, C., Lacour, B., Riedel, C., & Carlin, C. (2012). Decontamination of sugar syrup by pulsed light. Journal of Food Protection, 75, 913–917.

    Article  CAS  Google Scholar 

  • Cheigh, C. I., Hwang, H. J., & Chung, M. S. (2013). Intense pulsed light (IPL) and UV-C treatments for inactivating Listeria monocytogenes on solid medium and seafoods. Food Research International, 54, 745–752.

    Article  CAS  Google Scholar 

  • Chen, R. Z., Craik, S. A., & Bolton, J. R. (2009). Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water. Water Research, 43, 5087–5096.

    Article  CAS  Google Scholar 

  • Choi, M. S., Cheigh, C. I., Jeong, E. A., Shin, J. K., Park, J. Y., Song, K. B., et al. (2009). Inactivation of Enterobacter sakazakii inoculated on formulated infant foods by intense pulsed-light treatment. Food Science and Biotechnology, 18, 1537–1540.

    CAS  Google Scholar 

  • Choi, M. S., Cheigh, C. I., Jeong, E. A., Shin, J. K., & Chung, M. S. (2010). Nonthermal sterilization of Listeria monocytogenes in infant foods by intense pulsed-light treatment. Journal of Food Engineering, 97, 504–509.

    Article  Google Scholar 

  • Farrell, H. P., Garvey, M., Cormican, M., Laffey, J. G., & Rowan, N. J. (2009). Investigation of critical inter-related factors affecting the efficacy of pulsed light for inactivating clinically relevant bacterial pathogens. Journal of Applied Microbiology, 108, 1494–1508.

    Article  Google Scholar 

  • Fernández, E., Artiguez, M. L., Martínez de Marañón, I., Villate, M., Blanco, F. J., & Arboleya, J. C. (2012). Effect of pulsed-light processing on the surface and foaming properties of β-lactoglobulin. Food Hydrocolloids, 27, 154–160.

    Article  Google Scholar 

  • Ferrario, M., Guerrero, S., & Alzamora, S. M. (2014). Study of pulsed-light induced damage on Saccharomyces cerevisiae in apple juice by flow citometry and transmission electron microscopy. Food and Bioprocess Technology, 7, 1001–1011.

    Article  CAS  Google Scholar 

  • Feuilloley, M. G. J., Bourdet, G., & Orange, N. (2006). Effect of white pulsed light on Pseudomonas aeruginosa culturability and its endotoxin when present in ampoules for injectables. European Journal of Parenteral & Pharmaceutical Sciences, 11, 9–14.

    Google Scholar 

  • Gaertner, A. A. (2012). Optical radiation measurement. In L. Cocco (Ed.), Modern metrology concerns (pp. 223–262). Rijeka: Intech.

    Google Scholar 

  • Gómez-López, V. M., Devlieghere, F., Bonduelle, V., & Debevere, J. (2005a). Factors affecting the inactivation of microorganisms by intense light pulses. Journal of Applied Microbiology, 99, 460–470.

    Article  Google Scholar 

  • Gómez-López, V. M., Devlieghere, F., Bonduelle, V., & Debevere, J. (2005b). Intense light pulses decontamination of minimally processed vegetables and their shelf-life. International Journal of Food Microbiology, 103, 79–89.

    Article  Google Scholar 

  • Gómez-López, V. M., Ragaert, P., Debevere, J., & Devlieghere, F. (2007). Pulsed light for food decontamination: a review. Trends in Food Science and Technology, 18, 464–473.

    Article  Google Scholar 

  • Grapperhaus, M., Schaefer, R., & Linden, K. (2007). Modeling of a new UV test cell for evaluation of lamp fluence rate effects in regard to water treatment, and comparison to collimated beam test. Journal of Environmental Engineering and Science, 6, 271–276.

    Article  CAS  Google Scholar 

  • Hancock, P., Curry, R., McDonald, K., & Altgilbers, L. (2004). Megawatt, pulsed ultraviolet photon sources for microbial inactivation. IEEE Transactions in Plasma Science, 32, 2026–2031.

    Article  CAS  Google Scholar 

  • Hsu, L., & Moraru, C. I. (2011). Quantifying and mapping the spatial distribution of fluence inside a pulsed light treatment and various liquid substrates. Journal of Food Engineering, 103, 84–91.

    Article  Google Scholar 

  • Huffman, D. E., Slifko, T. R., Salisbury, K., & Rose, J. B. (2000). Inactivation of bacteria, virus and Cryptosporidium by a point-of-use device using pulsed broad spectrum white light. Water Research, 34, 2491–2498.

    Article  CAS  Google Scholar 

  • Ignat, A., Manzocco, L., Maifreni, M., Bartolomeoli, I., & Nicoli, M. C. (2014). Surface decontamination of fresh-cut apple by pulsed light: effects on structure, colour and sensory properties. Postharvest Biology and Technology, 91, 122–127.

    Article  Google Scholar 

  • Janve, B. A., Yang, W., Marshall, M. R., Reyes-De-Corcuera, J. I., & Rababah, T. M. (2014). Nonthermal inactivation of soy (Glycine max sp.) lipoxygenase by pulsed ultraviolet light. Journal of Food Science, 79, C8–C18.

    Article  CAS  Google Scholar 

  • Jun, S., Irudayaraj, J., Demirci, A., & Geiser, D. (2003). Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger spores. International Journal of Food Science and Technology, 38, 883–888.

    Article  CAS  Google Scholar 

  • Koyyalamudi, S. R., Jeong, S. C., Pang, G., Teal, A., & Biggs, T. (2011). Concentration of vitamin D2 white button mushrooms (Agaricus bisporus) exposed to pulsed UV light. Journal of Food Composition and Analysis, 24, 976–979.

    Article  CAS  Google Scholar 

  • Krishnamurthy, K., Tewari, J. C., Irudayaraj, J., & Demirci, A. (2010). Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating. Food and Bioprocess Technology, 3, 93–104.

    Article  Google Scholar 

  • Lagunas-Solar, M. C., & Gómez-López, V. M. (2006). COST sub-committee report on UV units, UV sources specifications and experimental procedures. http://www.biw.kuleuven.be/aee/vcbt/cost924/Working%20Groups/WG3/COST%20UV%20%20FINAL%20REPORT%20011006.pdf. Accessed 27 December 2015

  • Lee, S. U., Joung, M., Yang, D. J., Park, S. H., Huh, S., Park, W. Y., & Yu, J. R. (2008). Pulsed-UV light inactivation of Cryptosporidium parvum. Parasitology Research, 102, 1293–1299.

    Article  Google Scholar 

  • Luksiene, Z., Gudelis, V., Buchovec, I., & Raudeliuniene, J. (2007). Advanced high-power pulsed light device to decontaminate food from pathogens: effects on Salmonella Typhimurium viability in vitro. Journal of Applied Microbiology, 103, 1545–1552.

    Article  CAS  Google Scholar 

  • MacGregor, S. J., Rowan, N. J., McIlvaney, L., Anderson, J. G., Fouracre, J. G., & Farish, O. (1998). Light inactivation of food-related pathogenic bacteria using a pulsed power source. Letters in Applied Microbiology, 27, 67–70.

    Article  CAS  Google Scholar 

  • Moreau, M., Lescure, G., Agoulon, A., Svinareff, P., Orange, N., & Feulloley, M. (2011). Application of pulsed light technology to mycotoxin degradation and inactivation. Journal of Applied Toxicology, 33, 357–363.

    Article  Google Scholar 

  • Nicorescu, I., Nguyen, B., Chevelier, S., & Orange, N. (2014). Effects of pulsed light on the organoleptic properties and shelf-life extension of pork and salmon. Food Control, 44, 138–145.

    Article  Google Scholar 

  • Orlowska, M., Koutchma, T., Grapperhaus, M., Gallagher, J., Schaefer, R., & Defelice, C. (2013). Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: effects on quality of fructose solution, apple juice, and milk. Food and Bioprocess Technology, 6, 1580–1592.

    Article  CAS  Google Scholar 

  • Rodov, V., Vinokur, Y., & Horev, B. (2012). Brief postharvest exposure to pulsed light stimulates coloration and anthocyanin accumulation in fig fruit (Ficus carica L.). Postharvest Biology and Technology, 68, 43–46.

    Article  CAS  Google Scholar 

  • Rohatgi-Mukherjee, K. K. (1986). Fundamental of Photochemistry. New Delhi: New Age International.

    Google Scholar 

  • Rowan, N. J., Valdramidis, V. P., & Gómez-López, V. M. (2015). Efficacy of conventional growth dependent methods to determine pulsed-light lethality kinetic data: a review. Trends in Food Science and Technology, 44, 79–92.

    Article  CAS  Google Scholar 

  • Ryer, A. D. (1997). The light measurement handbook. Newburyport, MA, USA: International Light.

    Google Scholar 

  • Sauer, A., & Moraru, C. I. (2009). Inactivation of Escherichia coli ATCC 25922 and Escherichia coli O157:H7 in apple juice and apple cider, using pulsed light treatment. Journal of Food Protection, 72, 937–944.

    Google Scholar 

  • Schaefer, R., Grapperhaus, M., Schaefer, I., & Linden, K. (2007). Pulsed UV lamp performance and comparison with UV mercury lamps. Journal of Environment Engineering and Science, 6, 303–310.

    Article  CAS  Google Scholar 

  • Schwarzschild, K. (1900). On the deviations from the law of reciprocity for bromide of silver gelatin. The Astrophysical Journal, 11, 89–91.

    Article  Google Scholar 

  • Shama, G. (2007). Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hermetic responses. Postharvest Biology and Technology, 44, 1–8.

    Article  CAS  Google Scholar 

  • Shriver, S. K., & Yang, W. W. (2011). Thermal and nonthermal methods for food allergen control. Food Engineering Reviews, 3, 26–43.

    Article  CAS  Google Scholar 

  • Wang, T., MacGregor, S., Anderson, J. G., & Woolsey, G. A. (2005). Pulsed ultra-violet inactivation spectrum of Escherichia coli. Water Research, 39, 2921–2925.

    Article  CAS  Google Scholar 

  • Water-technology. (2015). Catskill-Delaware UV Water Treatment Facility. New York: United States of America. http://www.water-technology.net/projects/-catskill-delaware-ultraviolet-water-treatment-facility/. Accessed: 26 December 2015.

    Google Scholar 

  • Xenon (2015). Food enhancement. http://www.xenoncorp.com/markets/process-development/. Accessed: 26 December 2015.

Download references

Acknowledgments

The support of project PMAFI/29/14 sponsored by UCAM is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente M. Gómez-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-López, V.M., Bolton, J.R. An Approach to Standardize Methods for Fluence Determination in Bench-Scale Pulsed Light Experiments. Food Bioprocess Technol 9, 1040–1048 (2016). https://doi.org/10.1007/s11947-016-1696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1696-z

Keywords

Navigation