Skip to main content

Advertisement

Log in

Effect of the Processing Steps on Cactus Juice Production

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The Cereus hildmannianus K. Schum juice was obtained by enzymatic and mechanical treatments, both followed by a pasteurization process. The effects caused by these processes were evaluated considering physicochemical and histological properties, as well as its rheological behavior. When compared with mechanical treatment, enzymatic treatment was responsible for yields increase (up to 22 %), viscosity decrease, and suspended solids content. When associated with heat, enzymatic treatment increased the soluble solids concentration, as well as their pH level, promoting viscosity reduction if compared with the mechanical treatment. Histological evaluations showed gradual degradation of cells and mucilage, as the juice processing steps proceeded. The non-Newtonian behavior of the “in natura” pulp and the juice obtained by mechanical treatment have been well described by the Casson and Bingham models, respectively. The enzymatically treated juice behaved as Newtonian fluid. All samples showed a reduction in the viscosity levels when subjected to higher temperatures, as described by the Arrhenius-type equation: the activation energy varied from 3.8 to 4.5 kcal mol−1. Sensory analysis of pure Cereus h. juice and its mix with traditional orange and lime juices were well accepted by the surveyed audience, and the addition of the cactus juice was easily perceived by those who participated in the research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdullah, A. G. L., Sulaiman, N. M., Aroua, M. K., & Megat Mohd Noor, M. J. (2007). Response surface optimization of conditions for clarification of carambola fruit juice using a commercial enzyme. Journal of Food Engineering, 81, 65–71.

    Article  CAS  Google Scholar 

  • Association of Official Analytical Chemists—AOAC. (1997). Official methods of analysis (16th ed.). Arlington: AOAC International.

    Google Scholar 

  • Berlyn, G. P., & Miksche, J. P. (1976). Botanical microtechnique and citochemistry. Ames: The Iowa State University Press.

    Google Scholar 

  • Bhattacharya, S., & Rastogi, N. K. (1998). Rheological properties of enzyme-treated mango pulp. Journal of Food Engineering, 36, 49–262.

    Article  Google Scholar 

  • Binner, S., Jardine, W. G., Renard, C. M. C. G., & Jarvis, M. C. (2000). Cell wall modifications during cooking of potatoes and sweet potatoes. Journal of the Science of Food and Agriculture, 80, 216–218.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Branco IG (1995) Suco de laranja concentrado—comportamento reológico a baixas temperaturas. Master thesis, Department of Food Engineering, State University of Campinas, São Paulo, Brazil.

  • Branco, I. G., & Gasparetto, C. A. (2003). Aplicação da metodologia de superfície de resposta para o estudo do efeito da temperatura sobre o comportamento reológico de misturas ternárias de polpa de manga e sucos de laranja e cenoura. Ciência e Tecnologia de Alimentos, 23, 166–171.

    Article  Google Scholar 

  • Bündchen, M., Durli, M., Quadri, M.G.N., Dalavéquia, M.A., Zoldan, S.R. (2009). Caracterização biométrica e química dos frutos da tuna—Cereus hildmannianus K. Schum. (Cactaceae)—visando seu aproveitamento econômico sustentável. In: Annals of Encontro Nacional sobre Fruticultura de Clima Temperado, vol. II, pp. 33. ArtGraf, Fraiburgo, Brazil.

  • Burdurlu, H. S., Koca, N., & Karadeniz, F. (2006). Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering, 74(2), 211–216.

    Article  CAS  Google Scholar 

  • Carrandi, L. (1995). Efecto de conservantes em la estabilidad de jugo de tuna pasteurizado. Memória para optar al Título de Inginiero Agrônomo. Faculdad de Ciências Agrárias y Florestales. Santiago, Chile: Universidade de Chile.

    Google Scholar 

  • Cecchi, H. M. (2003). Fundamentos teóricos e práticos em análise de alimentos (2ªth ed.). Campinas, Brazil: Ed Unicamp.

    Google Scholar 

  • Chin, N. L., Chan, S. M., Yusof, Y. A., Chuah, T. G., & Talib, R. A. (2009). Modelling of rheological behaviour of pummelo juice concentrates using master-curve. Journal of Food Engineering, 93, 134–140.

    Article  CAS  Google Scholar 

  • Costa, A. F. (1972). Farmacognosia (Farmacognosia experimental). Lisbon, Portugal: Fundação Calouste Gulbenkian.

    Google Scholar 

  • Demir, N., Acar, J., & Bahçeci, K. S. (2004). Effects of storage on quality of carrot juices produced with lactofermentation and acidification. European Food Research and Technology, 218(5), 465–468.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–428.

    Article  CAS  Google Scholar 

  • Holdsworth, S. D. (1971). Applicability of rheological models to the interpretation of flow and processing behaviour of fluid food products. Journal of Texture Studies, 2, 393–418.

    Article  Google Scholar 

  • Ibarz, A. (1992). Rheology of clarified fruit juices I: peach juices. Journal of Food Engineering, 15, 49–61.

    Google Scholar 

  • Ibarz, A. (1994). Rheology clarified fruit juices III: orange juices. Journal of Food Engineering, 21, 485–494.

    Article  Google Scholar 

  • Ibarz, A., & Pagán, J. (1987). Rheology of raspberry juices. Journal of Food Engineering, 6, 269–289.

    Article  Google Scholar 

  • Imungi, J. K., Scheffeldt, P., & Saint-Hislaire, P. (1980). Physical–chemical changes during extraction and contraction of clear guava juice Lebensmitttel Wissenschaft und Technologie. Food Science and Technology, 13(5), 248–251.

    CAS  Google Scholar 

  • Jaeger, H., Schulz, M., Lu, P., & Knorr, D. (2012). Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. Innovative Food Science and Emerging Technologies, 14, 46–60.

    Article  Google Scholar 

  • Kraus, J. E., & Arduin, M. (1997). Manual básico de métodos em morfologia vegetal. Rio de Janeiro, Brazil: Universidade Rural.

    Google Scholar 

  • Lea, A.G.H. (1998). Enzymes in production of beverages and fruit juices. In: G. A. Tucker & L. F. J. Woods (eds.). Enzymes in Food Processing (pp. 223–249). London: Blackie Academic and Professional.

  • Lee, W. C., Yusof, S., Hamid, N. S. A., & Baharin, B. S. (2006). Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). Journal of Food Engineering, 73, 55–63.

    Article  CAS  Google Scholar 

  • Lucas, E. F., Soares, B. G., & Monteiro, E. E. C. (2001). Caracterização de Polímeros. Rio de Janeiro: E-papers Serviços Editoriais Ltda.

    Google Scholar 

  • Maceiras, R., Álvarez, E., & Cancela, M. A. (2007). Rheological properties of fruit purees: effect of cooking. Journal of Food Engineering, 80, 763–769.

    Article  CAS  Google Scholar 

  • Maia, G. A., Sousa, P. H. M., Santos, G. M., Silva, D. S., Fernandes, A. G., & Prado, G. M. (2007). Efeito do processamento sobre componentes do suco de acerola. Ciências e Tecnologia de Alimentos, 27(1), 130–134.

    Article  CAS  Google Scholar 

  • Matta VM (1999) Estudo da utilização dos processos de separação por membrana para obtenção de suco de acerola clarificado e concentrado. Ph.D. thesis. Universidade Estadual de Campinas, Campinas, SP, Brazil

  • Medina-Torres, L., La Fuente, E. B., Torrestiana-Sanchez, B., & Katthain, R. (2000). Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocolloids, 14, 417–424.

    Article  CAS  Google Scholar 

  • Meilgaard, M., Civille, G. V., & Carr, B. T. (1999). Sensory evaluation techniques. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  • Ng, A., & Waldron, K. W. (1997). Effect of steaming on cell wall chemistry of potatoes (Solanum tuberosum Cv. Bintje) in relation to firmness. Journal of Agricultural and Food Chemistry, 45(9), 3411–3418.

    Article  CAS  Google Scholar 

  • Pelegrine, D. H., Vidal, J. R. M. B., & Gasparetto, C. A. (2000). Estudo da viscosidade aparente das polpas de manga (Keitt) e abacaxi (Pérola). Ciência e Tecnologia de Alimentos, 20(1), 128–131.

    Article  Google Scholar 

  • Polydera, A. C., Stoforos, N. G., & Taoukis, P. S. (2005). Quality degradation kinetics of pasteurised and high pressure processed fresh Navel orange juice: nutritional parameters and shelf life. Innovative Food Science and Emerging Technologies, 6(1), 1–9.

    Article  Google Scholar 

  • Porto MRA (2009) Caracterização físico-química e comportamento reológico da polpa do fruto de Cereus hildmannianus. Master thesis, Federal University of Santa Catarina, Santa Catarina, Brazil.

  • Quadri, M.G.N., Deboni, T.M., Porto, M.R.A., Bündchen, M., Mario, A.J. (2012). Suco de cactáceas e processos para sua obtenção. Patent BR2010PI 03667. European Patent Office.

  • Rai, P., Majumdar, G. C., Das Gupta, S., & De, S. (2005). Prediction of the viscosity of clarified fruit juice using artificial neural network: a combined effect of concentration and temperature. Journal of Food Engineering, 68, 527–533.

    Article  Google Scholar 

  • Rao, M. A. (1987). Predicting the flow properties of food suspensions of plant origin: mathematical models help clarify the relationship between composition and rheological behavior. Food Technology, 41(3), 85–88.

    Google Scholar 

  • Rao, M. A., & Anantheswaran, R. C. (1982). Rheology of fluids in food processing. Food Technology, 36(2), 116–126.

    Google Scholar 

  • Rombouts, F. M., & Pilnik, W. (1980). Pectic enzymes. Economic microbiol (Vol. 5). London: Academic. 227 p.

    Google Scholar 

  • Sabbe, S., Verbeke, W., & Van Damme, P. (2009). Analysing the market environment for açaí (Euterpe oleracea Mart.). Fruits, 64(5), 273–284.

    Article  Google Scholar 

  • Sáenz, C., Sepulveda, E., & Matsuhiro, B. (2004). Opuntia spp mucilage’s: a functional component with industrial perspectives. Journal of the Arid Environment, 57, 275–290.

    Article  Google Scholar 

  • Sass, J. E. (1951). Botanical microtechnique (2nd ed.). Ames: The Iowa State College Press.

    Google Scholar 

  • Sharma, A. K., Sarkar, B. C., & Sharma, H. K. (2005). Optimization of enzymatic process parameters for increased juice yield from carrot (Daucus carota L.) using response surface methodology. European Food Research and Technology, 221, 106–112.

    Article  CAS  Google Scholar 

  • Silva, F. C., Guimarães, D. H. P., & Gasparetto, C. A. (2005). Reologia do suco de acerola: efeitos da concentração e temperatura. Ciência e Tecnologia de Alimentos, 25(1), 121–126.

    Google Scholar 

  • Telis-Romero, J., Telis, V. R. N., & Yamashita, F. (1999). Friction factors and rheological properties of orange juice. Journal of Food Engineering, 40, 101–106.

    Article  Google Scholar 

  • Teraoka, I. (2002). Polymer solutions. An introduction to physical properties. New York: Wiley.

    Google Scholar 

  • Vandresen, S., Quadri, M. G. N., Souza, J. A. R., & Hotza, D. (2009). Temperature effect on the rheological behavior of carrot juices. Journal of Food Engineering, 92(3), 269–274.

    Article  CAS  Google Scholar 

  • Vendrúsculo, A. T., & Quadri, M. G. N. (2008). Efeito dos tratamentos enzimático, térmico e mecânico na estabilidade do suco de carambola. Brazilian Journal of Food Technology, 11(1), 28–34.

    Google Scholar 

  • Vitali, A. A., & Rao, M. A. (1984). Flow properties of low-pulp concentrated orange juice: effect of temperature and concentration. Journal of Food Science, 49, 882–888.

    Article  Google Scholar 

  • Vitali, A. A., Roig, S. M., & Rao, M. A. (1974). Viscosity behavior of concentrated passion fruit juice. Confructa, 19(5), 201–206.

    Google Scholar 

  • Wang, H., Hu, X., Chen, F., Wu, J., Zhang, Z., Liao, X., et al. (2006). Kinetic analysis of non-enzymatic browning in carrot juice concentrate during storage. European Food Research and Technology, 223, 282–289.

    Article  CAS  Google Scholar 

  • Whitaker, J. R. (2002). Handbook of enzymology. Nova York: Marcel Dekker.

    Book  Google Scholar 

Download references

Acknowledgments

Thanks to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Gabriela Novy Quadri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deboni, T.M., Bündchen, M., Junior, C.V. et al. Effect of the Processing Steps on Cactus Juice Production. Food Bioprocess Technol 7, 990–1000 (2014). https://doi.org/10.1007/s11947-013-1098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1098-4

Keywords

Navigation