Skip to main content
Log in

Antioxidant Activities of Rapeseed Protein Hydrolysates

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Rapeseed protein hydrolysates (RPH) were obtained by enzymatic hydrolysis of rapeseed protein using Alcalase 2.4 L FG. The degree of hydrolysis (DH) of RPH was about 25% using pH-stat method. The antioxidant activities of RPH were investigated by employing several in vitro assay, including the 1,1-diphenyl-2-picrylhydrazyl (DPPH)/superoxide/hydroxyl radical scavenging assays, and reducing power assay. RPH showed scavenging activity against free radicals such as DPPH, superoxide, and hydroxyl radicals. The radical scavenging effect was in a dose-dependent manner, and the EC50 values for DPPH, superoxide, and hydroxyl radicals were found to be 0.71, 1.05, and 4.92 mg/mL, respectively. In addition, the RPH also exhibited notable reducing power, which was 0.51 at 2.00 mg/mL. The data obtained by in vitro systems obviously established the antioxidant potency of RPH. Combined with the results of the amino acid profiles, RPH were believed to have high nutritive value in addition to antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler-Nissen, J. (1982). Limited enzymatic degradation of proteins: a new approach in the industrial application of hydrolases. Journal of Chemical Technology & Biotechnology., 32, 138–156.

    CAS  Google Scholar 

  • Ali, B., Mohamed, H., Rafik, B., Imen, L., Yosra, T. E., & Moncef, N. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114, 1198–1205. doi:10.1016/j.foodchem.2008.10.075.

    Article  Google Scholar 

  • Aruoma, O. I. (1998). Free radicals oxidative stress and antioxidants in human health and disease. Journal of the American Oil Chemists' Society, 75, 199–211.

    Article  CAS  Google Scholar 

  • Avila-Sosa, R., Gastélum-Franco, M. G., Camacho-Dávila, A., Torres-Muñoz, J. V., Nevárez-Moorillón, G. V. (2009). Extracts of Mexican oregano (Lippia berlandieri Schauer) with antioxidant and antimicrobial activity. Food Bioprocess Technology. doi:10.1007/s11947-008-0085-7.

  • Berot, S., Compoint, J. P., Larre, C., Malabat, C., & Gueguen, J. (2005). Large scale purification of rapeseed proteins (Brassica napus L.). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 818, 35–42. doi:10.1016/j.jchromb.2004.08.001.

    Article  CAS  Google Scholar 

  • Cao, W. H., Zhang, C. H., Hong, P. Z., Ji, H. W., Hao, J. M., & Zhang, J. (2009). Autolysis of shrimp head by gradual temperature and nutritional quality of the resulting hydrolysate. Food Science and Technology, 42, 244–249.

    CAS  Google Scholar 

  • Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S., & Marc, I. (2007). Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochemistry, 42, 1419–1428. doi:10.1016/j.procbio.2007.07.009.

    Article  CAS  Google Scholar 

  • Chen, H. M., Muramoto, K., Yamauchi, F., & Nokihara, K. (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry, 44, 2619–2623. doi:10.1021/jf950833m.

    Article  Google Scholar 

  • Chen, H. M., Muramoto, K., Yamauchi, F., & Kenshiro, F. (1998). Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agricultural and Food Chemistry, 46, 49–53. doi:10.1021/jf970649w.

    Article  CAS  Google Scholar 

  • Chiang, W. D., Shih, C. J., & Chu, Y. H. (1999). Functional properties of soy protein hydrolysate produced from a continuous membrane reactor system. Food Chemistry, 65, 189–194. doi:10.1016/S0308-8146(98)00193-9.

    Article  CAS  Google Scholar 

  • Clemente, A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology, 11, 254–262. doi:10.1016/S0924-2244(01)00007-3.

    Article  CAS  Google Scholar 

  • Cumby, N., Zhong, Y., Naczk, M., & Shahidi, F. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, 109, 144–148. doi:10.1016/j.foodchem.2007.12.039.

    Article  CAS  Google Scholar 

  • Dorman, H. J. D., Peltoketo, A., Hiltunen, R., & Tikkanen, M. J. (2003). Characterization of the antioxidant properties of deodorised aqueous extracts from selected Lamiaceae herbs. Food Chemistry, 83, 255–262. doi:10.1016/S0308-8146(03)00088-8.

    Article  CAS  Google Scholar 

  • Duh, P. D. (1998). Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free radical and active oxygen. Journal of the American Oil Chemists’ Society, 75, 455–465.

    Article  CAS  Google Scholar 

  • FAO/WHO. (1991). Protein quality evaluation. Rome, Italy: Food and Agricultural Organisation of the United Nations.

    Google Scholar 

  • Halliwell, B., Gutteridge, J. M. C., & Aruoma, O. I. (1987). The deoxyribose method: a simple ‘test tube’ assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry, 165, 215–219. doi:10.1016/0003-2697(87)90222-3.

    Article  CAS  Google Scholar 

  • Halliwell, B., Murcia, M. A., Chirico, S., & Arumoma, O. I. (1995). Free radicals and antioxidants in food and in vivo: What they do and how they work. CRC Critical Review Food Science & Nutrition, 35, 7–20.

    Article  CAS  Google Scholar 

  • Jao, C. L., & Ko, W. C. (2002). 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein Hydrolysates from tuna cooking juice. Fish Science, 68, 430–435. doi:10.1046/j.1444-2906.2002.00442.x.

    Article  CAS  Google Scholar 

  • Jayadeep, A., Singh, V., Rao, B. V. S., Srinivas, A., & Ali, S. Z. (2009). Effect of physical processing of commercial de-oiled rice bran on particle size distribution, and content of chemical and bio-functional components. Food Bioprocess Technology, 2, 57–67. doi:10.1007/s11947-008-0094-6.

    Article  CAS  Google Scholar 

  • Je, J., Qian, Z., Byun, H., & Kim, S. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42, 840–846. doi:10.1016/j.procbio.2007.02.006.

    Article  CAS  Google Scholar 

  • Juntachote, T., & Berghofer, E. (2005). Antioxidative properties and stability of ethanolic extracts of holy basil and Galangal. Food Chemistry, 92, 193–202. doi:10.1016/j.foodchem.2004.04.044.

    Article  CAS  Google Scholar 

  • Kim, S. Y., Je, J. Y., & Kim, S. K. (2007). Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. Journal of Nutritional Biochemistry, 18, 31–38. doi:10.1016/j.jnutbio.2006.02.006.

    Article  CAS  Google Scholar 

  • Leal, P. F., Maia, N. B., Carmello, Q. A. C., Catharino, R. R., Eberlin, M. N., & Meireles, M. A. A. (2008). Sweet basil (Ocimum basilicum) extracts obtained by supercritical fluid extraction (SFE): Global yields, chemical composition, antioxidant activity, and estimation of the cost of manufacturing. Food and Bioprocess Technology, 1, 326–338. doi:10.1007/s11947-007-0030-1.

    Article  Google Scholar 

  • Lee, J., Koo, N., & Min, D. B. (2004). Reactive oxygen species, aging, and antioxidant nutraceuticals. Comprehensive Reviews in Food Science and Food Safety, 3, 21–33. doi:10.1111/j.1541-4337.2004.tb00058.x.

    Article  CAS  Google Scholar 

  • Li, X. X., Han, L. J., & Chen, L. J. (2008). In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. Journal of the Science of Food and Agriculture, 88, 1660–6. doi:10.1002/jsfa.3264.

    Article  CAS  Google Scholar 

  • Li, Y. H., Jiang, B., Zhang, T., Mu, W. M., Liu, J., & Qian, H. F. (2008). Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106, 444–50. doi:10.1016/j.foodchem.2007.04.067.

    Article  CAS  Google Scholar 

  • Macdonald, J., Galley, H. F., & Webster, N. R. (2003). Oxidative stress and gene expression in sepsis. British Journal of Anaesthesia, 90, 221–232. doi:10.1093/bja/aeg034.

    Article  CAS  Google Scholar 

  • Mahmoud, M. I., Malone, W. T., & Cordle, C. T. (1992). Enzymatic hydrolysis of casein: effect of degree of hydrolysis on antigenicity and physical properties. Journal of Food Science, 57, 1223–1229. doi:10.1111/j.1365-2621.1992.tb11304.x.

    Article  CAS  Google Scholar 

  • Marıa, D. C., Antonella, F., Iolanda, A., Rosa, C. B., Agustin, O., Adolfo, M. R., et al. (2007). In vitro release of angiotensin-converting enzyme inhibitors, peroxyl-radical scavengers and antibacterial compounds by enzymatic hydrolysis of glycated gluten. Journal of Cereal Science, 45, 327–334. doi:10.1016/j.jcs.2006.09.005.

    Article  Google Scholar 

  • Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallal and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474. doi:10.1111/j.1432-1033.1974.tb03714.x.

    Article  CAS  Google Scholar 

  • Moure, A., Dominguez, H., & Parajo, J. C. (2006). Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry, 41, 447–456. doi:10.1016/j.procbio.2005.07.014.

    Article  CAS  Google Scholar 

  • Ohlson, R., & Anjou, K. (1979). Rapeseed protein products. Journal of the American Oil Chemists' Society, 56, 431–437.

    Article  CAS  Google Scholar 

  • Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Journal of the Japanese Society for Food Science and Technology, 35, 771–775.

    CAS  Google Scholar 

  • Parrado, J., Miramontes, E., Jover, M., Gutierrez, J. F., de Teran, L. C., & Bautista, J. (2006). Preparation of a rice bran enzymatic extract with potential use as functional food. Food Chemistry, 4, 742–748. doi:10.1016/j.foodchem.2005.07.016.

    Article  Google Scholar 

  • Pastuszewska, B., Jablecki, G., Swiech, E., Buraczewska, L., & Ochtabinska, A. (2000). Nutritional value of rapeseed meal containing lecithin gums precipitated with citric acid. Animal Feed Science and Technology, 86, 117–123. doi:10.1016/S0377-8401(00)00162-0.

    Article  CAS  Google Scholar 

  • Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., & Kim, S. K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 38, 175–182. doi:10.1016/j.foodres.2004.10.002.

    Article  CAS  Google Scholar 

  • Randhir, R., & Shetty, K. (2005). Developmental stimulation of total phenolics and related antioxidant activity in light- and dark-germinated corn by natural elicitors. Process Biochemistry, 40, 1721–1732. doi:10.1016/j.procbio.2004.06.064.

    Article  CAS  Google Scholar 

  • Rekha, M. N., Yadav, A. R., Dharmesh, S., Chauhan, A. S., Ramteke, R. S. (2009). Evaluation of antioxidant properties of dry soup mix extracts containing dill (Anethum sowa L.) leaf. Food Bioprocess Technology. doi:10.1007/s11947-008-0123-5.

  • Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51, 3661–3667. doi:10.1021/jf021156g.

    Article  CAS  Google Scholar 

  • Schwenke, K. D. (1994). Rapeseed proteins. In B. J. F. Hudson (Ed.), New and developing sources of food proteins, pp. 281–306. London: Chapman and Hall.

    Google Scholar 

  • Seabra, I. J., Braga, M. E. M., Batista, M. T. P., & de Sousa, H. C. “”(2009). Fractioned high pressure extraction of anthocyanins from elderberry (Sambucus nigra L.) pomace. Food Bioprocess Technology. doi:10.1007/s11947-008-0134-2.

  • Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40, 945–948. doi:10.1021/jf00018a005.

    Article  CAS  Google Scholar 

  • Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., Bautista, J., & Millan, F. (1999). Production and characterization of an extensive rapeseed protein hydrolysate. Journal of the American Oil Chemists' Society, 76, 819–823.

    Article  CAS  Google Scholar 

  • Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., & Millán, F. (2000). Partially hydrolysed rapeseed protein isolates with improved functional properties. Journal of the American Oil Chemists' Society, 77, 447–450.

    Article  CAS  Google Scholar 

  • Wang, J. S., Zhao, M. M., Zhao, Q. Z., & Jiang, Y. M. (2007). Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chemistry, 101, 1658–1663. doi:10.1016/j.foodchem.2006.04.024.

    Article  CAS  Google Scholar 

  • Xie, Z. J., Huang, J. R., Xu, X. M., & Jin, Z. Y. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111, 370–376. doi:10.1016/j.foodchem.2008.03.078.

    Article  CAS  Google Scholar 

  • Yamamoto, N., & Kajimoto, G. (1980). Antioxidation effect of Gly-Gly-His on Cu(II)-catalyzed autooxidation and photosensitized oxidation of lipids. Agricultural and Biological Chemistry, 44, 2735–2736.

    Article  Google Scholar 

  • Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., & Qian, M. (2002). Free radical scavenging properties of wheat extracts. Journal of Agricultural and Food Chemistry, 50, 1619–1624. doi:10.1021/jf010964p.

    Article  CAS  Google Scholar 

  • Yumiko, Y. S., Yoshiko, W., Michael, S., & Andreas, W. (2006). Functional and bioactive properties of rapeseed protein concentrates and sensory analysis of food application with rapeseed protein concentrates. Food Science and Technology, 39, 503–512.

    Google Scholar 

  • Yumiko, Y. S., Yoshiko, W., & Andreas, W. (2008). Chemical composition, functional properties, and bioactivities of rapeseed protein isolates. Food Chemistry, 107, 32–39. doi:10.1016/j.foodchem.2007.07.061.

    Article  Google Scholar 

  • Zhang, S. B., Wang, Z., & Xu, S. Y. (2007). Downstream processes for aqueous enzymatic extraction of rapeseed oil and protein hydrolysates. Journal of the American Oil Chemists' Society, 84, 693–700.

    Article  CAS  Google Scholar 

  • Zhang, S. B., Wang, Z., & Xu, S. Y. (2008). Antioxidant and antithrombotic activities of rapeseed peptides. Journal of the American Oil Chemists' Society, 85, 521–527.

    Article  CAS  Google Scholar 

  • Zhu, K. X., Zhou, H. M., & Qian, H. F. (2006). Antioxidant and free radical-scavenging activities of wheat germ protein Hydrolysates (WGPH) prepared with alcalase. Process Biochemistry, 41, 1296–1302. doi:10.1016/j.procbio.2005.12.029.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the financial support of the National Key-Technologies R&D Program (2006BAD05A12. 2006) of the 11th 5-year plan of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, M., Jiang, T.S. & Pan, J.L. Antioxidant Activities of Rapeseed Protein Hydrolysates. Food Bioprocess Technol 4, 1144–1152 (2011). https://doi.org/10.1007/s11947-009-0206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0206-y

Keywords

Navigation