Skip to main content
Log in

Chlorogenic Acid Oxidation by a Crude Peroxidase Preparation: Biocatalytic Characteristics and Oxidation Products

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bio-organic molecules, and thus they may have potential uses in several biocatalytic processes, including green organic synthesis, modification of food physicochemical properties, bioremediation, etc. Although the use of bacterial and fungal enzymes has gained interest in studies pertaining to biocatalytic applications, plant enzymes have been given less attention or even disregarded. In this view, this study aimed at investigating the use of a crude peroxidase (POD) preparation from onion solid by-products for oxidizing chlorogenic acid (CGA), a widespread phenolic acid, various derivatives of which may occur in foods and food wastes. The highest enzyme activity was observed at a pH value of 4, but considerable activity was also observed at pH 2. Favorable temperatures for increased activity varied between 5 and 20 °C. Liquid chromatography–mass spectrometry analysis of a POD-treated CGA solution showed the formation of two major oxidation products, which were tentatively identified as CGA dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

4-AAP:

4-aminoantipyrine

CA:

caffeic acid

CGA:

chlorogenic acid

DMF:

dimethyl formamide

ESI:

electrospray ionization

FA:

ferulic acid

p-CouA:

p-coumaric acid

POD:

peroxidase

SD:

standard deviation

TCA:

trichloroacetic acid

References

  • Arrieta-Baez, D., & Stark, R. E. (2006). Modeling suberization with peroxidase-catalyzed polymerization of hydroxycinnamic acids: Cross-coupling and dimerization reactions. Phytochemistry, 67, 743–753.

    Article  CAS  Google Scholar 

  • Bors, W., Michel, C., Stettmaier, K., Lu, Y., & Foo, L. Y. (2004). Antioxidant mechanisms of polyphenolic caffeic acid oligomers, constituents of Salvia officinalis. Biological Research, 37, 301–311.

    Article  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Caza, N., Bewtra, J. K., Biswas, N., & Taylor, K. E. (1999). Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Research, 33, 3012–3018.

    Article  CAS  Google Scholar 

  • Davis, B. G., & Boyer, V. (2001). Biocatalysis and enzymes in organic synthesis. Natural Product Reports, 18, 618–640.

    Article  CAS  Google Scholar 

  • El Agha, A., Makris, D. P., & Kefalas, P. (2008a). Hydrocaffeic acid oxidation by a peroxidase homogenate from onion solid wastes. European Food Research and Technology, 227, 1379–1386.

    Article  CAS  Google Scholar 

  • El Agha, A., Makris, D. P., & Kefalas, P. (2008b). Peroxidase-active cell free extract from onion solid wastes: Biocatalytic properties and putative pathway of ferulic acid oxidation. Journal of Bioscience and Bioengineering, 106, 279–285.

    Article  CAS  Google Scholar 

  • El Agha, A., Abbeddou, S., Makris, D. P., & Kefalas, P. (2009). Biocatalytic properties of a peroxidase-active cell-free extract from onion solid wastes: Caffeic acid oxidation. Biodegradation, 20, 143–153.

    Article  CAS  Google Scholar 

  • Figueroa-Espinoza, M.-C., & Villeneuve, P. (2005). Phenolic acids enzymatic lipophilization. Journal of Agricultural and Food Chemistry, 53, 2779–2787.

    Article  CAS  Google Scholar 

  • Gallardo, C., Jimémez, L., & García-Conesa, M.-T. (2006). Hydroxycinnamic acid composition and in vitro antioxidant activity of selected grain fractions. Food Chemistry, 99, 455–463.

    Article  CAS  Google Scholar 

  • Gayot, S., Santarelli, X., & Coulon, D. (2003). Modification of flavonoid using lipase in non-conventional media: Effect of water content. Journal of Biotechnology, 101, 29–36.

    Article  CAS  Google Scholar 

  • Hamid, M., & Rahman, K-u. (2009). Potential applications of peroxidases. Food Chemistry, 115, 1177–1186.

    Article  CAS  Google Scholar 

  • Hewson, W. D., & Dunford, H. B. (1976). Oxidation of p-cresol by horseradish peroxidase compound I. Journal of Biological Chemistry, 251, 6036–6042.

    CAS  Google Scholar 

  • Khiari, Z., Makris, D. P., & Kefalas, P. (2008). Recover of bioactive flavonols from onion solid wastes employing water/ethanol-based solvent systems. Food Science and Technology International, 14, 497–502.

    Article  CAS  Google Scholar 

  • Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13, 345–351.

    Article  CAS  Google Scholar 

  • Liu, Z., Weis, R., & Glieder, A. (2004). Enzymes from higher eukaryotes for industrial biocatalysis. Food Technology and Biotechnology, 42, 237–249.

    CAS  Google Scholar 

  • Luis, J. C., González, F. V., Pérez, R. M., Pérez, J. A., & Frías, I. (2005). Dimerization of ferulic and caffeic acids by purified peroxidase isolated from Bupleurum salicifolium callus culture. Preparative Biochemistry and Biotechnology, 35, 231–241.

    Article  CAS  Google Scholar 

  • Liu, H.-L., Wan, X., Huang, X.-F., & Kong, L.-Y. (2007). Biotransformation of sinapic acid catalyzed by Momordica charantia peroxidase. Journal of Agricultural and Food Chemistry, 55, 1003–1008.

    Article  CAS  Google Scholar 

  • Matsuo, T., Kobayashi, T., Kimura, Y., Hosoda, A., Taniguchi, H., & Adachi, S. (2008). Continuous synthesis of glyceryl ferulate using immobilized Candida antarctica lipase. Journal of Oleo Science, 57, 375–380.

    Article  CAS  Google Scholar 

  • Mellou, F., Lazari, D., Skaltsa, H., Tselepis, A. D., Kolisis, F. N., & Stamatis, H. (2005). Biocatalytic preparation of acylated derivatives of flavonoids glycosides enhances their antioxidant and antimicrobial activity. Journal of Biotechnology, 116, 295–304.

    Article  CAS  Google Scholar 

  • Osman, A., Makris, D. P., & Kefalas, P. (2008). Investigation on biocatalytic properties of a peroxidase-active homogenate from onion solid wastes: An insight into quercetin oxidation mechanism. Process Biochemistry, 43, 861–867.

    Article  CAS  Google Scholar 

  • Pierpoint, W. S. (1966). The enzymic oxidation of chlorogenic acid and some reactions of the quinone produced. Biochemical Journal, 98, 567–580.

    CAS  Google Scholar 

  • Ralph, J., Bunzel, M., Marita, J. M., Hatfield, R. D., Lu, F., Kim, H., et al. (2004). Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochemical Reviews, 3, 79–96.

    Article  CAS  Google Scholar 

  • Richard-Forget, F. C., & Gauillard, F. A. (1997). Oxidation of chlorogenic acid, catechins, and 4-methylcatechol in model solutions by combinations of pear (Pyrus communis cv. Williams) polyphenol oxidase and peroxidase: A possible involvement of peroxidase in enzymic browning. Journal of Agricultural and Food Chemistry, 45, 2472–2476.

    Article  CAS  Google Scholar 

  • Stevenson, D. E., Parkar, S. G., Cooney, J. M., Skinner, M., & Stanley, R. A. (2005). Combinatorial enzymatic derivatization of polyphenolics for use as functional food ingredients. Industrial Biotechnology, 1, 110–113.

    Article  CAS  Google Scholar 

  • Šukalović, V. H. T., Vuletić, M., Vučinić, Ž., & Velilović-Jovanović, S. (2008). Effectiveness of phenoxyl radicals generated by peroxidase/H2O2-catalysed oxidation of caffeate, ferulate, and p-coumarate in cooxidation of ascorbate and NADH. Journal of Plant Research, 121, 115–123.

    Article  Google Scholar 

  • Synowiecki, J., Grzybowska, B., & Zdzieblo, A. (2006). Sources, properties and suitability of new thermostable enzymes in food processing. Critical Reviews in Food Science and Nutrition, 46, 197–205.

    Article  CAS  Google Scholar 

  • Takahama, U., & Hirota, S. (2000). Deglucosidation of quercetin glucosides to the aglycone and formation of antifungal agents by peroxidase-dependent oxidation of quercetin on browning of onion scales. Plant and Cell Physiology, 41, 1021–1029.

    Article  CAS  Google Scholar 

  • Takahama, U., & Yoshitama, K. (1998). Hydroxycinnamic acid esters enhance peroxidase-dependent oxidation of 3,4-dihydroxyphenylalanine. Differences in the enhancement among the esters. Journal of Plant Research, 111, 97–100.

    Article  CAS  Google Scholar 

  • Torres de Pinedo, A., Peñalver, P., Rondón, D., & Morales, J. C. (2005). Efficient lipase-catalyzed synthesis of new lipid antioxidants based on a catechol structure. Tetrahedron, 61, 7654–7660.

    Article  CAS  Google Scholar 

  • Tripathi, S., & Mishra, H. N. (2009). Modelling and optimization of enzymatic degradation of aflatoxin B1 (AFB1) in red chilli powder using response surface methodology. Food and Bioprocess Technology. doi:10.1007/s11947-009-0216-9

  • Uyama, H., & Kobayashi, S. (2006). Enzymatic synthesis and properties of polymers from polyphenols. Advances in Polymer Science, 194, 51–67.

    Article  CAS  Google Scholar 

  • Villeneuve, P. (2003). Plant lipases and their applications in oils and fats modification. European Journal of Lipid Science and Technology, 105, 308–317.

    Article  CAS  Google Scholar 

  • Yamasaki, H., & Grace, S. C. (1998). EPR detection of phytophenoxyl radicals stabilized by zinc ions: Evidence for the redox coupling of plant phenolics with ascorbate in the H2O2–peroxidase system. FEBS Letters, 422, 377–380.

    Article  CAS  Google Scholar 

  • Yu, B.-B., Han, X.-Z., & Lou, H.-X. (2007). Oligomers of resveratrol and ferulic acid prepared by peroxidase-catalyzed oxidation and their protective effects on cardiac injury. Journal of Agricultural and Food Chemistry, 55, 7753–7757.

    Article  CAS  Google Scholar 

  • Zhang, G., & Nicell, J. A. (2000). Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Research, 34, 1629–1637.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris P. Makris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osman, A., El Agha, A., Makris, D.P. et al. Chlorogenic Acid Oxidation by a Crude Peroxidase Preparation: Biocatalytic Characteristics and Oxidation Products. Food Bioprocess Technol 5, 243–251 (2012). https://doi.org/10.1007/s11947-009-0241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0241-8

Keywords

Navigation