Skip to main content

The Role of Proteases in the Stability of UHT-Treated Milk

  • Chapter
  • First Online:
Agents of Change

Part of the book series: Food Engineering Series ((FSES))

  • 937 Accesses

Abstract

Ultra-high temperature (UHT) treatment of milk is a continuous process whereby milk is heat-treated at 135–150 °C for holding periods of 0.2–20 s, to produce a commercially sterile product that may only contain viable thermophilic bacterial spores, but in which bacterial growth is highly unlikely to occur under normal storage conditions. UHT treatment is typically combined with aseptic packaging, which involves filling the UHT-treated milk into sterile containers in a sterile atmosphere and sealing the containers in a sterile method in a continuous process which allows the UHT milk to remain bacteriologically stable at ambient temperatures for at least 6 months. According to European Commission Regulation (EC) 2074/2005, a UHT milk treatment must be “sufficient to ensure that the products remain microbiologically stable after incubating for 15 days at 30 °C in closed containers or for 7 days at 55 °C in closed containers or after any other method demonstrating that the appropriate heat treatment has been applied”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams DM, Barach JT, Speck ML (1975) Heat resistant proteases produced in milk by psychrotrophic bacteria of dairy origin. J Dairy Sci 58:828–834

    Article  CAS  PubMed  Google Scholar 

  • Al-Saadi MSJ, Deeth CH (2008) Cross-linking of proteins in UHT milk during storage and their spoilage potential. Int Dairy J 57:80–90

    Google Scholar 

  • Anema SG (2017) Storage stability and age gelation of reconstituted ultra-high temperature skim milk. Int Dairy J 75:56–67

    Article  CAS  Google Scholar 

  • Anema SG (2019) Age gelation, sedimentation, and creaming in UHT milk: a review. Compr Rev Food Sci Food Saf 18(1):140–166

    Article  CAS  PubMed  Google Scholar 

  • Bagliniére F, Tanguy G, Jardin J, Matéos A, Briard-Bion V, Rousseau F, Gaucheron F (2012) Quantitative and qualitative variability of the caseinolytic potential of different strains of Pseudomonas fluorescens: Implications for the stability of casein micelles of UHT milks during their storage. Food Chem 135: 2593–2603

    Google Scholar 

  • Baglinière F, Tanguy G, Jardin J, Matéos A, Briard-Bion V, Rousseau F, Robert B, Beaucher E, Gaillard JL, Amiel C, Humbert G, Dary A, Gaucheron F (2013) Proteolysis of ultra high temperature-treated casein micelles by AprX enzyme from Pseudomonas fluorescens F induces their destabilisation. Int Dairy J 31:55–61

    Article  CAS  Google Scholar 

  • Bagliniere F, Tanguy G, Salgado RL, Jardin J, Rousseau F, Robert B, Gaucheron F (2017a) Ser2 from Serratia liquefaciens L53: a new heat stable protease able to destabilize UHT milk during its storage. Food Chem 229:104–110

    Article  CAS  PubMed  Google Scholar 

  • Bagliniere F, Jardin J, Gaucheron F, de Carvalho AF, Vanetti MCD (2017b) Proteolysis of casein micelles by heat-stable protease secreted by Serratia liquefaciens leads to the destabilisation of UHT milk during its storage. Int Dairy J 68:38–45

    Article  CAS  Google Scholar 

  • Barach JT, Adams DM (1977) Thermostability at ultrahigh temperatures of thermolysin and a protease from a psychotrophic Pseudomonas. BBA 485:417–423

    CAS  PubMed  Google Scholar 

  • Barach JT, Adams DM, Speck ML (1976) Low temperature inactivation in milk of heat-resistant proteases from psychrotrophic bacteria. J Dairy Sci 59(3):391–395

    Article  CAS  Google Scholar 

  • Barach JT, Adams DM, Speck ML (1978) Mechanism of low temperature inactivation of a heat-resistant bacterial protease in milk. J Dairy Sci 61:523–528

    Article  CAS  Google Scholar 

  • Bastian ED, Brown RJ (1996) Plasmin in milk and dairy products: an update. Int Dairy J 6(5):435–457

    Article  CAS  Google Scholar 

  • Bastian ED, Hanse KG, Brown RJ (1993) Inhibition of plasmin by β-lactoglobulin using casein and a synthetic substrate. J Dairy Sci 76(11):3354–3361

    Article  CAS  PubMed  Google Scholar 

  • Baur C, Krewinkel M, Kutzli I, Kranz B, Von Neubeck M, Huptas C, Fischer L (2015) Isolation and characterisation of a heat-resistant peptidase from Pseudomonas panacis withstanding general UHT processes. Int Dairy J 49:46–55

    Article  CAS  Google Scholar 

  • Bhatt H, Cucheval A, Coker C, Patel H, Carr A, Bennett R (2014) Effect of lactosylation on plasmin-induced hydrolysis of β-casein. Int Dairy J 38:213–218

    Article  CAS  Google Scholar 

  • Biziak RB, Swartzel KR, Jones VA (1985) Energy use for continuous thermal processing of milk. J Food Sci 50:1607–1610

    Article  Google Scholar 

  • Burton H (1967a) Use of alfa-laval equipment for production of sterile milk. Amer Dairy Rev 9(32–34):131

    Google Scholar 

  • Burton H (1967b) Ahlborn and Sordi UHT plants for processing sterile milk. Amer Dairy Rev 12(28-30):71

    Google Scholar 

  • Burton H (1968) Section G deposits from whole milk in heat treatment plant—a review and discussion. J Dairy Res 35:317–330

    Article  Google Scholar 

  • Burton H (1969) Ultra-high-temperature processed milk. Dairy Sci Abstr 31:287–297

    Google Scholar 

  • Burton H (1984) Reviews of the progress of dairy science: the bacterio-logical, chemical, biochemical and physical changes that occur in milk at temperatures of 100–1500C. J Dairy Res 51:341–363

    Article  CAS  Google Scholar 

  • Burton H (1988) Chemical and physical changes in milk at high temperatures. In: Ultra high temperature processing of milk and milk products. Elsevier, New York, pp 44–76

    Google Scholar 

  • Button PD, Roginski H, Deeth HC, Craven HM (2011) Improved shelf-life estimation of UHT milk by prediction of proteolysis. J Food Qual 34:229–235

    Article  CAS  Google Scholar 

  • Cattaneo S, Masotti F, Pellegrino L (2008) Effects of overprocessing on heat damage of UHT milk. Eur Food Res Technol 226:1099–1106

    Article  CAS  Google Scholar 

  • Cerf O, Davey KR (2001) An explanation of non-sterile (leaky) milk packs in well-operated UHT plant. Food Bioprod Process 79:219–222

    Article  Google Scholar 

  • Chavan RS, Chavan SR, Khedkar CD, Jana AH (2011) UHT milk processing and effect of plasmin activity on shelf life: a review. Compr. Rev. Food Sci. Food Saf. 10:251–268

    Article  CAS  Google Scholar 

  • Chen JH, Ledford RA (1971) Purification and characterization of milk proteinase. J Dairy Sci 54:763

    Article  Google Scholar 

  • Chen L, Coolbear T, Daniel RM (2004) Characteristics of proteinases and lipases produced by seven Bacillus sp. isolated from milk powder production lines. Int Dairy J 14:495–504

    Article  CAS  Google Scholar 

  • Codex-Alimentarius (2004) Code of hygienic practice for milk and milk products (CAC/RCP 57): FAO/WHO

    Google Scholar 

  • Corredig M, Dalgleish DG (1996) Effect of different heat treatments on the strong binding interactions between whey proteins and milk fat globules in whole milk. J Dairy Res 63:441–449

    Article  CAS  Google Scholar 

  • Crudden A, Fox PF, Kelly AL (2005a) Factors affecting the hydrolytic action of plasmin in milk. Int Dairy J 15(4):305–313

    Article  CAS  Google Scholar 

  • Crudden A, Afoufa-Bastien D, Fox PF, Brisson G, Kelly AL (2005b) Effect of hydrolysis of casein by plasmin on the heat stability of milk. Int Dairy J 15(10):1017–1025

    Article  CAS  Google Scholar 

  • D’Incecco P, Rosi V, Cabassi G, Hogenboom JA, Pellegrino L (2018) Microfiltration and ultra-high-pressure homogenization for extending the shelf-storage stability of UHT milk. Food Res Int 107:477–485

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard TK, Nielsen JH, Larsen LB (2007) Proteolysis of milk proteins lactosylated in model systems. Mol Nutr Food Res 51(4):404–414

    Article  CAS  PubMed  Google Scholar 

  • Datta N, Deeth HC (2001) Age gelation of UHT milk—a review. Food Bioprod Process 79:197–210

    Article  Google Scholar 

  • Datta N, Deeth HC (2003) Diagnosing the cause of proteolysis in UHT milk. LWT-Food Sci Technol 36:173–182

    Article  CAS  Google Scholar 

  • Datta N, Elliott AJ, Perkins ML, Deeth HC (2002) Ultra-high-temperature (UHT) treatment of milk: Comparison of direct and indirect modes of heating. Aust J Dairy Technol 57:211–227

    Google Scholar 

  • De Koning PJ, Kaper J, Roellama HS, Driessen FM (1985) Age thinning and gelation in unconcentrated and concentrated UHT-sterilized skim milk. Effect of native milk proteinase. Neth Milk Dairy J 39:71–87

    Google Scholar 

  • Deeth HC (2010) Improving UHT processing and UHT milk products. In: Griffiths MW (ed) Improving the safety and quality of milk. Woodhead Publishing, Cambridge, pp 302–329

    Chapter  Google Scholar 

  • Deeth HC, Lewis MJ (2016) Protein stability in sterilized milk and milk products. In: McSweeney PLH, O’Mahony JA (eds) Advanced dairy chemistry, vol 1: proteins, parts B: applied aspects, 4th edn. Springer, New York, NY, pp 247–286

    Google Scholar 

  • Deeth HC, Lewis MJ (2017a) Microbiological aspects. In: High temperature processing of milk and milk products. Wiley-Blackwell, Chichester, pp 65–101

    Chapter  Google Scholar 

  • Deeth HC, Lewis MJ (2017b) Changes during storage of UHT milk. In: High temperature processing of milk and milk products. Wiley-Blackwell, Chichester, pp 261–319

    Chapter  Google Scholar 

  • Deharveng G, Nielsen SS (1991) Partial purification and characterization of native plasminogen activators from bovine milk. J Dairy Sci 74:2060–2072

    Article  CAS  PubMed  Google Scholar 

  • Diermayr P, Kroll S, Klostermeyer H (2009) Mechanisms of heat inactivation of a proteinase from Pseudomonas fluorescens biotype I*. J Dairy Res 54:51–60

    Article  Google Scholar 

  • Driessen FM (1981) Enzymic proteolysis in UHT milk products. II. Relationship between heating intensity, inactivation of native milk protease and keeping quality. Zuivelzicht 73(33/34):688–689

    Google Scholar 

  • Driessen FM, Stadhouders J (1979) Enzymic spoilage in pasteurized and sterilized milk products. I. Proteolysis. Voedingsmid-delentechnol 12: 35–37

    Google Scholar 

  • Evangelisti F, Calcagno C, Zunin P (1994) Relationship between blocked lysine and carbohydrate composition of infant formulas. J Food Sci 59(2):335–337

    Article  CAS  Google Scholar 

  • Gaafar AMM (1987) Investigation into the cooked flavour in heat-treated milk. PhD Thesis, University of Reading

    Google Scholar 

  • Gaucher I, Mollé D, Gagnaire V, Gaucheron F (2008) Effects of storage temperature on physico-chemical characteristics of semi-skimmed UHT milk. Food Hydrocoll 22:130–143

    Article  CAS  Google Scholar 

  • Gaucher I, Tanguy G, Fauquant J, Jardin J, Rousseau F, Robert B, Madec MN, Gaucheron F (2011) Proteolysis of casein micelles by Pseudomonas fluorescens CNRZ 798 contributes to the destabilisation of UHT milk during its storage. Dairy Sci Technol 91:413–429

    Article  CAS  Google Scholar 

  • Gebre-Egziabher A, Humbert ES, Blankenagel G (1980) Hydrolysis of milk proteins by microbial enzymes. J Food Prot 43:709–712

    Article  CAS  PubMed  Google Scholar 

  • Glück C, Rentschler E, Krewinkel M, Merz M, Von Neubeck M, Wenning M, Scherer S, Stoeckel M, Hinrichs J, Stressler T, Fischer L (2016) Thermostability of peptidases secreted by microorganisms associated with raw milk. Int Dairy J 56:186–197

    Article  Google Scholar 

  • Griffiths MW, Phillips JD, Muir DD (1981) Thermostability of proteases and lipases from a number of species of psychrotrophic bacteria of dairy origin. J Appl Microbiol 50(2):289–303

    CAS  Google Scholar 

  • Grufferty MB, Fox PF (1988) Milk alkaline proteinase. J Dairy Res 55(4):609–630

    Article  CAS  PubMed  Google Scholar 

  • Guinot-Thomas P, Al Ammoury M, Le Roux Y, Laurent F (1995) Study of proteolysis during storage of raw milk at 40 C: Effect of plasmin and microbial proteinases. Int Dairy J 5:685–697

    Article  CAS  Google Scholar 

  • Haddadin MS, Ibrahim SA, Robinson RK (1996) Preservation of raw milk by activation of the natural lactoperoxidase systems. Food Control 7:149–152

    Article  Google Scholar 

  • Hammer P, Lembke F, Suhren G, Heeschen W (1995) Characterization of a heat resistant mesophilic Bacillus species affecting quality of UHT-milk: a preliminary report. Kieler Milchw Forsch 47:297–305

    Google Scholar 

  • Hammer P, Lembke F, Suhren G, Heesschen W (1996) Characterization of a heat–resistant mesophilic Bacillus species affecting the quality of UHT milk. In: Heat treatments and alternative methods, Document 9602. International Dairy Federation, Brussels, pp 9–16

    Google Scholar 

  • Hardham JF (1998) Effect of protein standardisation of milk by addition of UF milk permeate on the composition and storage stability of UHT processed milk. Aust J Dairy Technol 53(1):22–27

    CAS  Google Scholar 

  • Haryani S, Datta N, Elliott AJ, Deeth HC (2003) Production of proteases by psychrotrophic bacteria in raw milk stored at low temperature. Aust J Dairy Technol 58:16–20

    Google Scholar 

  • Harwalkar VR (1992) Age gelation of sterilised milks. In: Advanced dairy chemistry, volume 1 proteins, 2nd ed, (ed P F Fox). Elsevier Applied Science Publishers, London, pp 691–734

    Google Scholar 

  • Holland JW, Gupta R, Deeth HC, Alewood PF (2011) Proteomic analysis of temperature-dependent changes in stored UHT milk. J Agric Food Chem 59(5):1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Huijs G, Van Asselt AJ, REM V, De Jong P (2004) High speed milk. Dairy Ind Int 69:30–32

    Google Scholar 

  • Hutton JT, Patton S (1952) The origin of sulfhydryl groups in milk proteins and their contributions to “cooked” flavor. J Dairy Sci 35:699–705

    Article  CAS  Google Scholar 

  • IDF (1999) Determination of acid soluble β-lactoglobulin content - reversed-phase HPLC method. In “Standard 178A”. International Dairy Federation, Brussels

    Google Scholar 

  • Ismail B, Nielsen SS (2010) Plasmin protease in milk: Current knowledge and relevance to dairy industry. J Dairy Sci 93(11):4999–5009

    Article  CAS  PubMed  Google Scholar 

  • Janštová B, Dračková M, Vorlová L (2006) Effect of Bacillus cereus enzymes on milk quality following ultra high temperature processing. Acta Vet Brno 75:601–609

    Article  CAS  Google Scholar 

  • Johnson P, Philo M, Watson A, Mills ENC (2011) Rapid fingerprinting of milk thermal processing history by intact protein mass spectrometry with nondenaturing chromatography. J Agric Food Chem 59:12420–12427

    Article  CAS  PubMed  Google Scholar 

  • Karlsson MA, Langton M, Innings F, Wikström M, Lundh Å (2017) Short communication: variation in the composition and properties of Swedish raw milk for ultra-high-temperature processing. J Dairy Sci 100(4):2582–2590

    Article  CAS  PubMed  Google Scholar 

  • Karlsson MA, Langton M, Innings F, Malmgren B, Höjer A, Wikström M, Lundh Å (2019) Changes in stability and shelf-life of ultra-high temperature treated milk during long term storage at different temperatures. Heliyon 5(9):e02431

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler HG (1981) Food engineering and dairy technology. Int J Diary Technol 34(4):171

    Google Scholar 

  • Kocak HR, Zadow JG (1985a) Age gelation of UHT whole milk as influenced by storage temperature. Aust J Dairy Technol 40:14–21

    Google Scholar 

  • Kocak HR, Zadow JG (1985b) Controlling age gelation of UHT milk with additives. Aust J Dairy Technol 40:58–64

    CAS  Google Scholar 

  • Kocak HR, Zadow JG (1985c) Polyphosphate variability in the control of age gelation in UHT milk. Aust J Dairy Technol 40:65–68

    CAS  Google Scholar 

  • Kocak HR, Zadow JG (1985d) The effect of low temperature inactivation treatment on age gelation of UHT whole milk. Aust J Dairy Technol 40:53–58

    CAS  Google Scholar 

  • Kohlmann KL, Nielsen SS, Ladisch MR (1988) Effect of serine proteolytic-enzymes (trypsin and plasmin), trypsin inhibitor, and plasminogen activator addition to ultra-high temperature processed milk. J Dairy Sci 71(7):1728–1739

    Article  CAS  Google Scholar 

  • Kohlmann KL, Nielsen SS, Ladisch MR (1991) Effects of a low concentration of added plasmin on ultra-high temperature processed milk. J Dairy Sci 74(4):1151–1156

    Article  CAS  Google Scholar 

  • Kokkinidou S, Peterson D (2014) Control of maillard-type off-flavour development in ultrahigh-temperature-processed bovine milk by phenolic chemistry. J Agric Food Chem 62:8023–8033

    Article  CAS  PubMed  Google Scholar 

  • Korycka-Dahl M, Dumas BR, Chene N, Martal J (1983) Plasmin activity in milk. J Dairy Sci 66:704–711

    Article  CAS  Google Scholar 

  • Law BA, Andrews AT, Sharpe ME (1977) Gelation of ultra-high-temperature-sterilized milk by proteases from a strain of Pseudomonas fluorescens isolated from raw milk. J Dairy Res 4(1):145–148

    Article  Google Scholar 

  • Le TX, Datta N, Deeth HC (2006) A sensitive method for measuring bacterial proteolysis and proteinase activity in UHT milk. Food Res Int 39:823–830

    Article  CAS  Google Scholar 

  • Lefebvre S, Leuliet JC (1997) Laminar mixed convection in constant wall heat flux tubular heat exchangers. In: Lowitt R (ed) Engineering and food at the seventh international congress of engineering and food ICEF7, Part 1. Academic Press, Sheffield, pp C97–C100

    Google Scholar 

  • Lu DD, Nielsen SS (1993) Heat inactivation of native plasminogen activators in bovine milk. J Food Sci 58:1010–1012

    Article  CAS  Google Scholar 

  • Machado SG, Baglinière F, Marchand S, Van Coillie E, MCD V, De Block J, Heyndrickx M (2017) The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Front Microbiol 8:302

    PubMed  PubMed Central  Google Scholar 

  • Malmgren B, Ardö Y, Langton M, Altskärd A, MGEG B, Dejmek P, Paulsson M (2017) Changes in proteins, physical stability and structure in directly heated UHT milk during storage at different temperatures. Int Dairy J 71:60–75

    Article  CAS  Google Scholar 

  • Manji B, Kakuda Y (1988) The role of protein denaturation, extent of proteolysis, and storage-temperature on the mechanism of age gelation in a model system. J Dairy Sci 71(6):1455–1463

    Article  CAS  Google Scholar 

  • Manji B, Kakuda Y, Arnott DR (1986) Effect of storage temperature on age gelation of ultra-high temperature milk processed by direct and indirect heating systems. J Dairy Sci 69:2994–3001

    Article  Google Scholar 

  • Mateos A, Guyard-Nicodeme M, Bagliniere F, Jardin J, Gaucheron F, Dary A, Gaillard JL (2015) Proteolysis of milk proteins by AprX, an extracellular protease identified in Pseudomonas LBSA1 isolated from bulk raw milk, and implications for the stability of UHT milk. Int Dairy J 49:78–88

    Article  CAS  Google Scholar 

  • McKellar RC, Froehlich DA, Butler G, Cholette H, Campbell C (1984) The effect of uncooled storage on proteolysis bitterness & apparent viscosity in ultra-high temperature milk. Can Inst Food Sci 17(1):14–17

    Article  Google Scholar 

  • McMahon DJ (1996) Age-gelation of UHT milk: Changes that occur during storage on shelf-life and the mechanism by which age-gelation occurs. In: Heat treatments and alternative methods, (International Dairy Federation—Ref. S.I. 9602, Vienna, Austria). International Dairy Federation, Brussels, pp 315–325

    Google Scholar 

  • Miralles B, Amigo L, Ramos M, Recio I (2003) Analysing para -kappa-casein and related peptides as indicators of milk proteolysis. Milchwissenschaft 58:412–415

    Google Scholar 

  • Mitchell GE, Ewings KN (1985) Quantification of bacterial proteolysis causing gelation in UHT-treated milk. New Zealand J Dairy Sci Technol 20(1):65–76

    CAS  Google Scholar 

  • Mitchell GE, Ewings KN, Bartley JP (1986) Physicochemical properties of proteinases from selected psychrotrophic bacteria. J Dairy Res 53(1):97–115

    Article  CAS  PubMed  Google Scholar 

  • Moussa OB, Mankai M, Fekih AB, Hassouna M (2013) Effect of the lactoperoxidase system on proteolysis and physicochemical changes in ultra high temperature milk during storage. Afr J Biotechnol 12:2041–2050

    Article  CAS  Google Scholar 

  • Newstead DF, Paterson G, Anema SG, Coker CJ, Wewala AR (2006) Plasmin activity in direct-steam-injection UHT-processed reconstituted milk: effects of preheat treatment. Int Dairy J 16:573–579

    Article  CAS  Google Scholar 

  • Nicodeme M, Grill JP, Gaillard JL (2005) Extracellular proteinase activity of different Pseudomonas strains: Dependence of proteolytic activity on culture conditions. J Appl Microbiol 99:641–648

    Google Scholar 

  • O’Connell A, Ruegg P, Jordan K, O’Brien B, Gleeson D (2016) The effect of storage temperature and duration on the microbial quality of bulk tank milk. J Dairy Sci 99:3367–3374

    Google Scholar 

  • Oldfield DJ, Singh H, Taylor MW, Pearce KN (2000) Heat-induced interactions of β-lactoglobulin and α-lactalbumin with the casein micelle in pH-adjusted skim milk. Int Dairy J 10:509–518

    Article  CAS  Google Scholar 

  • Patil GR, Reuter H (1986) Deposit formation in UHT plants. II Effect of forwarming treatments in directly heated plants. Milchwissenschaft 41:411–413

    Google Scholar 

  • Rauh V, Johansen L, Ipsen R, Paulsson M, Larsen L, Hammershøj M (2014a) Plasmin activity in UHT milk: relationship between proteolysis, age gelation, and bitterness. J Agric Food Chem 62:6852–6860

    Article  CAS  PubMed  Google Scholar 

  • Rauh V, Sundgren A, Bakman M, Ipsen R, Paulsson M, Larsen L, Hammershøj M (2014b) Plasmin activity as a possible cause for age gelation in UHT milk produced by direct steam infusion. Int Dairy J 38:199–207

    Article  CAS  Google Scholar 

  • Rauh VM, Johansen LB, Bakman M, Ipsen R, Paulsson M, Larsen LB, Hammershøj M (2015) Protein lactosylation in UHT milk during storage measured by liquid chromatography–mass spectrometry and quantification of furosine. Int J Dairy Technol 68:486–494

    Article  CAS  Google Scholar 

  • Richards M, Buys EM, De Kock HL (2016) Survival analysis, consumer perception and physico-chemical analysis of low fat UHT milk stored for different time periods. Int Dairy J 57:56–61

    Article  CAS  Google Scholar 

  • Richardson BC (1983a) The proteases of bovine milk and the effect of pasteurisation on their activity. New Zealand J Dairy Sci Technol 18:233–245

    CAS  Google Scholar 

  • Richardson BC (1983b) Variation of the concentration of plasmin and plasminogen in bovine-milk with lactation. New Zealand J Dairy Sci Technol 18(3):247–252

    CAS  Google Scholar 

  • Richardson BC, Newstead DF (1979) Effect of heat-stable proteases on the storage life of UHT milk. N Z J Dairy Sci Technol 14:273–279

    CAS  Google Scholar 

  • Saboya LV, Aboya LV, Maubios JL (2000) Current developments of microfiltration technology in the dairy industry. Lait 80:541–553

    Article  CAS  Google Scholar 

  • Samel R, Weaver RWV, Gammack DB (1971) Changes on storage in milk processed by ultra-high-temperature sterilization. J Dairy Res 38:323–332

    Article  CAS  Google Scholar 

  • Sandra S, Alexander M, Dalgleish DG (2007) The rennet coagulation mechanism of skim milk as observed by transmission diffusing wave spectroscopy. J. Colloid Interface Sci 308(2):364–373

    Article  CAS  PubMed  Google Scholar 

  • Scaloni A, Perillo V, Franco P, Fedele E, Froio R, Ferrara L, Bergamo P (2002) Characterization of heat-induced lactosylation products in caseins by immunoenzymatic and mass spectrometric methodologies. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1598:30–39

    Article  CAS  Google Scholar 

  • Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J, Herman L, De Vos P, Logan NA, Heyndrickx M (2004) Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54:885–891

    Article  CAS  PubMed  Google Scholar 

  • Sørhaug T, Stepaniak L (1997) Psychrotrophs and their enzymes in milk and dairy products: Quality aspects. Trends Food Sci Technol 8:35–41

    Article  Google Scholar 

  • Steffan W, Balzer HH, Lippert F, Sambor BC, Bradbury AGW, Henle T (2006) Characterization of casein lactosylation by capillary electrophoresis and mass spectrometry. Eur Food Res Technol 222:467–471

    Article  CAS  Google Scholar 

  • Stoeckel M, Lidolt M, Achberger V, Glück C, Krewinkel M, Stressler T, Von Neubeck M, Wenning M, Scherer S, Fischer L, Hinrichs J (2016a) Growth of Pseudomonas weihenstephanensis, Pseudomonas proteolytica and Pseudomonas sp. in raw milk: Impact of residual heat-stable enzyme activity on stability of UHT milk during shelf-life. Int Dairy J 59:20–28

    Article  CAS  Google Scholar 

  • Stoeckel M, Lidolt M, Stressler T, Fischer L, Wenning M, Hinrichs J (2016b) Heat stability of indigenous milk plasmin and proteases from Pseudomonas: a challenge in the production of ultra-high temperature milk products. Int Dairy J 61:250–261

    Article  CAS  Google Scholar 

  • Sunds AV, Rauh VM, Sørensen J, Larsen LB (2018) Maillard reaction progress in UHT milk during storage at different temperature levels and cycles. Int Dairy J 77:56–64

    Article  CAS  Google Scholar 

  • Topçu A, Numanoğlu E, Saldamlı İ (2006) Proteolysis and storage stability of UHT milk produced in Turkey. Int Dairy J 16:633–638

    Article  CAS  Google Scholar 

  • Tran H, Datta N, Lewis MJ, Deeth HC (2008) Predictions of some product parameters based on the processing conditions of ultra-high-temperature milk plants. Int Dairy J 18:939–944

    Article  CAS  Google Scholar 

  • Van Asselt AJ, Sweere APJ, Rollema HS, De Jong P (2008) Extreme high-temperature treatment of milk with respect to plasmin inactivation. Int Dairy J 18:531–538

    Article  CAS  Google Scholar 

  • Van Boekel MAJS (1998) Effect of heating on Maillard reactions in milk. Food Chem 62:403–414

    Article  Google Scholar 

  • Vesconsi CN, Valduga AT, Cichoski AJ (2012) Particle sedimentation in semi-skimmed, skimmed on whole milk UHT, during storage. Cienc Rural 42:730–736

    Article  Google Scholar 

  • Vianna PCB, Walter EHM, Dias MEF, Faria JAF, Netto FM, Gigante ML (2012) Effect of addition of CO2 to raw milk on quality of UHT-treated milk. J Dairy Sci 95:4258–4262

    Article  CAS  Google Scholar 

  • Visser S (1981) Proteolytic enzymes and their action on milk proteins. In: Heat treatments and alternative methods. International Dairy Federation, Brussels, pp 315–325

    Google Scholar 

  • Vithanage NR, Dissanayake M, Bolge G, Palombo EA, Yeager TR, Datta N (2016) Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. Int Dairy J 57:80–90

    Article  CAS  Google Scholar 

  • Von Bockelmann B, Von Bockelmann IA (1998) Long-life products: heat-treated, aseptically packed: a guide to quality. Publisher, Åkarp

    Google Scholar 

  • West FB, Adams DM, Speck ML (1978) Inactivation of heat-resistant proteases in normal ultra-high temperature sterilized skim milk by a low temperature treatment. J Dairy Sci 61(8):1078–1084

    Article  CAS  Google Scholar 

  • Zhang S, Liu L, Pang X, Lu J, Kong F, Lu J (2016) Use of microfiltration to improve quality and shelf life of ultra-high temperature milk. J Food Process Pres 40:707–714

    Article  CAS  Google Scholar 

  • Zhang C, Bijl E, Hetting K (2018) Destabilization of UHT milk by protease AprX from Pseudomonas fluorescens and plasmin. Food Chem 263:127–134

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Bijl E, Svensson B, Hettinga K (2019) The extracellular protease AprX from Pseudomonas and its spoilage potential for UHT Milk: a review. Compr Rev Food Sci Food Saf 18:834–852

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datta, N., Kelly, A. (2021). The Role of Proteases in the Stability of UHT-Treated Milk. In: Kelly, A.L., Larsen, L.B. (eds) Agents of Change. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-55482-8_13

Download citation

Publish with us

Policies and ethics