Skip to main content
Log in

Bulk Properties of Food Particulate Materials: An Appraisal of their Characterisation and Relevance in Processing

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The food industry is one of the largest commercial enterprises in the world today representing important contributions of the gross national product of many countries. Numerous raw materials and products in this industry are in powdered or particulate form, and their optimum characterisation for processing purposes, rely heavily in a deep knowledge of particle technology. Characterisation of the main bulk properties affecting processing, such as failure properties, bulk density and compressibility, are discussed in this article. Testing of these properties is far from standardised so the different manners of measurement are reviewed along with theoretical considerations, operating principles, and applications. The food industry should make more efficient use of its many processes involving powders and particulates in order to provide high quality products. In this sense, future competitiveness may be critically dependent on knowledge originated by research activities in particle technology applied to food materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdullah, E. C., & Geldart, D. (1999). The use of bulk density measurements as flowability indicators. Powder Technology, 102, 151–165.

    Article  CAS  Google Scholar 

  • Adhikari, B., Howes, T., Bhandari, B. R., & Truong, V. (2001). Stickiness in foods: A review of mechanisms and test methods. International Journal of Food Properties, 4, 1–33.

    Article  CAS  Google Scholar 

  • Aguilera, J. M., Valle, J. M., & Karel, M. (1995). Review: Caking phenomena in food powders. Trends in Food Science and Technology, 6, 149–154.

    Article  CAS  Google Scholar 

  • Allen, T. (1997). Particle size measurement (5th ed.). London: Chapman & Hall.

    Google Scholar 

  • Barbosa-Cánovas, G. V., & Juliano, P. (2005a). Compression and compaction characteristics of selected food powders. Advances in Food and Nutrition Research, 49, 233–307.

    Article  Google Scholar 

  • Barbosa-Cánovas, G. V., & Juliano, P. (2005b). Physical and chemical properties of food powders. In C. Onwulata (Ed.), Encapsulated and powdered foods (pp. 39–71). Boca Raton, FL, USA: CRC Taylor & Francis.

    Google Scholar 

  • Barbosa-Cánovas, G. V., Málave-López, J., & Peleg, M. (1985). Segregation in food powders. Biotechnology Progress, 1, 140–146.

    Article  Google Scholar 

  • Barbosa-Cánovas, G. V., Málave-López, J., & Peleg, M. (1987). Density and compressibility of selected food powders mixture. Journal of Food Process Engineering, 10, 1–19.

    Article  Google Scholar 

  • Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders: Physical properties, processing and functionality. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Barletta, B. J., & Barbosa-Cánovas, G. V. (1993). An attrition index to assess fines formation and particle size reduction in tapped agglomerated food powders. Powder Technology, 77, 89–93.

    Article  CAS  Google Scholar 

  • Beltran-Reyes, B., Ortega-Rivas, E., & Anzaldua-Morales, A. (1996). Characterization of reconstituted apple paste in terms of rehydration and firmness. Food Science and Technology International, 2, 307–313.

    Article  Google Scholar 

  • Bhandari, B. R., & Hartel, R. W. (2005). Phase transition during food powder production and powder stability. In C. Onwulata (Ed.), Encapsulated and powdered foods (pp. 261–292). Boca raton, FL, USA: CRC Taylor & Francis.

    Google Scholar 

  • Bloore, C. (2000). Development if food drying technology-overview. International Food Dehydration Conference—2000 and Beyond, pp 1.1–1.5. Melbourne, Australia.

  • Bumiller, M., Carson, J., & Prescott, J. (2002). Particle shape analysis of powders and the effect of shape on powder flow. Proceedings of World Congress on Particle Technology 4. Paper 358. WCPT4 Secretariat, Sydney, Australia.

  • Carr, J. F., & Walker, D. M. (1967). An annular shear cell for granular materials. Powder Technology, 1, 369–373.

    Article  Google Scholar 

  • Carson, J. W., Royal, T. A., & Goodwill, D. J. (1986). Understanding and eliminating particle segregation problems. Bulk Solids Handling, 6, 139–144.

    Google Scholar 

  • Carstensen, J. T., & Hou, X. P. (1985). The Athy-Heckel equation applied to granular agglomerates of basic tricalcium phosphate [3Ca3PO4Ca(OH)2]. Powder Technology, 42, 153–157.

    Article  CAS  Google Scholar 

  • Chasseray, P. (1994). Physical characteristics of grains and their byproducts. In B. Godon, & C. Willm (Eds.), Primary cereal processing. New York: Wiley-Interscience.

    Google Scholar 

  • Chen, X. D. (1994). Mathematical analysis of powder discharge through longitudinal slits in a slowly rotating drum: Objective measurements of powder flowability. Powder Technology, 21, 421–437.

    Google Scholar 

  • De Silva, S. R. (2000). Characterisation of particulate materials—a challenge for the bulk solids fraternity. Powder Handling & Processing, 12, 355–362.

    Google Scholar 

  • Dobbs, A. J., Peleg, M., Mudget, R. E., & Rufner, R. (1982). Some physical characteristics of active dry yeast. Powder Technology, 32, 75–81.

    Article  Google Scholar 

  • Duberg, M., & Nyström, C. (1986). Studies of direct compression of tablets XVII. Porosity–pressure curves for characterization of volume reduction mechanisms in powder compression. Powder Technology, 46, 67–75.

    Article  CAS  Google Scholar 

  • Fasina, O. O. (2007). Does a pycnometer measure the true or apparent particle density of agricultural materials? 2007 ASABE Annual International Meeting, Technical Papers, Volume 13, 12p.

  • Fitzpatrick, J. J. (2005). Food powder flowability. In C. Onwulata (Ed.), Encapsulated and powdered foods (pp. 247–260). Boca Raton, FL, USA: CRC Taylor & Francis.

    Google Scholar 

  • Fitzpatrick, J. J., Barringer, S. A., & Igbhal, T. (2004). Flow propeety measurement of food powders and sensitivity of Jenikes’s hopper design methodology to the measured values. Journal of Food Engineering, 61, 399–405.

    Article  Google Scholar 

  • Gebhard, H. (1982). Scherversuche and leicht veredicheten Schüttgütern unter besonderer Berücksichtigung des Verformungsverhaltens. PhD thesis, University of Karlsruhe, Germany.

  • Goelema, C. C., Malby, L. P., Enstad, G. G., & De Silva, S. R. (1993). Use of unaxial tester for the determination of instantaneous and time consolidation flow properties of powders. Proceedings of Symposium on Reliable Flow of Particulate Solids II. EFCHE Publication No. 96, Oslo, Norway.

  • Gray, W. A. (1968). The packing of solid particles. London, UK: Chapman and Hall.

    Google Scholar 

  • Hausner, H. H., Roll, K. H., & Johnson, P. K. (1976). Vibratory compaction—Principles and methods. New York: Plenum Press.

    Google Scholar 

  • Hayes, G. D. (1987). Food engineering data handbook. New York: John Wiley & Sons.

    Google Scholar 

  • Heldman, D. R., & Singh, R. P. (1981). Food process engineering. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Heng, P. W. S., & Stainforth, J. N. (1988). The effect of moisture on the cohesive properties of microcrystalline cellulose. Journal of Pharmaceutical Pharmacology, 40, 360–362.

    CAS  Google Scholar 

  • Herdan, G. (1960). Small particle statistics. London: Butterworths.

    Google Scholar 

  • Hogekamp, S., & Schubert, H. (2003). Rehydration of food powders. Food Science and Technology International, 9, 223–235.

    Article  Google Scholar 

  • Höhne, D. (1985). Die Vergleichbarkeit unterschiedlicher Methoden zur Ermittlung der Scherfestigkeit feinkörniger Schüttgütern. PhD thesis FIA Freiberg, Germany.

  • Hollenbach, A. M., Peleg, M., & Rufner, R. (1982). Effect of four anticaking agents on the bulk characteristics of ground sugar. Journal of Food Science, 47, 538–544.

    Article  Google Scholar 

  • Jenike, A. W. (1964). Storage and flow of solids. Bulletin No. 123 of the Utah Engineering Experiment Station. Salt Lake City, UT, USA: University of Utah.

    Google Scholar 

  • Johanson, K. (2005). Powder flow properties. In C. Onwulata (Ed.), Encapsulated and powdered foods (pp. 331–361). Boca Raton, FL, USA: CRC Taylor & Francis.

    Google Scholar 

  • Kaye, B. H. (1994). Small characterization of fine particles. New York: John Wiley & Sons.

    Google Scholar 

  • Kaye, B. H. (1997). Particle size characterization. In M. E. Fayen, & L. Otten (Eds.), Handbook of powder science and technology (pp. 1–34). New York: Chapman & Hall.

    Google Scholar 

  • Kurup, T. R. R., & Pilpel, N. (1978). Compression characteristics of pharmaceutical powder mixtures. Powder Technology, 19, 147–155.

    Article  CAS  Google Scholar 

  • Lazar, M. E., Brown, A. H., Smith, G. S., Wang, F. F., & Lindquist, F. E. (1956). Experimental production of tomato powder by spray drying. Food Technology, 10, 129–134.

    Google Scholar 

  • Lockemann, C. A. (1999). A new laboratory method to characterize the sticking properties of free-flowing solids. Chemical Engineering and Processing, 38, 301–306.

    Article  CAS  Google Scholar 

  • Marinelli, J. (2005). The role of food powders. In C. Onwulata (Ed.), Encapsulated and powdered foods (pp. 3–26). Boca Raton, FL, USA: CRC Taylor & Francis.

    Google Scholar 

  • Marinelli, J., & Carson, J. W. (1992). Solve solids flow problems in bins, hoppers and feeders. Chemical Engineering Progress, 88, 22–28.

    CAS  Google Scholar 

  • Masters, K. (1976). Spray drying handbook. New York: John Wiley & Sons.

    Google Scholar 

  • McCabe, W. L., Smith, J. C., & Harriott, P. (2005). Unit operations of chemical engineering (7th ed.). New York: McGraw-Hill.

    Google Scholar 

  • McDonald, C. E. (1994). Collaborative study on particle size in wheat flour by laser instrumentation (AACC Method 50-1). Cereal Foods World, 39, 29–33.

    Google Scholar 

  • McGeary, R. K. (1967). Mechanical packing of spherical particles. In H. H. Hausner, K. H. Roll, & P. K. Johnson (Eds.), Vibratory compacting. New York: Plenum Press.

    Google Scholar 

  • Monsalve-González, A., Barbosa-Cánovas, G. V., & Cavalieri, R. P. (1993). Mass transfer and textural changes during processing of apples by combined methods. Journal of Food Science, 58, 1118–1124.

    Article  Google Scholar 

  • Moreyra, R., & Peleg, M. (1981). Effect of equilibrium water activity on the bulk properties of selected food powders. Journal of Food Science, 46, 1918–1922.

    Article  CAS  Google Scholar 

  • Mort, P. R., Sabia, R., Niesz, D. E., & Riman, R. E. (1994). Automated generation and analysis of powder compaction diagram. Powder Technology, 79, 111–119.

    Article  CAS  Google Scholar 

  • Münz, G. (1976). Entwicklund eins Ring-schergerätes zur Messung der Fließeigenschaften von Schüttgütern und Bestimung des Einflusses der Teilchengrößenverteilung auf die Fließeigenschaften kohäsiver Kalstein-pulver. PhD thesis, University of Karlsruhe, Germany.

  • Nuebel, C., & Peleg, M. (1994). A research note: Compressive stress–strain relationships of agglomerated instant coffee. Journal of Food Process Engineering, 17, 383–400.

    Article  Google Scholar 

  • Nyström, C., & Karehill, P. -G. (1996). The importance of intermolecular bonding forces and the concept of bonding surface area. In G. Aldeborn, & C. Nyström (Eds.), Pharmaceutical powder compaction technology (pp. 17–53). New York: Marcel Dekker.

    Google Scholar 

  • Ortega-Rivas, E., & Beltran-Reyes, B. (1997). Rehydration properties of apple powders and particulates. Powder Handling & Processing, 9, 245–248.

    Google Scholar 

  • Paterson, A. H. J., Bronlund, J. E., & Brooks, G. F. (2001). The blow test for measuring the stickiness of powders. In K. Mallikarjunan, & G. V. Barbosa-Cánovas (Eds.), 7th Conference of Food Engineering (CoFE 2001) (pp. 408–414). New York: AIChE.

    Google Scholar 

  • Peleg, M. (1977). Flowability of food powders and methods for its evaluation—a review. Journal of Food Process Engineering, 1, 303–328.

    Article  Google Scholar 

  • Peleg, M., & Mannheim, C. H. (1973). Effect of conditions on the flow properties of powdered sucrose. Powder Tecnhology, 7, 45–50.

    Article  CAS  Google Scholar 

  • Pietsch, W. (1999). Readily engineer agglomerates with special properties from micro- and nanosized particles. Chemical Engineering Progress, 8, 67–81.

    Google Scholar 

  • Pordesimo, L. O., Onwulata, C. I., & Carvalho, C. W. P. (2007). Food powder delivery through a feeder system: Effect on physico-chemical properties. 2007 ASABE Annual International Meeting, Technical Papers, Volume 13, 16p. ASABE, Minneapolis MN, USA.

  • Roos, Y., & Karel, M. (1991). Plasticizing effect of water on thermal behavior and crystallization of amorphous food model. Journal of Food Science, 56, 38–43.

    Article  CAS  Google Scholar 

  • Royal, T. A., & Carson, J. W. (1993). How to avoid flooding in powder handling systems. Powder Handling & Processing, 5, 63–67.

    Google Scholar 

  • Rumpf, H. (1961). The strength of granules and agglomerates. In W. A. Knepper (Ed.), Agglomeration (pp. 39–418). New York: Industrial Publishers.

    Google Scholar 

  • Schubert, H. (1987). Food particle technology part I: Properties of particles and particulate food systems. Journal of Food Engineering, 6, 1–32.

    Article  Google Scholar 

  • Schubert, H. (1980). Processing and properties of instant powdered foods. In P. Linko, Y. Mälkki, J. Olkku, & J. Larinkari (Eds.), Food process engineering, vol. 1 (pp. 675–684). London: Applied Science Publishers.

    Google Scholar 

  • Schulze, D. (1994a). A new ring shear tester for flowability and time consolidation measurements. Preprints of the First International Particle Technology Forum, Vol. 3 pp. 11–16. New York: AIChE.

    Google Scholar 

  • Schulze, D. (1994b). Entwicklung und Andwendung eines neuartigen Ring-schergerätes. Aufbereitungstechnik, 35, 524–535.

    CAS  Google Scholar 

  • Schulze, D. (1996). Flowability and time consolidation measurements using a ring shear tester. Powder Handling & Processing, 8, 221–226.

    Google Scholar 

  • Schulze, D., & Wittmaier, A. (2007). Measurement of flow properties of powders at very small consolidation stresses. Bulk Solids & Powder Science & Technology, 2, 47–54.

    Google Scholar 

  • Scoville, E., & Peleg, M. (1980). Evaluation of the effect of liquid bridges on the bulk properties of model powders. Journal of Food Science, 46, 174–177.

    Article  Google Scholar 

  • Sone, T. (1972). Consistency of foodstuffs. Dordrecht, Netherlands: D. Reidel Publishing Co.

    Google Scholar 

  • Sutton, H. M. (1976). Flow properties of powders and the role of surface character. In G. D. Parfitt, & K. S. W. Sing (Eds.), Characterization of powder surfaces. New York: Academic Press.

    Google Scholar 

  • Teunou, E., & Fitzpatrick, J. J. (1999). Effect of relative humidity and temperature on food powder flowability. Journal of Food Engineering, 42, 109–116.

    Article  Google Scholar 

  • Teunou, E., & Fitzpatrick, J. J. (2000). Effect of storage time and consolidation on food powder flowability. Journal of Food Engineering, 43, 97–101.

    Article  Google Scholar 

  • Teunou, E., & Vasseur, J. (1996). Time flow function: Means to estimate water effect on dissoluble bulk materials flow. Powder Handling & Processing, 8, 111–116.

    CAS  Google Scholar 

  • Thomson, F. M. (1997). Storage and flow of particulate solids. In M. E. Fayed, & L. Otten (Eds.), Handbook of powder science and technology (pp. 389–436). New York: Chapman & Hall.

    Google Scholar 

  • Tomas, J., & Schubert, H. (1982). Modelling the strength and the flow properties of most soluble materials. Aufbereitungstechnik, 9, 507–515.

    Google Scholar 

  • Walker, D. M. (1967). A basis for bunker design. Powder Technology, 1, 228–236.

    Article  Google Scholar 

  • Williams, J. C., Birks, A. H., & Bhattacharya, D. (1971). The direct measurement of the failure function of a cohesive powder. Powder Technology, 4, 328–337.

    Article  Google Scholar 

  • Wilms, H. (1999). Equipment design based on solids flowability data. Powder Handling & Processing, 11, 37–42.

    CAS  Google Scholar 

  • Wright, H. (1999). Proper design for reliable flow from hoppers and silos. Bulk Solids Handling, 19, 181–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Ortega-Rivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega-Rivas, E. Bulk Properties of Food Particulate Materials: An Appraisal of their Characterisation and Relevance in Processing. Food Bioprocess Technol 2, 28–44 (2009). https://doi.org/10.1007/s11947-008-0107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0107-5

Keywords

Navigation