Skip to main content

Advertisement

Log in

Control of Microbial Adhesion as a Strategy for Food and Bioprocess Technology

  • Review Article
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Bacteria and other microorganisms have a natural tendency to adhere to surfaces as a survival mechanism. This can occur in many environments, including the living host, industrial systems, and natural waters. The general outcome of bacterial colonization of a surface is biofilm formation, which consists of microorganisms immobilized in a variety of polymeric compounds generally referred to as extracellular polymeric substances. Bacterial adhesion to a solid surface is a crucial step in the biofilm process. This step is dependent upon van der Waals, electrostatic, and acid–base interactions. These interactions are influenced by physicochemical properties of the substratum and the bacterial surface, such as hydrophobicity, surface charge, and electron donor–electron acceptor properties. In addition, the roughness of the substratum and the microbiological characteristics of the cell surface, such as cellular appendages and production of exopolysaccharides, can affect the adherence process. To date, many strategies have been developed to decrease the adherence of bacteria to surfaces. Surface modification with the addition of the suitable compounds makes surfaces less attractive for microorganisms and therefore prevents bacterial adherence and biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atabek, A., & Camesano, T. A. (2007). Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa. Journal of Bacteriology, 189(23), 8503–8509. doi:10.1128/JB.00769-07.

    Article  CAS  Google Scholar 

  • Baveja, J. K., Willcox, M. D. P., Hume, E. B. H., Kumar, N., Odell, R., & Poole-Warren, L. A. (2004). Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials, 25, 5003–5012. doi:10.1016/j.biomaterials.2004.02.051.

    Article  CAS  Google Scholar 

  • Beveridge, T. J., & Graham, L. L. (1991). Surface layers of bacteria. Microbial Review, 55, 684–705.

    CAS  Google Scholar 

  • Beveridge, T. J., & Murray, R. G. E. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology, 141, 876–887.

    CAS  Google Scholar 

  • Blokzijl, W., & Engberts, J. B. F. N. (1993). Hydrophobic effects. Opinions and facts. Angewandte Chemie International Edition, 32, 1545–1579. doi:10.1002/anie.199315451.

    Article  Google Scholar 

  • Bostrom, M., Deniz, V., Franks, G. V., & Ninham, B. W. (2006). Extended DLVO theory: electrostatic and non-electrostatic forces in oxide suspensions. Advances in Colloid and Interface Science, 123–126, 5–15. doi:10.1016/j.cis.2006.05.001.

    Article  CAS  Google Scholar 

  • Boyd, R. D., Verran, J., Jones, M. V., & Bhakoo, M. (2002). Use of atomic force microscope to determine the effect of substratum surface topography on bacterial adhesion. Langmuir, 18, 2343–2346. doi:10.1021/la011142p.

    Article  CAS  Google Scholar 

  • Calo-Mata, P. C., Arlindo, S., Boehme, K., Miguel, T., Pascoal, A., & Velazquez, J. B. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology, 1, 43–63. doi:10.1007/s11947-007-0021-2.

    Article  Google Scholar 

  • Carnazza, S., Satriano, C., Guglielmino, S., & Marletta, G. (2005). Fast exopolysaccharide of Pseudomonas aeruginosa on polar polymer surfaces. Journal of Colloid and Interface Science, 289, 386–393. doi:10.1016/j.jcis.2005.03.089.

    Article  CAS  Google Scholar 

  • Centers for Disease Control and Prevention. (2003). Multistate outbreak of Salmonella serotype Typhimurium infections associated with drinking unpasteurized milk—Illinois, Indiana, Ohio, and Tennessee, 2002–2003. MMWR: Morbidity and Mortality Weekly Report, 52, 613–615. Available: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5226a3.htm.

    Google Scholar 

  • Centers for Disease Control and Prevention. (2004). Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—selected sites, United States, 2003. MMWR: Morbidity and Mortality Weekly Report, 53, 338–343. Available: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5316a2.htm.

    Google Scholar 

  • Chaves, L. C. D. (2004). Estudo da cinética da formação de biofilmes em superfícies em contato com água potável. Dissertação. Departamento de Tecnologia do Ambiente, Universidade do Minho, Minho, Portugal.

  • Chen, G., & Honglong, Z. (2005). Bacterial adhesion to silica sand as related to Gibbs energy variations. Colloids and Surfaces B: Biointerfaces, 44(1), 41–48. doi:10.1016/j.colsurfb.2005.05.012.

    Article  CAS  Google Scholar 

  • Costerton, J. W., & Lappin-Scott, H. M. (1995). Introduction to microbial biofilms. In H. M. Lappin-Scott & J. W. Costerton (Eds.), Microbial biofilms (pp. 1–11). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Costerton, J. W., Cheng, K. J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., et al. (1987). Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–464. doi:10.1146/annurev.mi.41.100187.002251.

    Article  CAS  Google Scholar 

  • Das, P., & Bhattachariee, S. (2004). Electrostatic double-layer interaction between spherical particles inside a rough capillary. Journal of Colloid and Interface Science, 273(1), 278–290. doi:10.1016/j.jcis.2003.10.003.

    Article  CAS  Google Scholar 

  • Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W., & Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298. doi:10.1126/science.280.5361.295.

    Article  CAS  Google Scholar 

  • Denyer, S. P., Gorman, S. P., & Sussman, M. (1993). Microbial biofilms: Formation and control (p. 333). London: Blackwell Scientific.

    Google Scholar 

  • Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15, 167–193. doi:10.1128/CMR.15.2.167-193.2002.

    Article  CAS  Google Scholar 

  • Doyle, R. J. (2000). Contribution of the hydrophobic effect to microbial infection. Microbes and Infection, 2, 391–400. doi:10.1128/CMR.15.2.167-193.2002.

    Article  CAS  Google Scholar 

  • Evancho, G. M., Sveum, W. H., Moberg, L. J., & Frank, J. F. (2001). Microbiological monitoring of the food processing environment. In F. P. Downes & K. Ito (Eds.), Compendium of methods for the microbiological examination of foods (4th ed., pp. 25–34). Washington: APHA.

    Google Scholar 

  • Flemming, H. C., Wingender, J., Griebe, T., & Mayer, C. (2005). Physico-chemical properties of biofilmes. In L. V. Evans (Ed.), Biofilms: Recent advances in their study and control (pp. 19–34). UK: British Library.

    Google Scholar 

  • Flint, S. H., Brooks, J. D., & Bremer, P. J. (1997). The influence of cell surface properties of thermophilic streptococci on attachment to stainless steel. Journal of Applied Microbiology, 83, 508–517. doi:10.1046/j.1365-2672.1997.00264.

    Article  CAS  Google Scholar 

  • Flint, S. H., Brooks, J. D., & Bremer, P. J. (2000). Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci. Journal of Food Engineering, 43, 235–242. doi:10.1016/S0260-8774(99)00157-0.

    Article  Google Scholar 

  • Gottenbos, B., Busscher, H. J., & van Der Mei, H. C. (2002). Pathogenesis and prevention of biomaterial centered infections. Journal of Materials Science: Materials in Medicine, 13, 717–722. doi:10.1023/A:1016175502756.

    Article  CAS  Google Scholar 

  • Guiamet, P. S., Gómez, S., & Videla, H. A. (1999). An innovative method for preventing biocorrosion through microbial adhesion inhibition. International Biodeterioration & Biodegradation, 43, 31–35. doi:10.1016/S0964-8305(98)00065-1.

    Article  CAS  Google Scholar 

  • Gunduz, G. T., & Tuncel, G. (2006). Biofilm formation in an ice cream plant. Antonie van Leeuwenhoek, 89, 329–336. doi:10.1007/s10482-005-9035-9.

    Article  Google Scholar 

  • Haag, A. P., Geesey, G. G., & Mittleman, M. W. (2006). Bacterially derived wood adhesive. International Journal of Adhesion and Adhesives, 26(3), 177–183. doi:10.1016/j.ijadhadh.2005.03.011.

    Article  CAS  Google Scholar 

  • Hauert, R., & Muller, U. (2003). An overview on tailored tribological and biological behavior of diamond-like carbon. Diamond and Related Materials, 12, 171–177. doi:10.1016/S0925-9635(03)00019-0.

    Article  CAS  Google Scholar 

  • Hilbert, L. R., Bagge-Ravn, D., Kold, J., & Gram, L. (2003). Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance. International Biodeterioration & Biodegradation, 52, 175–185. doi:10.1016/S0964-8305(03)00104-5.

    Article  CAS  Google Scholar 

  • Honciuc, A., & Schwartz, D. K. (2009). Probing hydrophobic interactions using trajectories of amphiphilic molecules at a hydrophobic/water interface. Journal of the American Chemical Society, 131(16), 5973–5979. doi:10.1021/ja900607g.

    Article  CAS  Google Scholar 

  • Katsikogianni, M., & Missirlis, Y. F. (2004). Concise review of mechanisms of bacterial adhesion to biomaterial and of techniques used in estimating bacteria–material interactions. European Cells and Materials, 8, 37–57.

    CAS  Google Scholar 

  • Kobayashi, H., & Owen, M. J. (1995). Surface properties of fluorosilicones. Trends Polymer Science, 3(10), 330–335. doi:10.1016/S0966-4793(00)88950-5.

    CAS  Google Scholar 

  • Krishnamurthy K, Tewari JC, Irudayaraj J, & Demirci A (2008) Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating. Food and Bioprocess Technology. doi:10.1007/s11947-008-0084-8.

  • Liang, Y., Hilal, N., Langston, P., & Starov, V. (2007). Interaction forces between colloidal particles in liquid: Theory and experiment. Advances in Colloid and Interface Science, 134–35, 151–166. doi:10.1016/j.cis.2007.04.003.

    Article  CAS  Google Scholar 

  • Liu, Y., & Tay, J. (2001). Detachment forces and their influence on the structure and metabolic behaviour of biofilms. World Journal of Microbiology & Biotechnology, 17, 111–117. doi:10.1023/A:1016625209839.

    Article  CAS  Google Scholar 

  • Liu, C., Zhao, Q., Liu, Y., Wang, S., & Abel, E. W. (2008). Reduction of bacterial adhesion on modified DLC coatings. Colloids and Surfaces B: Biointerfaces, 61, 182–187. doi:10.1016/j.colsurfb.2007.08.008.

    Article  CAS  Google Scholar 

  • Liu, Y., Yang, C. H., & Li, J. (2008). Adhesion and retention of a bacterial phytopathogen Erwinia chrysanthemi in biofilm-coated porous media. Environmental Science & Technology, 42, 159–165. doi:10.1021/es071698k.

    Article  CAS  Google Scholar 

  • Mayer, C., Moritz, R., Kirschner, C., Borchard, W., Maibaum, R., Wingender, J., et al. (1999). The role of intermolecular interaction studies on model systems for bacterial biofilms. International Journal of Biological Macromolecules, 26, 3–16. doi:10.1016/S0141-8130(99)00057-4.

    Article  CAS  Google Scholar 

  • Meyer, E. E., Rosenberg, K. J., & Israelachvili, J. (2006). Recent progress in understanding hydrophobic interactions. Proceedings of the National Academy of Sciences, 103(43), 15739–15746. doi:10.1073/pnas.0606422103.

    Article  CAS  Google Scholar 

  • Niemira, B. A. (2008). Irradiation sensitivity of planktonic and biofilm-associated Listeria monocytogenes and L. innocua as influenced by temperature of biofilm formation. Food and Bioprocess Technology. doi:10.1007/s11947-008-0079-5.

  • Nikaido, H., & Vaara, M. (1985). The molecular basis of bacterial outer membrane permeability. Microbiological Reviews, 49, 1–32.

    CAS  Google Scholar 

  • Nikolaev, Y. A., & Plakunov, V. K. (2007). Biofilm—city of microbes or an analogue of multicellular organisms? Microbiology, 76(2), 125–138. doi:10.1134/S0026261707020014.

    Article  CAS  Google Scholar 

  • O’Toole, G. A., Gibbs, K. A., Hager, P. W., Phibbs, P. V., & Kolter, R. (2000). The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology, 182, 425–431.

    Article  Google Scholar 

  • Oliver, S. P., Jayarao, B. M., & Almeida, R. A. (2005). Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathogens and Disease, 2, 115–129.

    Article  CAS  Google Scholar 

  • Palmer, J., Flint, S., & Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology and Biotechnology, 34, 577–588. doi:10.1007/s10295-007-0234-4.

    Article  CAS  Google Scholar 

  • Parsek, M. R., & Greenberg, E. P. (2005). Sociomicrobiology: The connections between quorum sensing and biofilms. Trends in Microbiology, 13, 27–33. doi:doi:10.1016/j.tim.2004.11.007.

    Article  CAS  Google Scholar 

  • Pires, A. C. S., Soares, N. F. F., Silva, L. H. M., Andrade, N. J., Silveira, M. F. A. S., & Carvalho, A. F. (2008). Polydiacetylene as a biosensor fundamentals and applications in the food industry. Food and Bioprocess Technology. doi:10.1007/s11947-008-0171-x.

  • Poortinga, A. T., Bos, R., & Busscher, H. J. (2001). Charge transfer during Staphylococcal adhesion to TiNOX_ coating with different specific resistivity. Biophysics Chemical, 91, 273–279. doi:10.1016/S0301-4622(01)00177-6.

    Article  CAS  Google Scholar 

  • Rob, F., Podeszwa, R., & Szalewicz, K. (2007). Electrostatic interaction energies with overlap effects from a localized approach. Chemical Physics Letters, 445(4–6), 315–320. doi:10.1016/j.cplett.2007.07.065.

    Article  CAS  Google Scholar 

  • Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W., & Davies, G. D. (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. Journal of Bacteriology, 184, 1140–1154. doi:10.1128/jb.184.4.1140-1154.2002.

    Article  CAS  Google Scholar 

  • Schar-Zammaretti, P., & Ubbink, J. (2003). The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophysical Journal, 85, 4076–4092. doi:10.1016/S0006-3495(03)74820-6.

    Article  Google Scholar 

  • Scheuerman, T. R., Camper, A. K., & Hamilton, M. A. (1998). Effects of substratum topography on bacterial adhesion. Journal of Colloid and Interface Science, 208, 23–33. doi:10.1006/jcis.1998.5717.

    Article  CAS  Google Scholar 

  • Şen, Y., Bağcı, U., Ali Güleç, H., & Mutlu, M. (2009). Modification of food-contacting surfaces by plasma polymerization technique: Reducing the biofouling of microorganisms on stainless steel surface. Food and Bioprocess Technology, doi:10.1007/s11947-009-0248-1.

    Google Scholar 

  • Sharp, J., & Dickinson, R. B. (2005). Direct evaluation of DLVO theory for predicting long-range forces between a yeast cell and a surface. Langmuir, 21, 8198–8203. doi:10.1021/la046765s.

    Article  CAS  Google Scholar 

  • Sheng, X., Ting, Y. P., & Pehkonen, S. O. (2008). The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. Journal of Colloid and Interface Science, 321, 256–264. doi:10.1016/j.jcis.2008.02.038.

    Article  CAS  Google Scholar 

  • Shirtliff, M. E., Mader, J. T., & Camper, A. K. (2002). Molecular interactions in biofilms. Chemistry & Biology, 9, 859–871. doi:10.1016/S1074-5521(02)00198-9.

    Article  CAS  Google Scholar 

  • Sinde, E., & Carballo, J. (2000). Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel. rubber and polytetrafluorethylene: The influence of free energy and the effect of commercial sanitizers. Food Microbiology, 17, 439–447. doi:10.1006/fmic.2000.0339.

    Article  CAS  Google Scholar 

  • Sjollema, J., & Busscher, H. J. (1990). Deposition of polystyrene particles in a parallel flow cell. 2. Pair distribution functions between deposited particles. Colloids Surfaces, 47, 337–352. doi:10.1016/0166-6622(90)80082-F.

    Article  CAS  Google Scholar 

  • Sjollema, J., van der Mei, H. C., Uyen, H. M. W., & Busscher, H. J. (1990). The influence of collector and bacterial cell surface properties on the deposition of oral streptococci in a parallel plate flow cell. Adhesion Science and Technology, 4, 765–779. doi:10.1163/156856190X00658.

    Article  Google Scholar 

  • Sorongon, M. L., Bloodgood, R. A., & Burchard, R. P. (1991). Hydrophobicity, adhesion, and surface-exposed proteins of gliding bacteria. Applied Environmental Microbiology, 57, 3193–3199.

    CAS  Google Scholar 

  • Speranza, G., Gottardi, G., Pederzolli, C., Lunelli, L., Canteri, R., Pasquardini, L., et al. (2004). Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials, 25, 2029–2037. doi:10.1016/j.biomaterials.2003.08.061.

    Article  CAS  Google Scholar 

  • Strevett, K., & Chen, G. (2003). Microbial surface thermodynamics and applications. Research in Microbiology, 154, 329–335. doi:10.1016/S0923-2508(03)00038-X.

    Article  CAS  Google Scholar 

  • Surdeau, N., Laurent-Maquin, D., Bouthors, S., & Gellé, M. P. (2006). Sensitivity of bacterial biofilms and planktonic cells to a new antimicrobial agent, Oxsil® 320N. Journal of Hospital Infection, 62, 487–493. doi:10.1016/j.jhin.2005.09.003.

    Article  CAS  Google Scholar 

  • Teixeira, P., Lopes, Z., Azeredo, J., Oliveira, R., & Vieira, M. J. (2005). Physico-chemical surface characterization of a bacterial population isolated from a milking machine. Food Microbiology, 22, 247–251. doi:10.1016/j.fm.2004.03.010.

    Article  CAS  Google Scholar 

  • Thorpe, A. A., Young, S. A., Nevell, T. G., & Tsibouklis, J. (1999). Surface energy characteristics of poly(methylpropenoxyalkylsiloxane) film structures. Applied Surface Science, 137(1–4), 1–10. doi:10.1016/S0169-4332(98)00532-7.

    Article  CAS  Google Scholar 

  • Ubbink, J., & Schar-Zammaretti, P. (2007). Colloidal properties and specific interactions of bacterial surfaces. Current Opinion in Colloid & Interface Science, 12, 263–270. doi:10.1016/j.cocis.2007.08.004.

    Article  CAS  Google Scholar 

  • van der Wal, A., Norde, W., Zehnder, A., & Johannes, L. (1997). Determination of the total charge in the cell walls of Gram-positive bacteria. Colloids and Surfaces B: Biointerfaces, 9, 81–100. doi:10.1016/S0927-7765(96)01340-9.

    Article  Google Scholar 

  • van Loosdrecht, M. C. M., Lyklema, J., Norde, W., Schraa, G., & Zehnder, A. J. B. (1987). The role of bacterial cell wall hydrophobicity in adhesion. Applied Environmental Microbiology, 53, 1893–1897.

    Google Scholar 

  • van Oss, C. J. (1994). Interfacial forces in aqueous media (p. 440). New York: Marcel Dekker.

    Google Scholar 

  • van Oss, C. J. (1995). Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surfaces B Biointerfaces, 5, 91–110. doi:10.1016/0927-7765(95)01217-7.

    Article  Google Scholar 

  • van Oss, C. J. (2003). Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. Journal of Molecular Recognition, 16, 177–190. doi:10.1002/jmr.618.

    Article  CAS  Google Scholar 

  • van Oss, C. J., & Giesse, R. F. (1995). The hydrophilicity and hydrophobicity of clay minerals. Clays and Clay Minerals, 43(4), 474–477.

    Article  Google Scholar 

  • van Oss, C. J., Chaudhury, M. K., & Good, R. J. (1987). Monopolar surfaces. Advances in Colloid and Interfaces Science, 28, 35–64. doi:10.1016/0001-8686(87)80008-8.

    Article  Google Scholar 

  • Waar, K., van Der Mei, H. C., Harmsen, J. M., Vries, J., Atemasmit, J., Degener, J. E., et al. (2005). Atomic force microscopy study on specificity and non-specificity of interaction forces between Enterococcus faecalis cells with and without aggregation substance. Microbiology, 151, 2459–2464. doi:10.1099/mic.0.27877-0.

    Article  CAS  Google Scholar 

  • Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science, 295, 1487. doi:10.1126/science.295.5559.1487.

    Article  CAS  Google Scholar 

  • Zhao, Q., Wang, C., Liu, Y., & Wan. (2007). Bacterial adhesion on the metal–polymer composite coatings. International Journal of Adhesion and Adhesives, 27(2), 85–91. doi:10.1016/j.ijadhadh.2006.01.001.

    Article  CAS  Google Scholar 

  • Zhu, X., & Shi, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20, 407–413. doi:10.1016/j.tifs.2009.01.054.

    Article  CAS  Google Scholar 

  • Zottola, E. A. (1994). Microbial attachment and biofilms formation: A new problem for the food industry? Food Technology, 48, 107–114.

    Google Scholar 

  • Zottola, E. A. (1997). Special techniques for studying microbial biofilms in food system. In M. L. Tortorello & S. M. Gendel (Eds.), Food microbial analysis—new technologies. IFT Basic Symposium Series (pp. 315–346). New York: Marcel Dekker.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nélio José de Andrade.

Additional information

Sources of support: CNPq and FAPEMIG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, E.A., de Andrade, N.J., da Silva, L.H.M. et al. Control of Microbial Adhesion as a Strategy for Food and Bioprocess Technology. Food Bioprocess Technol 3, 321–332 (2010). https://doi.org/10.1007/s11947-009-0290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0290-z

Keywords

Navigation