Skip to main content
Log in

Antioxidant activities and functional properties of tea seed protein hydrolysates (Camellia oleifera Abel.) influenced by the degree of enzymatic hydrolysis

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Antioxidant activities and functional properties of tea seed protein hydrolysates (TSPH) prepared using alcalase with different (10, 20, 30 and 40%) values of the degree of hydrolysis (DH) were investigated. The effect of hydrolysis time on antioxidant activity was also investigated. As the hydrolysis time was extended, the DPPH radical scavenging activity increased and finally reached a plateau, the copper chelating capacity decreased, and the superoxide radical scavenging and iron chelating activities increased initially, then subsequently slowed. The solubility, foaming properties, and emulsification properties of TSPH were affected by pH and DH. As the DH value increased, the DPPH radical scavenging activity and the reducing power increased and the copper chelating capacity decreased. TSPH at 20 and 30% DH values exhibited higher superoxide radical scavenging and stronger iron chelating activities respectively, than TSPH at other DH values. The DH value of TSPH affected the antioxidant activity and functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee CP, Shih PH, Hsu CL, Yen GC. Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats. Food Chem. Toxicol. 45: 888–895 (2007)

    Article  CAS  Google Scholar 

  2. Lee CP, Yen GC. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J. Agr. Food. Chem. 54: 779–784 (2006)

    Article  CAS  Google Scholar 

  3. He SN, Gu Y. The Comprehensive utilization of camellia fruits. Vol. 37, pp. 104–107. In: American Camellia Yearbook. American Camellia Society, Fort Valley, GA, USA (1982)

    Google Scholar 

  4. Gong J, Li Z, Zhong H, Wan Q. Optimazation of enzymatic hydrolysis conditions of oil-tea-seed meal using response surface methodology. J. Chin. Cereal. Oil Assoc. 7: 80–89 (2010)

    Google Scholar 

  5. Moure A, Sineiro J, Domínguez H, Parajó JC. Functionality of oilseed protein products: A review. Food Res. Int. 39: 945–963 (2006)

    Article  CAS  Google Scholar 

  6. Mannheim A, Cheryan M. Enzyme-modified proteins from corn gluten meal: Preparation and functional properties. J. Am. Oil Chem. Soc. 69: 1163–1169 (1992)

    Article  CAS  Google Scholar 

  7. Kristinsson HG, Rasco BA. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with different alkaline proteases. J. Agr. Food. Chem. 48: 657–666 (2000)

    Article  CAS  Google Scholar 

  8. Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: A review. Peptides 31: 1949–1956 (2010)

    Article  CAS  Google Scholar 

  9. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102: 1317–1327 (2007)

    Article  CAS  Google Scholar 

  10. Kristinsson HG, Rasco BA. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 40: 43–81 (2000)

    Article  CAS  Google Scholar 

  11. Naqash SY, Nazeer R. Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle. J. Food Sci. Technol. 50: 972–978 (2013)

    Article  CAS  Google Scholar 

  12. Liu Q, Kong B, Xiong YL, Xia X. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem. 118: 403–410 (2010)

    Article  CAS  Google Scholar 

  13. Zhang J, Zhang H, Wang L, Guo X, Wang X, Yao H. Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chem. 119: 226–234 (2010)

    Article  CAS  Google Scholar 

  14. Pan M, Jiang TS, Pan JL. Antioxidant activities of rapeseed protein hydrolysates. Food Bioprocess. Tech. 4: 1144–1152 (2011)

    Article  CAS  Google Scholar 

  15. Benjakul S, Morrissey MT. Protein hydrolysates from Pacific whiting solid wastes. J. Agr. Food Chem. 45: 3423–3430 (1997)

    Article  CAS  Google Scholar 

  16. Wu H-C, Chen H-M, Shiau C-Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36: 949–957 (2003)

    Article  CAS  Google Scholar 

  17. Zhang T, Li Y, Miao M, Jiang B. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chem. 128: 28–33 (2011)

    Article  CAS  Google Scholar 

  18. Oyaizu M. Studies on products of browning reaction: Antioxidative activity of products of browning reaction. Jpn. J. Nutr. 44: 307–315 (1986)

    Article  CAS  Google Scholar 

  19. Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agr. Food. Chem. 38: 674–677 (1990)

    Article  CAS  Google Scholar 

  20. Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agr. Food Chem. 51: 3661–3667 (2003)

    Article  CAS  Google Scholar 

  21. Castellani O, Martinet V, David BE, Guerin-Dubiard C, Anton M. Egg yolk phosvitin: preparation of metal-free purified protein by fast protein liquid chromatography using aqueous solvents. J. Chromatogr. B 791: 273–284 (2003)

    Article  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)

    CAS  Google Scholar 

  23. Shahidi F, Han XQ, Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 53: 285–293 (1995)

    Article  CAS  Google Scholar 

  24. Sathe S, Salunkhe D. Functional properties of the Great Northern bean (Phaseolus vulgaris L.) proteins: Emulsion, foaming, viscosity, and gelation properties. J. Food Sci. 46: 71–81 (1981)

    Article  Google Scholar 

  25. Pearce KN, Kinsella JE. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agr. Food Chem. 26: 716–723 (1978)

    Article  CAS  Google Scholar 

  26. Jamdar S, Rajalakshmi V, Pednekar M, Juan F, Yardi V, Sharma A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 121: 178–184 (2010)

    Article  CAS  Google Scholar 

  27. Kristinsson HG, Rasco BA. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with different alkaline proteases. J. Agr. Food Chem. 48: 657–666 (2000)

    Article  CAS  Google Scholar 

  28. Li B, Chen F, Wang X, Ji B, Wu Y. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 102: 1135–1143 (2007)

    Article  CAS  Google Scholar 

  29. Gbogouri G, Linder M, Fanni J, Parmentier M. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci. 69: C615–C622 (2004)

    Article  CAS  Google Scholar 

  30. Je JY, Qian ZJ, Kim SK. Antioxidant peptide isolated from muscle protein of bullfrog, Rana catesbeiana Shaw. J. Med. Food 10: 401–407 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbang Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shen, S., Deng, J. et al. Antioxidant activities and functional properties of tea seed protein hydrolysates (Camellia oleifera Abel.) influenced by the degree of enzymatic hydrolysis. Food Sci Biotechnol 23, 2075–2082 (2014). https://doi.org/10.1007/s10068-014-0282-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0282-2

Keywords

Navigation