Skip to main content
Log in

Cronobacter sakazakii Inactivation by Microwave Processing

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Nowadays, current practices at home and childcare settings involved MW heating after powder infant formula milk reconstitution. Microwave (MW) effectiveness for Cronobacter sakazakii inactivation in reconstituted powder infant formula milk was investigated. Power levels in the range 400–900 W were tested during exposure times ranging from 0 to 120 s. Power levels of 800 and 900 W reduced the C. sakazakii initial population to undetectable levels (≥8 log10 cycles), reaching maximum temperatures of 78.8 ± 2.3 °C and 88.1 ± 1.5 °C, respectively. A post-treatment storage study (5 °C, 24 h) was completed to determine the recovery or death of C. sakazakii damaged and survival cells. It was observed that lowest MW intensity treatments (power level and treatment time) provide the highest percentages of injured cells. Moreover, these high percentages of damaged cells progressively die during refrigerated storage (up to 24 h). Microbial reduction levels higher or equal to 5 log10 cycles were reached due to the sublethal damaged cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Holy, M. A., Lin, M., Abu-Ghoush, M. M., Al-Qadiri, H. M., & Rasco, B. A. (2009). Thermal resistance, survival and inactivation of Enterobacter sakazakii (Cronobacter spp.) in powdered and reconstituted infant formula. Journal of Food Safety, 29, 287–14.

    Article  Google Scholar 

  • Arroyo, C., Condón, S., & Pagán, R. (2009). Thermological characterization of Enterobacter sakazakii. International Journal of Food Microbiology, 136, 110–118.

    Article  CAS  Google Scholar 

  • Arroyo, C., Somolinos, M., Cebrián, G., Condón, S., & Pagán, R. (2010). Pulsed electric fields cause sublethal injuries in the outer membrane of Enterobacter sakazakii facilitating the antimicrobial activity of citral. Letters in Applied Microbiology, 51, 525–531.

    Article  CAS  Google Scholar 

  • Arroyo, C., Gayán, E., Pagán, R., & Condón, R. (2012). UV-C Inactivation of Cronobacter sakazakii. Foodborne Pathogens and Disease, 9(10), 1–8.

    Article  Google Scholar 

  • Awuah, G. B., Ramaswamy, H. S., & Economides, A. (2007). Thermal processing and quality: Principles and overview. Chemical Engineering and Processing, 46, 584–602.

    Article  CAS  Google Scholar 

  • Barbosa-Cánovas, G. V., & Bermudez-Aguirre D. (2010). Pasteurization of milk with pulsed electric fields. In M. Griffiths (Ed.), Improving the safety and quality of milk, vol. 1. Cambridge, UK: Woodhead Publishing.

  • CAC (Codex Alimentarius Comission). (2004). Report of the 36th session of the Codex Committee on Food Hygiene ALINORM 04/27/13. Appendix III: Definition to be included in the procedure manual

  • Cañumir, J. A., Celis, J. E., de Brujin, J., & Vidal, L. V. (2002). Pasteurization of Apple Juice by using Microwaves. Lebensm-Wiss. u -Technology, 35, 389–392.

    Article  Google Scholar 

  • Cha-um, W., Rattanadecho, P., & Pakdee, W. (2011). Experimental and numerical analysis of Microwave Heating of Water and Oil using a rectangular wave guide: Influence of sample sizes, positions, and microwave power. Food Bioprocess and Technology, 4, 544–558.

    Article  Google Scholar 

  • Carletti, C, & Cattaneo, A. (2008). A: Home preparation of powdered infant formula: is it safe? Acta Paediatrica, 97, 1131–2.

    Google Scholar 

  • Dixon, J. J., Burd, D. A. R., & Roberts, D. G. V. O. (1997). Severe burns resulting from an exploding teat on a bottle of infant formula milk heated in a microwave oven. Burns, 23(3), 268–269.

    Article  CAS  Google Scholar 

  • European Comission Regulation (EC). N0 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs (OJ L 338, 22.12.2005, p.1).

  • Edelson-Mammel, S. G., & Buchanan, R. L. (2004). Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. Journal of Food Protection, 67, 60–63.

    Google Scholar 

  • ESPGHAN Committee on Nutrition. (2004). Preparation and Handling of powdered Infant Formula: A Commentary by the ESPGHAN Committee on Nutrition. Journal of Pediatrics Gastroenterology and Nutrition, 39, 320–2.

    Article  Google Scholar 

  • FAO/WHO (2004). Food and Agriculture Organization/World Health Organization activities on microbiological risk assessment. Enterobacter sakazakii and other microorganisms in powdered infant formula. Meeting report. Microbiological risk assessment series: 6.

  • FAO/WHO. (2006). Comisión del Codex Alimentarius. Anteproyecto de código de prácticas de higiene para la fórmula en polvo para lactantes y niños pequeños en el trámite 3. CX/FH 06/38/7.

  • Friedemann, M. (2007). Review. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). International Journal of Food Microbiology, 116, 1–10.

    Article  CAS  Google Scholar 

  • Forsythe, S. J. (2002). The microbiological risk assessment of food. Chapter 3. Risk Analysis. Oxford: Blackwell Publishing.

    Book  Google Scholar 

  • Fujikawa, H., Ushioda, H., & Kudo, Y. (1992). Kinetics of Escherichia coli destruction by microwave irradiation. Applied and Environmental Microbiology, 58(3), 920–924.

    CAS  Google Scholar 

  • Hebbar, H.U., & Rastogi, N.K. (2012). Chapter 12—Microwave Heating of Fluid Foods. In: Novel Thermal and Non-Thermal Technologies for Fluid Foods, (pp. 369−409).

  • Heddleson, R. A., & Doores, S. (1994). Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens—a review. Journal of Food Protection, 57(11), 1025–1037.

    Google Scholar 

  • Huang, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea. Journal of Food Engineering, 78, 687–692.

    Article  CAS  Google Scholar 

  • IDF. (1994). Recommendations for the Hygienic Mnufacture of Milk and Milk based products. Document No. 292 International Dairy Federation, Brussels.

  • Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299.

    Article  CAS  Google Scholar 

  • Iversen, C., Lane, M., & Forsythe, S. J. (2004). The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Letters in Applied Microbiology, 38, 378–382.

    Google Scholar 

  • Jang, H. I., & Rhee M. S. (2009). Inhibitory effect of caprylic acid and mild heat on Cronobacter spp. (Enterobacter sakazakii) in reconstituted infant formula and determination of injury by flow cytometry. International Journal of Food Microbiology, 133, 113–120.

    Google Scholar 

  • Kandhai, M. C., Reij, M. W., Grognou, C., van Shothorst, M., Gorris, L. G. M., & Zwietering, M. H. (2006). Effects of Preculturing conditions on lag time and specific growth rate of Enterobacter sakazakii in reconstituted powdered infant formula. Applied and Environmental Microbiology, 72(4), 2721–2729.

    Article  CAS  Google Scholar 

  • Kim, S. H., & Park, J. H. (2007). Thermal resistance and inactivation of Enterobacter sakazakii isolates during rehydration of powdered infant formula. Journal of Microbiology and Biotechnology, 17, 364–368.

    Google Scholar 

  • Kim, J. B., Park, Y. B., Lee, M. J., Kim, K. C., Huh, J. W., Kim, D. H., et al. (2008). Effect of hot water and microwave heating on the inactivation of Enterobacter sakazakii in reconstituted powdered infant formula and sunsik. Journal of Food Hygiene and Safety, 23(2), 157–162.

    Google Scholar 

  • Kindle, G., Busse, A., Kampa, D., Meyer-Koenig, U., & Daschner, F. D. (1996). Killing activity of microwaves in milk. Journal of Hospital Infection, 33, 273–278.

    Article  CAS  Google Scholar 

  • Latorre, M. E., Bonelli, P. R., Rojas, A. M., & Gerschenson, L. N. (2012). Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality. Journal of Food Engineering, 109, 676–684.

    Article  CAS  Google Scholar 

  • Lau, M. H., & Tang, J. (2002). Pasteurization of pickled asparagus using 915 MHz microwaves. Journal of Food Engineering, 51(4), 283–290.

    Google Scholar 

  • Matsui, K. N., Gut, J. A. W., de Oliveira, P. V., & Tadini, C. C. (2008). Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing. Journal of Food Engineering, 88, 169–176.

    Article  CAS  Google Scholar 

  • Nazarowec-White, M., & Farber, J. M. (1997). Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Letters in Applied Microbiology, 24, 9–13.

    Article  CAS  Google Scholar 

  • Nicolaï, B. (1998). Optimal control of microwave combination ovens for food heating. 3rd Karlsruhe Nutrition Symposium. European Research towards Safer and Better Food. Review and Transfer Congress. Proceedings Part 2 Edited by V. Gaukeland W.E.L. Spieß. pp. 328–332.

  • Ohlsson, T. (2003). Domestic use of microwave ovens. Cooking, 1627–1633.

  • Osaili, T., & Forsythe, S. (2009). Dessication resistance and persistance of Cronobacter species in infant formula. International Journal of Food Microbiology, 136(2), 214–220.

    Google Scholar 

  • Osaili, T. M., Shaker, R. R., Al-Haddaq, M. S., Al-Nabulsi, A. A., & Holley, R. A. (2009). Heat resistance of Cronobacter species (Enterobacter sakazakii) in milk and special feeding formula. Journal of Applied Microbiology, 107, 928–935.

    Article  CAS  Google Scholar 

  • Pina-Pérez, M. C., Rodrigo, D., & Martinez, A. (2009). Sub-lethal damage in Cronobacter sakazakii subsp. Sakazakii cells after different pulsed electric field treatments in infant formula milk. Food Control, 20, 1145–1150.

    Article  Google Scholar 

  • Puczynski, M., Rademaker, D., & Gatson, R. L. (1983). Burn injury related to the improper use of a microwave oven. Pediatrics, 72(5), 714–715.

    CAS  Google Scholar 

  • Rodrigo, D., Zúñiga, M., Rivas, A., & Martinez, A. (2007). Adaptation potential of micro-organisms treated by pulsed electric fields. Food preservation by pulsed electric fields: From research to application. Edited by H L M Lelieveld, formerly Unilever R&D, S Notermans, Foundation Food Micro & Innovation and S W H de Haan, Technical University of Delft, The Netherlands.

  • Salazar-González, C., San Martín-González, M. F., López-Malo, A., & Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food Bioprocess and Technology, 5, 31–46.

    Article  Google Scholar 

  • Shaker, R. R., Osaili, T. M., All-Hasan, A. S., Ayyash, M. M., Forsythe, S. J. (2008). Effect of desiccation, starvation, heat and cold stresses on the thermal resistance of Enterobacter sakazakii in rehydrated infant milk formula. Journal of Food Science, 73, 354–359.

    Google Scholar 

  • Sieber, R., Eberhard, P., & Gallmann, P. U. (1996). Heat treatment of milk in domestic microwave ovens. International Dairy Journal, 6, 213–246.

    Google Scholar 

  • Simmons, B. P., Gelfand, M. S., Haas, M., Metts, L., & Ferguson, J. (1989). Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infection Control and Hospital Epidemiology, 10, 398–401.

    Article  CAS  Google Scholar 

  • Swain, M., & James S. (2010). The microwave processing of foods. Chapter 12. Factors that affect heating performance and development of heating/cooking in domestic and commercial microwave ovens. (pp. 221–241) Woodhead Publishing in Food Science and Technology. Part III. Measurement and process control

  • Tang, Z., Mikhaylenko, G., Liu, F., Mah, J. H., Pandit, R., Younce, F., et al. (2008). Microwave sterilization of sliced beef in gravy 7-oz trays. Journal of Food Engineering, 89(4), 375–383.

    Article  Google Scholar 

  • Thompson, J. S., & Thompson, A. (1990). In-home pasteurization of raw goat’s milk by microwave treatment. International Journal of Food Microbiology, 10, 59–64.

    Article  CAS  Google Scholar 

  • Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials—a review. Food Bioprocess and Technology, 3, 161–171.

    Article  Google Scholar 

  • William, M. D., Sando, C., Keith, M. D., Gallaher, J., Bradley, M. D., & Rodgers, M. (1984). Risk factors for microwaves injuries in infants. Journal of Pediatrics, 105(6), 864–867.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ministry of Economy and Competitiveness for providing financial support by means of CYCIT project AGL2010-22206-C02, and to Generalitat Valenciana I+D+I emergent research groups financial support in project GV/2010/064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Martinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pina-Pérez, M.C., Benlloch-Tinoco, M., Rodrigo, D. et al. Cronobacter sakazakii Inactivation by Microwave Processing. Food Bioprocess Technol 7, 821–828 (2014). https://doi.org/10.1007/s11947-013-1063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1063-2

Keywords

Navigation