Skip to main content
Log in

Hydrocaffeic acid oxidation by a peroxidase homogenate from onion solid wastes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A very large amount of phenol-polluted waters are formed from the production of olive oil (olive mill waste water, OMWW), and the main problem associated with their disposal is a viable means of effective treatment. Biochemical processes used for treating OMWW are generally considered to be of high capital and operating costs with limited efficiency. This is mainly due to particularly high levels of phenolic compounds, which are considered major contributors to the toxicity and antibacterial activity of OMWW, and limit their microbial treatment and/or use as fertilizers. Although the use of bacterial and fungal enzymes has gained interest in studies pertaining to bioremediation applications, plant enzymes have been given less attention or even disregarded. In this view, this study aimed at investigating the use of a crude peroxidase preparation from onion solid by-products for oxidising hydrocaffeic acid, a typical o-diphenol with a structure very similar to various phenolic derivatives that may occur in OMWW. Increased enzyme activity was observed at a pH value of 4, but considerable activity was also retained for pH upto 7. Favourable temperatures for increased activity varied between 30 and 50 °C, 40 °C being the optimal. Liquid chromatography–mass spectrometry analysis of a homogenate/H2O2-treated hydrocaffeic acid solution revealed the existence of three major oxidation products, which were identified as dehydrodimers. Based on the data generated, a putative pathway for the formation of the peroxidase-mediated hydrocaffeic dehydrodimers was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

4-AAP:

4-Aminoantipyrine

BGP:

Bitter gourd peroxidase

CA:

Caffeic acid

HCA-OP:

Hydrocaffeic acid oxidation product

CouA:

p-Coumaric acid

FA:

Ferulic acid

HCA:

Hydrocaffeic acid

HRP:

Horseradish peroxidase

LC-MS:

Liquid chromatography-mass spectrometry

OMWW:

Olive mill waste water

OSWH:

Onion solid waste homogenate

SA:

Sinapic acid

SBP:

Soybean peroxidase

SD:

Standard deviation

TMP:

Tomato peroxidase

TNP:

Turnip peroxidase

References

  1. Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) Crit Rev Environ Sci Technol 34:209–247

    Article  Google Scholar 

  2. Karam J, Nicell JA (1997) J Chem Tech Biotechnol 69:141–153

    Article  Google Scholar 

  3. Tatsumi T, Wada S, Ichikawa H (1996) Biotechnol Bioeng 51:126–130

    Article  CAS  Google Scholar 

  4. Wu Y, Taylor KE, Biswas N, Bewtra JK (1997) Water Res 31:2699–2704

    Article  Google Scholar 

  5. Tong Z, Qingxiang Z, Hui H, Qin L, Yi Z (1998) Chemosphere 37:1571–1577

    Article  Google Scholar 

  6. Wagner M, Nicell JA (2002) Water Res 36:4041–4052

    Article  Google Scholar 

  7. Cheng J, Yu SM, Zuo P (2006) Water Res 40:283–290

    Article  Google Scholar 

  8. Dalal S, Gupta MN (2007) Chemosphere 67:741–747

    Article  Google Scholar 

  9. Singh A, Billingsley KA, Ward OP (2000) Bioproc Eng 23:421–425

    Article  Google Scholar 

  10. Huang Q, Weber WJ (2005) Environ Sci Technol 39:6029–6036

    Article  Google Scholar 

  11. Caza N, Bewtra JK, Biswas N, Taylor KE (1999) Water Res 33:3012–3018

    Article  Google Scholar 

  12. Flock C, Bassi A, Gijzen M (1999) J Chem Technol Biotechnol 74:303–309

    Article  Google Scholar 

  13. Wilberg K, Assenhaimer C, Rubio J (2002) J Chem Technol Biotechnol 77:851–857

    Article  Google Scholar 

  14. Kennedy K, Alemany K, Warith M (2002) Water SA 28:149–158

    Google Scholar 

  15. Akhtar S, Khan AA, Husain Q (2005) Chemosphere 60:291–301

    Article  Google Scholar 

  16. DellaGreca M, Previtera L, Temussi F, Zarrelli A (2004) Phytochem Anal 15:184–188

    Article  Google Scholar 

  17. Obied HK, Allen MS, Bedgood DR Jr, Prenzler PD, Robards K (2005) J Agric Food Chem 53:9911–9920

    Article  Google Scholar 

  18. De Marco E, Savarese M, Paduano A, Sacchi R (2007) Food Chem 104:858–867

    Article  Google Scholar 

  19. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  20. Takahama U, Hirota S (2000) Plant Cell Physiol 41:1021–1029

    Article  CAS  Google Scholar 

  21. González PS, Capozucca CE, Tigier HA, Milrad SR, Agostini E (2006) Enzyme Microb Technol 39:647–653

    Article  Google Scholar 

  22. Wright H, Nicell JA (1999) Biores Tech 70:69–79

    Article  Google Scholar 

  23. Duarte-Vázquez MA, Ortega-Tovar MA, García-Almendarez BE, Regalado C (2002) J Chem Technol Biotech 78:42–47

    Article  Google Scholar 

  24. Huang Q, Weber WJ (2004) Environ Sci Technol 38:5238–5245

    Article  Google Scholar 

  25. Tong Z, Qingxiang Z, Hui H, Qin L, Yi Z (1997) Chemosphere 34:893–903

    Article  Google Scholar 

  26. Geng Z, Rao J, Bassi AS, Gijzen M, Krishnamoorthy N (2001) Catal Today 64:233–238

    Article  Google Scholar 

  27. Akhtar S, Husain Q (2006) Chemosphere 65:1228–1235

    Article  Google Scholar 

  28. Bassi A, Geng Z, Gijzen M (2004) Eng Life Sci 4:125–130

    Article  Google Scholar 

  29. Bódalo A, Gómez JL, Gómez E, Bastida J, Máximo MF (2006) Chemosphere 63:626–632

    Article  Google Scholar 

  30. Yamada K, Shibuya T, Noda M, Uchiyama N, Kashiwada A, Matsuda K, Hirata M (2007) Biosci Biotechnol Biochem 71:2503–2510

    Article  CAS  Google Scholar 

  31. Veitch NC (2004) Phytochem Rev 3:3–18

    Article  Google Scholar 

  32. Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart H (2004) Phytochem Rev 3:79–96

    Article  Google Scholar 

  33. Arrieta-Baez D, Stark RE (2006) Phytochem 67:743–753

    Article  Google Scholar 

  34. Yu B-B, Han X-Z, Lou H-X (2007) J Agric Food Chem 55:7753–7757

    Article  CAS  Google Scholar 

  35. Liu H-L, Wan X, Huang X-F, Kong L-Y (2007) J Agric Food Chem 55:1003–1008

    Article  Google Scholar 

  36. Oudgenoeg G, Hilhorst R, Piersma SR, Boeriu CG, Gruppen H, Hessing M, Voragen AGJ, Laane C (2001) J Agric Food Chem 49:2503–2510

    Article  CAS  Google Scholar 

  37. Derat E, Shaik S (2006) J Amer Chem Soc 128:13940–13949

    Article  Google Scholar 

  38. Hapiot P, Neudeck A, Pinson J, Fulcrand H, Neta P, Rolando C (1996) J Electroanal Chem 405:169–176

    Article  Google Scholar 

  39. Petrucci R, Astolfi P, Greci L, Firuzi O, Saso L, Marrosu G (2007) Electrochim Acta 52:2461–2470

    Article  Google Scholar 

  40. Pati S, Losito I, Palmisano F, Zambonin PG (2006) J Chrom A 1102:184–192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris P. Makris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agha, A.E., Makris, D.P. & Kefalas, P. Hydrocaffeic acid oxidation by a peroxidase homogenate from onion solid wastes. Eur Food Res Technol 227, 1379–1386 (2008). https://doi.org/10.1007/s00217-008-0854-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0854-6

Keywords

Navigation