Skip to main content

Advertisement

Log in

Renal Replacement Therapy and Dialysis-associated Neurovascular Injury (DANI) in the Neuro ICU: a Review of Pathophysiology and Preventative Options

  • Critical Care Neurology (H Hinson, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of Review

Dialysis-associated neurovascular injury (DANI) is a significant contributor to secondary neurologic injury for patients with acute brain injury undergoing renal replacement therapy (RRT). This manuscript reviews the multi-faceted pathophysiologic aspects of DANI and focuses on options for neuro-monitoring and RRT prescription modification to prevent DANI.

Recent Findings

We consider DANI a clinical syndrome encompassing cerebral edema, impaired cerebral blood flow, and cerebrospinal fluid metabolic alterations during RRT, all of which may lead to secondary brain injury. Neurological monitoring in dialysis, particularly non-invasive methods such as near-infrared spectroscopy and transcranial Doppler ultrasonography, are emerging tools for dialysis medicine in acute brain injury and DANI prevention. Treatment options such as dialysate sodium modeling, limited solute clearance, weight-based ultrafiltration rates, cooled dialysate, and combination ultrafiltration and dialysis treatments may be helpful in limiting secondary neurologic injury from DANI.

Summary

This manuscript is intended to inform neurocritical care providers about components of DANI pathophysiology, and potential preventative and treatment strategies for at-risk patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Davenport A. Renal replacement therapy for the patient with acute traumatic brain injury and severe acute kidney injury. Contrib Nephrol. 2007;146:333–9.

    Article  Google Scholar 

  2. Zepeda-Orozco, Quigley R. Dialysis disequilibrium syndrome. Pediatr Nephrol. 2012; 27:2205.

  3. Patel N, Dalal P, Panesar M. Dialysis disequilibrium syndrome: a narrative review. Semin Dial. 2008;21:493–8.

    Article  PubMed  Google Scholar 

  4. Mistry K. Dialysis disequilibrium syndrome prevention and management. Int J Nephrol Renovasc Dis. 2019;12:69–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robba C, Goffi A, Geeraerts T, Cardim D, Via G, Czosnyka M, et al. Brain ultrasonography: methodology, basic and advanced principles and clinical applications: a narrative review. Intensive Care Med. 2019;45(7):913–27.

    Article  PubMed  Google Scholar 

  6. Kleeman CR, Davson H, Levin E. Urea transport in the central nervous system. Am J Phys. 1962;203:739–47.

    Article  CAS  Google Scholar 

  7. Trinh-Trang-Tan MM, Carton JP, Bankir L. Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant. 2005;20(9):1984–8.

    Article  CAS  PubMed  Google Scholar 

  8. Hu MC, Bankir L, Michelet S, Rousselet G, Trinh-Trang-Tan MM. Massive reduction of urea transporters in the remnant kidney and brain of uremic rats. Kidney Int. 2000;58(3):1202–10.

    Article  CAS  PubMed  Google Scholar 

  9. Jeppsson B, Freund HR, Gimmon Z, James JH, von Meyenfeldt MF, Fischer JE. Blood-brain barrier derangement in uremic encephalopathy. Surgery. 1982;92(1):30–5.

    CAS  PubMed  Google Scholar 

  10. Malek M. Brain consequences of acute kidney injury: focusing on the hippocampus. Kidney Res Clin Pract. 2018;37(4):315–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nongnuch A, Panorchan K, Davenport A. Brain-kidney crosstalk. Crit Care. 2014;18(3):225.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Silver SM, Sterns RH, Halperin ML. Brain swelling after dialysis: old urea or new osmoles? Am J Kidney Dis. 1996;28(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  13. Lien YH, Shapiro JI, Chan L. Effects of hypernatremia on organic brain osmoles. J Clin Invest. 1990;85(5):1427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silver SM. Cerebral edema after rapid dialysis is not caused by an increase in brain organic osmolytes. J Am Soc Nephrol. 1995;6(6):1600–6.

    Article  CAS  PubMed  Google Scholar 

  15. Lin CM, Lin JW, Tsai JT, Ko CP, Hung KS, Hung CC, et al. Intracranial pressure fluctuations during hemodialysis in renal failure patients with intracranial hemorrhage. Acta Neurochir Supp. 2008;101:141–4.

    Article  CAS  Google Scholar 

  16. Yeh SH, Wang CY, Lin CM. Preventing intracranial pressure fluctuation in severe traumatic brain injury during hemodialysis. J Med Sci. 2016;36:152–7.

    Article  Google Scholar 

  17. Wu VC, Huang TM, Shiao CC, Lai CF, Tsai PR, Wang WJ, et al. The hemodynamic effects during sustained low-efficiency dialysis (SLED) versus continuous veno-venous hemofiltration for uremic patients with brain hemorrhage: a cross-over study. J Neurosurg. 2013;119(5):1288–95.

    Article  PubMed  Google Scholar 

  18. Tuchman S, Khademian ZP, Mistry K. Dialysis disequilibrium syndrome occurring during continuous renal replacement therapy. Clin Kidney J. 2013;6(5):526–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lund A, Damholt MB, Strange DG, Kelsen J, Moller-Sorensen H, Moller K. Increased intracranial pressure during hemodialysis in a patient with anoxic brain injury. Case Rep Crit Care. 2017;2017:5378928.

    PubMed  PubMed Central  Google Scholar 

  20. Lund A, Damholt MB, Wils J, Kelsen J, Strange DG, Moller K. Intracranial pressure during hemodialysis in patients with acute brain injury. Acta Anaesthesiol Scand. 2019;63:493–9.

    CAS  PubMed  Google Scholar 

  21. Osgood M, Compton R, Carandang R, Hall W, Kershaw G, Muehschlegel S. Rapid unexpected brain herniation in association with renal replacement therapy in acute brain injury: caution in the neurocritical care unit. Neurocrit Care. 2015;22(2):176–83.

    Article  PubMed  Google Scholar 

  22. Ko SB, Choi HA, Gilmore E, Schmidt JM, Claassen J, Lee K, et al. Pearls and oysters: the effects of renal replacement therapy on cerebral autoregulation. Neurology. 2012;78:e36–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Polinder-Bos HA, Garcia DV, Kuipers J, Elting JWJ, Aries MJH, Krijnen WP. Hemodialysis induces an acute decline in cerebral blood flow in elderly patients. J Am Soc Nephrol. 2018; 29: 1317–1325. PET-CT was performed in elderly patients with ESKD before, during, and after i-HD. This study showed global cerebral blood flow declines significantly from the start to the end of hemodialysis.

  24. Wolfgram DF. Intradialytic cerebral hypoperfusion as mechanism for cognitive impairment on hemodialysis. J Am Soc Nephrol. 2019;30(11):2052–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Postglione A, Faccenda F, Gallotta G, Ruba P, Federico S. Changes in middle cerebral artery blood velocity in uremic patients after hemodialysis. Stroke. 1991;22(12):1508–11.

    Article  Google Scholar 

  26. Regolisti G, Maggiore U, Cademartiri C, Cabassi A, Caiazza A, Tedeschi S, et al. Cerebral blood flow decreases during intermittent hemodialysis in patients with acute kidney injury, but not in patients with end-stage renal disease. Nephrol Dial Transplant. 2013;28(1):79–85.

    Article  PubMed  Google Scholar 

  27. Hata R, Matsumoto M, Handa N, Terakawa H, Sugitani Y, Kamada T. Effects of hemodialysis on cerebral circulation evaluated by transcranial Doppler ultrasonography. Stroke. 1994;25:408–12.

    Article  CAS  PubMed  Google Scholar 

  28. Metry G, Spittle M, Rahmati S, Giller C, Giller A, Kaufman A, et al. Online monitoring of cerebral hemodynamics during hemodialysis. Am J Kidney Dis. 2002;40:996–1004.

    Article  PubMed  Google Scholar 

  29. Stefanidis I, Bach R, Mertens PR, Liakopoulos V, Liapi G, Mann H, et al. Influence of hemodialysis on the mean blood flow velocity in the middle cerebral artery. Clin Nephrol. 2005;64:129–37.

    Article  CAS  PubMed  Google Scholar 

  30. Findlay MD, Dawson J, Dickie DA, Forbes KP, McGlynn D, Quinn T, et al. Investigating the relationship between cerebral blood flow and cognitive function in hemodialysis patients. J Am Soc Nephrol. 2019; 30: 147–158. This study used transcranial Doppler to assess intradialytic changes in intracranial mean flow velocities (MFV). Percentage decline in intradialytic intracranial MFV correlated significantly with MRI white matter disease burden and poor executive function on cognitive testing at 1 year.

  31. Ghoshal S, Gomez J, Sarwal A. Transcranial Doppler monitoring of dialysis disequilibrium in an ESRD patient with traumatic brain injury. Neurocrit Care. 2019;32:353–6.

    Article  Google Scholar 

  32. Arieff AI, Guisado R, Massry SG, Lazarowitz VC. Central nervous system pH in uremia and the effects of hemodialysis. J Clin Invest. 1976;58:306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoon S, Zuccarello M, Rapoport RM. pCO(2) and pH regulation of cerebral blood flow. Front Physiol. 2012;3:365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Basile C, Rossi L, Lomonte C. The choice of dialysate bicarbonate: do different concentrations make a difference? Kidney Int. 2016;89:1008–15.

    Article  CAS  PubMed  Google Scholar 

  35. Bagshaw SM, Peets AD, Hameed M, Boiteau PJ, Laupland KB, Doig CJ. Dialysis disequilibrium syndrome: brain death following hemodialysis for metabolic acidosis and acute renal failure – a case report. BMC Nephrol. 2004;5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Soliani F, Lusenti T, Franco V, Lindner G, Davoli V, Parisoli A, et al. Intradialytic variations in hemoglobin affinity for oxygen during bicarbonate dialysis and hemofiltration 1990; 13(5): 321–322.

  37. Abeysekara S, Zello GA, Lohmann KL, Alcorn J, Hamilton DL, Naylor JM. Infusion of sodium bicarbonate in experimentally induced metabolic acidosis does not provoke cerebrospinal fluid acidosis in calves. Can J Vet Res. 2012;76(1):16–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Soliani F, Davoli V, Franco V, Lindner G, Lusenti T, Parisoli A, et al. Intradialytic changes of the oxyhaemoglobin dissociation curve during acetate and bicarbonate haemodialysis. Possible interactions with haemodialysis-associated hypoxaemia. Nephrol Dial Transplant. 1990;5:119–21.

    Article  PubMed  Google Scholar 

  39. Sombolos KI, Bamichas GI, Christidou FN, Gionanlis LD, Karagianni AC, Anagnostopoulos TC, et al. pO2 and pCO2 increment in post-dialyzer blood: the role of dialysate. Artif Organs. 2005;29:892–8.

    Article  CAS  PubMed  Google Scholar 

  40. Gabutti L, Bianchi G, Soldini D, Marone C, Burnier M. Haemodynamic consequences of changing bicarbonate and calcium concentrations in hemodialysis fluids. Nephrol Dial Transplant. 2009;24:973–81.

    Article  CAS  PubMed  Google Scholar 

  41. Silva BC, Freitas GRR, Silva VB, Abensur H, Luders C, Pereira BJ, et al. Haemodynamic behavior during hemodialysis: effects of dialysate concentrations of bicarbonate and potassium. Kidney Blood Press Res. 2014;39:490–6.

    Article  CAS  PubMed  Google Scholar 

  42. Titoff V, Moury HN, Titoff IB, Kelly KM. Seizures, antiepileptic drugs, and CKD. Am J Kidney Dis. 2019;73(1):90–101.

    Article  CAS  PubMed  Google Scholar 

  43. Lacerda G, Krummel T, Hirsch E. Neurologic presentations of renal diseases. Neurol Clin. 2010;28:45–59.

    Article  PubMed  Google Scholar 

  44. De Deyn PP, D’Hooge R, Van Bogaert PP, Marescau B. Endogenous guanidine compounds as uremic neurotoxins. Kidney Int Supp. 2001; 78 (S77-S83).

  45. Seifter JL, Samuels MA. Uremic encephalopathy and other brain disorders associated with renal failure. Semin Neurol. 2011;31:139–43.

    Article  PubMed  Google Scholar 

  46. Traynelis SF, Dingledine R. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol. 1998; 59: 259–276.

  47. Hocker SE. Renal disease and neurology. Continuum (Minneap Minn). 2017;23:722–43.

    Google Scholar 

  48. Bansal AD, Hill CE, Berns JS. Use of antiepileptic drugs in patients with chronic kidney disease and end stage renal disease. Semin Dial. 2015;28:404–12.

    Article  PubMed  Google Scholar 

  49. Galons JP, Trouard T, Gmitro AF, Lien YH. Hemodialysis increases apparent diffusion coefficient of brain water in nephrectomized rats measured by isotropic diffusion-weighted magnetic resonance imaging. J Clin Invest. 1996;98:750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. La Greca G, Biasioli S, Chiaramonte S. Studies on brain density in hemodialysis and peritoneal dialysis. Nephron. 1982;31(2):146–50.

    Article  PubMed  Google Scholar 

  51. La Greca G, Dettori P, Biasioli S, Fabris A, Feriani M, Pinna V, et al. Brain density studies during dialysis. Lancet. 1980;2(8194):582.

    Article  PubMed  Google Scholar 

  52. La Greca G, Dettori P, Biasioli S, Chiaramonte S, Fabris A, Feriani M, et al. Study on morphological and densitometrical changes in the brain after hemodialysis and peritoneal dialysis. Trans Am Soc Artif Organs. 1981;27:40–4.

    Google Scholar 

  53. Chen C, Lai PH, Chou KJ, Lee PT, Chung HM, Fang HC. A preliminary report of brain edema in patients with uremia in first hemodialysis: evaluation by diffusion-weighted MR imaging. AJNR Am Jo Neuroradiol. 2007;28(1):68–71.

    CAS  Google Scholar 

  54. Fujisaki K, Nakagawa K, Nagae H, Nakano T, Taniguchi M, Masutani K, et al. Asymptomatic brain edema after hemodialysis initiation in a patient with severe uremia. Case Rep Med. 2017;2017:1–6. https://doi.org/10.1155/2017/9265315.

    Article  Google Scholar 

  55. Liotta EM, Bauer RM, Berman MD, Guth JC, Maas MB, Naidech AM, et al. Acute changes in ventricular volume during treatment for hepatic and renal failure. Neurol Clin Pract. 2014;4(6):478–81.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kumar A, Cage A, Dhar R. Dialysis-induced worsening of cerebral edema in intracranial hemorrhage: a case series and clinical perspective. Neurocrit Care. 2014;8:283–7.

    Google Scholar 

  57. Davenport A. Practical guidance for dialyzing a hemodialysis patient following acute brain injury. Hemodial Internat. 2008;12(3):307–12.

    Article  Google Scholar 

  58. Walters R, Fox NC, Crum WR, Taube D, Thomas DJ. Haemodialysis and cerebral oedema. Nephron. 2001;87:143–7.

    Article  CAS  PubMed  Google Scholar 

  59. Sheth KN, Wu GF, Messe SR, Wolf RL, Kasner SE. Dialysis disequilibrium: another reversible posterior leukoencephalopathy syndrome? Clin Neurol Neurosurg. 2003;105(4):249–52.

    Article  PubMed  Google Scholar 

  60. Hinchey J, Chaves C, Appigani B, Breen J, Pao L, Wang A, et al. A reversible posterior leukoencephalopathy syndrome. New Engl J Med. 1996;334:494–500.

    Article  CAS  PubMed  Google Scholar 

  61. De Groot K, Bahlmann FH, Sowa J, Koenig J, Menne J, Haller H, et al. Uremia causes endothelial progenitor cell deficiency. Kidney Int. 2004;66(2):641–6.

    Article  PubMed  Google Scholar 

  62. Hayashi R, Kitazara K, Sanada D, Kato N, Ohkoshi T, Katsumata Y, et al. Diffuse leukoencephalopathy associated with dialysis disequilibrium syndrome. Intern Med. 2015;54(21):2753–8.

    Article  CAS  PubMed  Google Scholar 

  63. MacEwen C, Watkinson P, Tarassenko L, Pugh C. Cerebral ischemia during hemodialysis – finding the signal in the noise. Semin Dial. 2018;31(3):199–203.

    Article  PubMed  Google Scholar 

  64. MacEwen C, Sutherland S, Daly J, Pugh C, Tarassenko L. Relationship between hypotension and cerebral ischemia during hemodialysis. J Am Soc Nephrol. 2017; 28: 2511–2520. This study showed intradialytic cerebral ischemia occurs frequently, and is not always directly related to systemic blood pressure. Intradialytic cerebral ischemia, but not hypotension, correlated to decreased executive function at 1 year.

  65. Moist LM, McIntyre CW. Cerebral ischemia and cognitive dysfunction in patients on dialysis. CJASN. 2019;14(6):914–6.

    Article  PubMed  Google Scholar 

  66. Seliger SL, Gillen DL, Longstreth WT, Kestenbaum B, Stehman-Breen CO. Elevated risk of stroke among patients with end-stage renal disease. Kidney Int. 2003;64(2):603–9.

    Article  PubMed  Google Scholar 

  67. Wang HH, Hung SY, Sung JM, Hung KY, Wang JD. Risk of stroke in long-term dialysis patients compared with the general population. Am J Kidney Dis. 2014;63(4):604–11.

    Article  PubMed  Google Scholar 

  68. Vinsonneau C, Camus C, Combes A, de Beauregard MAC, Klouche K, Boulain T, et al. Continuous venovenous hemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicenter randomized trial. Lancet. 2006;368:379–85.

    Article  PubMed  Google Scholar 

  69. Hong CS, Wang K, Falcone GJ. The CSF diversion via lumbar drainage to treat dialysis disequilibrium syndrome in the critically ill neurological patient. Neurocrit Care. 2020;33:312–6. https://doi.org/10.1007/s12028-020-00972-w.

    Article  PubMed  Google Scholar 

  70. Erdoes G, Uehlinger DE, Kobel B, Stucki MP, Wiest R, Stueber F, et al. Cerebral microembolism in the critically ill with acute kidney injury (COMET-AKI trial): study protocol for a randomized controlled clinical trial. Trials. 2018;19:189.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ghoshal S, Freedman BI. Mechanisms of stroke in patients with chronic kidney disease. Am J Nephrol. 2019;50:229–39.

    Article  PubMed  Google Scholar 

  72. Davies DJ, Su Z, Clancy MT, Lucas SJE, Dehghani H, Logan A, et al. Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: a review. J Neurotrauma. 2015;32(13):933–41.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mok V, Ding D, Fu J, Xiong Y, Chu WW, Wang D, et al. Transcranial Doppler ultrasound for screening cerebral small vessel disease: a community study. Stroke. 2012;43(10):2791–3.

    Article  PubMed  Google Scholar 

  74. Mariak Z, Krejza J, Swiercz M, Kordecki K, Lewko J. Accuracy of transcranial color Doppler ultrasonography in the diagnosis of middle cerebral artery spasm determined by receiver operating characteristic analysis. J Neurosurg. 2002;96(2):323–30.

    Article  PubMed  Google Scholar 

  75. Patel P, Nandwani V, McCarthy PJ, Conrad SA, Keith SL. Continuous renal replacement therapies: a brief primer for the neurointensivist. Neurocrit Care. 2010;13:286–94.

    Article  PubMed  Google Scholar 

  76. Rachoin JS, Weisberg LS. Renal replacement therapy in the ICU. Crit Care Med. 2019;47(5):715–21.

    Article  PubMed  Google Scholar 

  77. Chousterman BG, Jamme M, Tabibzadeh N, Gaugain S, Damoisel C, Barthelemy R. Delaying renal replacement therapy could be harmful in patients with acute brain injury. Am J Respir Crit Care Med. 2019;200(5):645–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Osgood M, Muehlschlegel S. Point: should CVVH always be the preferred mode of RRT for the patient with acute brain injury? Yes Chest. 2017. https://doi.org/10.1016/j.chest.2017.08.1160.

  79. Niemi MA, Stoff J. Point: should continuous venovenous hemofiltration always be the preferred mode of renal replacement therapy for the patient with acute brain injury? No Chest. 2017. https://doi.org/10.1016/j.chest.2017.08.1158.

  80. Hoste EAJ, Dhondt A. Clinical review: use of renal replacement therapies in special groups of ICU patients. Crit Care. 2012;16:201.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chirakarnjanakorn S, Navaneethan SD, Francis GS, Tang WHW. Cardiovascular impact in patients undergoing maintenance hemodialysis: clinical management considerations. Int J Cardiol. 2017;232:12–23.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sars B, van der Sande FM, Kooman JP. Intradialytic hypotension: mechanisms and outcome. Blood Purif. 2020;49:158–67.

    Article  PubMed  Google Scholar 

  83. Pirkle JL, Comeau ME, Langefelt CD, Russell GB, Balderston SS, Freedman BI, Burkart JM. Effects of weight-based ultrafiltration rate limits on intradialytic hypotension in hemodialysis. Hemodial Int. 2018; 22(2): 270–278. Weight-based ultrafiltration rates (rate limit 13 ml/kg/h) was associated with decreased rates of intradialytic hypotension among in-center hemodialysis patients.

  84. Sadowski RH, Allred EN, Jabs K. Sodium modeling ameliorates intradialytic and interdialytic symptoms in young hemodialysis patients. J Am Soc Nephrol. 1993;4(5):1192–8.

    Article  CAS  PubMed  Google Scholar 

  85. Penne EL, Sargeyeva O. Sodium gradient: a tool to individualize dialysate sodium prescription in chronic hemodialysis patients? Blood Purif. 2011;31(1–3):86–91.

    Article  CAS  PubMed  Google Scholar 

  86. Flythe JE, McCausland FR. Dialysate sodium: Rationale for evolution over time. Semin Dial. 2017; 30(2): 99–111. Higher concentrations of sodium in dialysate may minimize intradialytic hypotension and reduce the osmotic gradient across the blood–brain barrier. Sodium modeling reduces dialysate sodium concentration during RRT.

  87. Lynch KE, Ghassemi F, Flythe JE, Feng M, Ghassemi M, Celi LA, et al. Sodium modelling to reduce intradialytic hypotension during hemodialysis for acute kidney injury in the intensive care unit. Nephrology. 2016;21(10):870–7.

    Article  CAS  PubMed  Google Scholar 

  88. Davenport A. Can dialyzer membrane selection affect outcomes in patients with acute kidney injury requiring dialysis? Davenport A Hemodial Int. 2009;13(1):13–7.

    Article  Google Scholar 

  89. Hirsch KG, Spock T, Koenig MA, Geocadin RG. Treatment of elevated intracranial pressure with hyperosmolar therapy in patients with renal failure. Neurocrit Care. 2012;17(3):388–94.

    Article  PubMed  Google Scholar 

  90. Medow JE, Sanghvi SR, Hofmann RM. Use of high-flow continuous renal replacement therapy with citrate anticoagulation to control intracranial pressure by maintaining hypernatremia in a patient with acute brain injury and renal failure. Clin Med Res. 2015;13(2):89–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fulop T, Zsom L, Rodriguez RD, Chabrier-Rosello JO, Hamrahian M, Koch CA. Therapeutic hypernatremia management during continuous renal replacement therapy with elevated intracranial pressures and respiratory failure. Rev Endocr Metab Disord. 2019;20(1):65–75.

    Article  PubMed  Google Scholar 

  92. Davenport A. Management of acute kidney injury in neurotrauma. Hemodial Int. 2010;14(1):S27–31.

    Article  PubMed  Google Scholar 

  93. Eldehni MT, Odudu A, McIntyre CW. Randomized clinical trial of dialysate cooling and effects on brain white matter. J Am Soc Nephrol. 2015; 26(4): 957–965. Cooled dialysate improved intradialytic hemodynamics and was protective against MRI-measured white matter changes at 1 year.

  94. Odudu A, Eldehni MT, McCann GP, McIntyre CW. Randomized controlled trial of individualized dialysate cooling for cardiac protection in hemodialysis patients. Clin J Am Soc Nephrol. 2015;10(8):1408–17.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Toth-Manikowski SM, Sozio SM. Cooling dialysate during in-center hemodialysis: beneficial and deleterious effects. World J Nephrol. 2016 Mar 6;5(2):166–71.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kishimoto T, Yamagami S, Tanaka H, Ohyama T, Yamamoto T, Yamakawa M, et al. Superiority of hemofiltration to hemodialysis for treatment of chronic renal failure: comparative studies between hemofiltration and hemodialysis on dialysis disequilibrium syndrome. Artif Organs. 1980;4:86–93.

    Article  CAS  PubMed  Google Scholar 

  97. Arieff AI, Massry SG, Barrientos A, Kleeman CR. Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int. 1973;4:177–87.

    Article  CAS  PubMed  Google Scholar 

  98. Prowle JR, Schneider A, Bellomo R. Clinical review: optimal dose of continuous renal replacement therapy in acute kidney injury. Crit Care. 2011;15(2):207.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Clark WR, Leblanc M, Ricci Z, Ronco C. Quantification and dosing of renal replacement therapy in acute kidney injury: a reappraisal. Blood Purif. 2017;44:140–55.

    Article  PubMed  Google Scholar 

  100. Singh AT, McCausland FR. Osmolality and blood pressure stability during hemodialysis. Semin Dial 2017; 30(6): 509–517. This review summarizes the association of plasma osmolality changes to adverse clinical outcomes, and methods to minimize rapidity of plasma osmolality changes.

  101. McCausland FR, Claggett B, Sabbisetti VS, Jarolim P, Waikar SS. Hypertonic mannitol for the prevention of intradialytic hypotension: a randomized controlled trial. Am J Kidney Dis. 2019;74(4):483–90.

    Article  CAS  Google Scholar 

  102. Bommer J, Locatelli F, Satayathum S, Keen ML, Goodkin DA, Saito A. Association of predialysis serum bicarbonate levels with risk of mortality and hospitalization in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2004;44:661–71.

    Article  PubMed  Google Scholar 

  103. Basile C, Lomonte C. A neglected issue in dialysis practice: haemodialysate. Clin Kidney J. 2015;8:393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gondo G, Fujitsu K, Kuwabara T, et al. Comparison of five modes of dialysis in neurosurgical patients with renal failure. Neurol Med Chir (Tokyo). 1989; 29: 1125–1131.

  105. Hsieh CY, Chen CH, Wu AB, Tseng C. Comparative outcomes between hemodialysis and peritoneal dialysis patients with acute intracerebral hemorrhage. Am J Nephrol. 2010;32:31–7.

    Article  PubMed  Google Scholar 

  106. Krane NK. Intracranial pressure measurement in a patient undergoing hemodialysis and peritoneal dialysis. Am J Kid Dis. 1989;13:336–9.

    Article  CAS  PubMed  Google Scholar 

  107. Ivarsen P, Povlsen JV, Jensen JD. Increasing fill volume reduces cardiac performance in peritoneal dialysis. Nephrol Dial Transplant. 2008;22:2999–3004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Ghoshal MD.

Ethics declarations

Conflict of Interest

Shivani Ghoshal declares that she has no conflict of interest. Barry I. Freedman declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Critical Care Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshal, S., Freedman, B.I. Renal Replacement Therapy and Dialysis-associated Neurovascular Injury (DANI) in the Neuro ICU: a Review of Pathophysiology and Preventative Options. Curr Treat Options Neurol 23, 5 (2021). https://doi.org/10.1007/s11940-020-00661-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11940-020-00661-1

Keywords

Navigation