Skip to main content

Advertisement

Log in

Brain ultrasonography: methodology, basic and advanced principles and clinical applications. A narrative review

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Brain ultrasonography can be used to evaluate cerebral anatomy and pathology, as well as cerebral circulation through analysis of blood flow velocities. Transcranial colour-coded duplex sonography is a generally safe, repeatable, non-invasive, bedside technique that has a strong potential in neurocritical care patients in many clinical scenarios, including traumatic brain injury, aneurysmal subarachnoid haemorrhage, hydrocephalus, and the diagnosis of cerebral circulatory arrest. Furthermore, the clinical applications of this technique may extend to different settings, including the general intensive care unit and the emergency department. Its increasing use reflects a growing interest in non-invasive cerebral and systemic assessment. The aim of this manuscript is to provide an overview of the basic and advanced principles underlying brain ultrasonography, and to review the different techniques and different clinical applications of this approach in the monitoring and treatment of critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aaslid R, Markwalder T-M, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    Article  CAS  PubMed  Google Scholar 

  2. Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M (2018) Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res 96(4):720–730

    Article  CAS  PubMed  Google Scholar 

  3. Mäurer M, Shambal S, Berg D, Woydt M, Hofmann E, Georgiadis D, Lindner A, Becker G (1998) Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke 29(12):2563–2567

    Article  PubMed  Google Scholar 

  4. Pérez ES, Delgado-Mederos R, Rubiera M, Delgado P, Ribó M, Maisterra O, Ortega G, Álvarez-Sabin J, Molina CA (2009) Transcranial duplex sonography for monitoring hyperacute intracerebral hemorrhage. Stroke 40(3):987–990

    Article  PubMed  Google Scholar 

  5. Becker G, Bogdahn U, Strassburg HM, Lindner A, Hassel W, Meixensberger J, Hofmann E (1994) Identification of ventricular enlargement and estimation of intracranial pressure by transcranial color-coded real-time sonography. J Neuroimaging 4(1):17–22

    Article  CAS  PubMed  Google Scholar 

  6. Seidel G, Kaps M, Gerriets T, Hutzelmann A (1995) Evaluation of the ventricular system in adults by transcranial duplex sonography. J Neuroimaging 5(2):105–108

    Article  CAS  PubMed  Google Scholar 

  7. Kiphuth IC, Huttner HB, Struffert T, Schwab S, Köhrmann M (2011) Sonographic monitoring of ventricle enlargement in posthemorrhagic hydrocephalus. Neurology 76(10):858–862

    Article  CAS  PubMed  Google Scholar 

  8. Robba C, Simonassi F, Ball L, Pelosi P (2018) Transcranial color-coded duplex sonography for bedside monitoring of central nervous system infection as a consequence of decompressive craniectomy after traumatic brain injury. Intensive Care Med. https://doi.org/10.1007/s00134-018-5405-4

    Article  PubMed  Google Scholar 

  9. Seidel G, Gerriets T, Kaps M, Missler U (1996) Dislocation of the third ventricle due to space-occupying stroke evaluated by transcranial duplex sonography. J Neuroimaging 6(4):227–230

    Article  CAS  PubMed  Google Scholar 

  10. Gerriets T, Stolz E, Modrau B, Fiss I, Seidel G, Kaps M (1999) Sonographic monitoring of midline shift in hemispheric infarctions. Neurology 52(1):45–49

    Article  CAS  PubMed  Google Scholar 

  11. Gerriets T, Stolz E, König S, Babacan S, Fiss I, Jauss M, Kaps M (2001) Sonographic monitoring of midline shift in space-occupying stroke: an early outcome predictor. Stroke 32(2):442–447

    Article  CAS  PubMed  Google Scholar 

  12. Motuel J, Biette I, Srairi M, Mrozek S, Kurrek MM, Chaynes P, Cognard C, Fourcade O, Geeraerts T (2014) Assessment of brain midline shift using sonography in neurosurgical ICU patients. Crit Care 18(1):676

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liao CC, Chen YF, Xiao F (2018) Brain midline shift measurement and its automation: A review of techniques and algorithms. Int J Biomed Imaging 2018:4303161

    Article  PubMed  PubMed Central  Google Scholar 

  14. Geeraerts T, Launey Y, Martin L, Pottecher J, Vigué B, Duranteau J, Benhamou D (2007) Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med 33(10):1704–1711

    Article  PubMed  Google Scholar 

  15. Geeraerts T, Merceron S, Benhamou D, Vigué B, Duranteau J (2008) Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med 34(11):2062–2067

    Article  PubMed  Google Scholar 

  16. Robba C, Santori G, Czosnyka M, Corradi F, Bragazzi N, Padayachy L, Taccone FS, Citerio G (2018) Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 44(8):1284–1294

    Article  PubMed  Google Scholar 

  17. Kimberly HH, Shah S, Marill K, Noble V (2008) Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 15(2):201–204

    Article  PubMed  Google Scholar 

  18. Robba C, Cardim D, Tajsic T, Pietersen J, Bulman M, Donnelly J, Lavinio A, Gupta A, Menon DK, Hutchinson PJA, Czosnyka M (2017) Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. PLoS Med 14(7):e1002356

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chesnut R, Videtta W, Vespa P, Le Roux P, Menon DK, Citerio G, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Armonda R, Badjatia N, Boesel J, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson DW, O’Phelan K, Provencio J, Puppo C, Riker R, Robertson C, Schmidt JM, Taccone F (2014) Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care 21(2):64–84

    Article  Google Scholar 

  20. Czosnyka JPM, Richards HK, Whitehouse HE (1996) Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg 84(1):79–84

    Article  CAS  PubMed  Google Scholar 

  21. Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X, Cabeleira M, Smielewski P, Schmidt B, Czosnyka M (2016) Non-invasive monitoring of intracranial pressure using transcranial Doppler ultrasonography: is it possible? Neurocrit Care 25(3):473–491

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC, Pickard JD (2001) Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurol Neurosurg Psychiatry 70(2):198–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N, Connolly ES, Mayer SA (2009) Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke 40(6):1963–1968

    Article  PubMed  Google Scholar 

  24. Aaslid R, Huber P, Nornes H (1984) Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg 60(1):37–41

    Article  CAS  PubMed  Google Scholar 

  25. Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, Pickard JD, Kirkpatrick PJ (2012) Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: A prospective observational study. Stroke 43:3230–3237

    Article  PubMed  Google Scholar 

  26. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P (1988) Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien) 42:81–84

    CAS  Google Scholar 

  27. Zimmerman BJ, Pons MM (1986) Development of a structured interview for assessing student use of self-regulated learning strategies. Am Educ Res J 23(4):614–628

    Article  Google Scholar 

  28. Hurst RW, Schnee C, Raps EC, Farber R, Flamm ES (1993) Role of transcranial Doppler in neuroradiological treatment of intracranial vasospasm. Stroke 24(2):299–303

    Article  CAS  PubMed  Google Scholar 

  29. Swiat M, Weigele J, Hurst RW, Kasner SE, Pawlak M, Arkuszewski M, Al-Okaili RN, Swiercz M, Ustymowicz A, Opala G, Melhem ER, Krejza J (2009) Middle cerebral artery vasospasm: transcranial color-coded duplex sonography versus conventional nonimaging transcranial Doppler sonography. Crit Care Med 37(3):963–968

    Article  PubMed  Google Scholar 

  30. Neulen A, Greke C, Prokesch E, König J, Wertheimer D, Giese A (2013) Image guidance to improve reliability and data integrity of transcranial Doppler sonography. Clin Neurol Neurosurg 115(8):1382–1388

    Article  PubMed  Google Scholar 

  31. Neulen A, Prokesch E, Stein M, König J, Giese A (2016) Image-guided transcranial Doppler sonography for monitoring of vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg 145:14–18

    Article  CAS  PubMed  Google Scholar 

  32. Kyoi K, Hashimoto H, Tokunaga H, Morimoto T, Hiramatsu KI, Tsunoda S, Tada T, Utsumi S (1989) Time course of blood velocity change and clinical symptoms related to cerebral vasospasm and prognosis after aneurysmal surgery. Neurol Surg 17(1):21–30

    CAS  Google Scholar 

  33. Mastantuono J-M, Combescure C, Elia N, Tramèr MR, Lysakowski C (2018) Transcranial Doppler in the diagnosis of cerebral vasospasm. Crit Care Med 47:1

    Google Scholar 

  34. Powner DJ, Hernandez M, Rives TE (2004) Variability among hospital policies for determining brain death in adults. Crit Care Med 32(6):1284–1288

    Article  PubMed  Google Scholar 

  35. Shemie SD, Lee D, Sharpe M, Tampieri D, Young B (2008) Brain blood flow in the neurological determination of death: Canadian expert report. Can J Neurol Sci 35(2):140–145

    Article  PubMed  Google Scholar 

  36. Orban JC, El-Mahjoub A, Rami L, Jambou P, Ichai C (2012) Transcranial Doppler shortens the time between clinical brain death and angiographic confirmation: a randomized trial. Transplantation 94(6):585–588

    Article  PubMed  Google Scholar 

  37. Chang JJ, Tsivgoulis G, Katsanos AH, Malkoff MD, Alexandrov AV (2016) Diagnostic accuracy of transcranial Doppler for brain death confirmation: systematic review and meta-analysis. Am J Neuroradiol 37(3):408–414

    Article  CAS  PubMed  Google Scholar 

  38. Llompart-Pou JA, Abadal JM, Güenther A, Rayo L, Martín-del Rincón JP, Homar J, Pérez-Bárcena J (2013) Transcranial sonography and cerebral circulatory arrest in adults: a comprehensive review. ISRN Crit Care 2013:1–6

    Article  Google Scholar 

  39. Ragoschke-Schumm A, Walter S (2018) DAWN and DEFUSE-3 trials: is time still important? Radiologe 58(May):20–23

    Article  CAS  PubMed  Google Scholar 

  40. Castro P, Azevedo E, Sorond F (2018) Cerebral autoregulation in stroke. Curr Atheroscler Rep 20(8):37

    Article  PubMed  Google Scholar 

  41. Schwab S, Aschoff A, Spranger M, Albert F, Hacke W (1996) The value of intracranial pressure monitoring in acute hemispheric stroke. Neurology 47(2):393–398

    Article  CAS  PubMed  Google Scholar 

  42. Poca MA, Benejam B, Sahuquillo J, Riveiro M, Frascheri L, Merino MA, Delgado P, Alvarez-Sabin J (2010) Monitoring intracranial pressure in patients with malignant middle cerebral artery infarction: is it useful? J Neurosurg 112(3):648–657

    Article  PubMed  Google Scholar 

  43. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367(26):2471–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stolz EP (2008) Role of ultrasound in diagnosis and management of cerebral vein and sinus thrombosis. Front Neurol Neurosci 23:112–121

    PubMed  Google Scholar 

  45. Stravitz RT, Kramer AH, Davern T, Shaikh AOS, Caldwell SH, Mehta RL, Blei AT, Fontana RJ, McGuire BM, Rossaro L, Smith AD, Lee WM (2007) Intensive care of patients with acute liver failure: recommendations of the US. Acute liver failure study group. Crit Care Med 35(11):2498–2508

    Article  PubMed  Google Scholar 

  46. Rajajee V, Williamson CA, Fontana RJ, Courey AJ, Patil PG (2018) Noninvasive intracranial pressure assessment in acute liver failure. Neurocrit Care 29(2):280–290

    Article  PubMed  Google Scholar 

  47. Karvellas CJ, Fix OK, Battenhouse H, Durkalski V, Sanders C, Lee WM (2014) Outcomes and complications of intracranial pressure monitoring in acute liver failure: a retrospective cohort study. Crit Care Med 42(5):1157–1167

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hay JE (2004) Acute liver failure. Curr Treat Options Gastroenterol 7(6):459–468

    Article  PubMed  Google Scholar 

  49. Strauss G, Hansen BA, Kirkegaard P, Rasmussen A, Hjortrup A, Larsen FS (1997) Liver function, cerebral blood flow autoregulation, and hepatic encephalopathy in fulminant hepatic failure. Hepatology 25(4):837–839

    Article  CAS  PubMed  Google Scholar 

  50. Ardizzone G, Arrigo A, Panaro F, Ornis S, Colombi R, Distefano S, Jarzembowski TM, Cerruti E (2004) Cerebral hemodynamic and metabolic changes in patients with fulminant hepatic failure during liver transplantation. Transplant Proc 36(10):3060–3064

    Article  CAS  PubMed  Google Scholar 

  51. Strauss GI (2007) The effect of hyperventilation upon cerebral blood flow and metabolism in patients with fulminant hepatic failure. Dan Med Bull 54:99–111

    CAS  PubMed  Google Scholar 

  52. Aggarwal S, Brooks DM, Kang Y, Linden PK, Patzer JF (2008) Noninvasive monitoring of cerebral perfusion pressure in patients with acute liver failure using transcranial Doppler ultrasonography. Liver Transplant 14(7):1048–1057

    Article  Google Scholar 

  53. De Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, Reinhard M, Fábregas N, Pickard JD, Czosnyka M (2012) Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care 17(1):58–66

    Article  PubMed  Google Scholar 

  54. Zweifel C, Czosnyka M, Carrera E, De Riva N, Pickard JD, Smielewski P (2012) Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery 71(4):853–861

    Article  PubMed  Google Scholar 

  55. Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD (1998) Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg 88(5):802–808

    Article  CAS  PubMed  Google Scholar 

  56. Helmke K, Burdelski M, Hansen HC (2000) Detection and monitoring of intracranial pressure dysregulation in liver failure by ultrasound. Transplantation 70(2):392–395

    Article  CAS  PubMed  Google Scholar 

  57. Hayman EG, Patel AP, Kimberly WT, Sheth KN, Simard JM (2018) Cerebral edema after cardiopulmonary resuscitation: a therapeutic target following cardiac arrest? Neurocrit Care 28(3):276–287

    Article  CAS  PubMed  Google Scholar 

  58. Gueugniaud PY, Garcia-Darennes F, Gaussorgues P, Bancalari G, Petit P, Robert D (1991) Prognostic significance of early intracranial and cerebral perfusion pressures in post-cardiac arrest anoxic coma. Intensive Care Med 17(7):392–398

    Article  CAS  PubMed  Google Scholar 

  59. Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, Zimmerman JL (2015) Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132(18):S465–S482

    Article  PubMed  PubMed Central  Google Scholar 

  60. You Y, Park J, Min J, Yoo I, Jeong W, Cho Y, Ryu S, Lee J, Kim S, Cho S, Oh S, Lee J, Ahn H, Lee B, Lee D, Na K, In Y, Kwack C, Lee J (2018) Relationship between time related serum albumin concentration, optic nerve sheath diameter, cerebrospinal fluid pressure, and neurological prognosis in cardiac arrest survivors. Resuscitation 131:42–47

    Article  PubMed  Google Scholar 

  61. Ueda T, Ishida E, Kojima Y, Yoshikawa S, Yonemoto H (2015) Sonographic optic nerve sheath diameter: a simple and rapid tool to assess the neurologic prognosis after cardiac arrest. J Neuroimaging 25(6):927–930

    Article  PubMed  Google Scholar 

  62. Ertl M, Weber S, Hammel G, Schroeder C, Krogias C (2018) Transorbital sonography for early prognostication of hypoxic-ischemic encephalopathy after cardiac arrest. J Neuroimaging 28(5):542–548

    Article  PubMed  Google Scholar 

  63. Chelly J, Deye N, Guichard JP, Vodovar D, Vong L, Jochmans S, Thieulot-Rolin N, Sy O, Serbource-Goguel J, Vinsonneau C, Megarbane B, Vivien B, Tazarourte K, Monchi M (2016) The optic nerve sheath diameter as a useful tool for early prediction of outcome after cardiac arrest: a prospective pilot study. Resuscitation 103:7–13

    Article  PubMed  Google Scholar 

  64. Cardim D, Griesdale DE, Ainslie PN, Robba C (2019) A comparison of non-invasive versus invasive measures of intracranial pressure in hypoxic ischaemic brain injury after cardiac arrest. Resuscitation 137:221–228

    Article  PubMed  Google Scholar 

  65. Lewis LM, Gomez CR, Ruoff BE, Gomez SM, Hall IS, Gasirowski B (1990) Transcranial Doppler determination of cerebral perfusion in patients undergoing CPR: methodology and preliminary findings. Ann Emerg Med 19(10):1148–1151

    Article  CAS  PubMed  Google Scholar 

  66. Blumenstein J, Kempfert J, Walther T, Van Linden A, Fassl J, Borger M, Mohr FW (2010) Cerebral flow pattern monitoring by transcranial Doppler during cardiopulmonary resuscitation. Anaesth Intensive Care 38(2):376–380

    Article  CAS  PubMed  Google Scholar 

  67. Ghazy T, Darwisch A, Schmidt T, Fajfrova Z, Zickmüller C, Masshour A, Matschke K, Kappert U (2016) Transcranial Doppler sonography for optimization of cerebral perfusion in aortic arch operation. Ann Thorac Surg 101(1):e15–e16

    Article  PubMed  Google Scholar 

  68. Lovett ME, Maa T, Chung MG, O’Brien NF (2018) Cerebral blood flow velocity and autoregulation in paediatric patients following a global hypoxic-ischaemic insult. Resuscitation 126:191–196

    Article  PubMed  Google Scholar 

  69. Lin JJ, Hsia SH, Wang HS, Chiang MC, Lin KL (2015) Transcranial Doppler ultrasound in therapeutic hypothermia for children after resuscitation. Resuscitation 89:182–187

    Article  PubMed  Google Scholar 

  70. Hoedemaekers CW, Ainslie PN, Hinssen S, Aries MJ, Bisschops LL, Hofmeijer J, van der Hoeven JG (2017) Low cerebral blood flow after cardiac arrest is not associated with anaerobic cerebral metabolism. Resuscitation 120:45–50

    Article  PubMed  Google Scholar 

  71. van den Brule JMD, Vinke E, van Loon LM, van der Hoeven JG, Hoedemaekers CWE (2017) Middle cerebral artery flow, the critical closing pressure, and the optimal mean arterial pressure in comatose cardiac arrest survivors—an observational study. Resuscitation 110:85–89

    Article  PubMed  Google Scholar 

  72. Heimburger D, Durand M, Gaide-Chevronnay L, Dessertaine G, Moury PH, Bouzat P, Albaladejo P, Payen JF (2016) Quantitative pupillometry and transcranial Doppler measurements in patients treated with hypothermia after cardiac arrest. Resuscitation 103:88–93

    Article  PubMed  Google Scholar 

  73. Doepp F, Reitemeier J, Storm C, Hasper D, Schreiber SJ (2014) Duplex sonography of cerebral blood flow after cardiac arrest–a prospective observational study. Resuscitation 85(4):516–521

    Article  Google Scholar 

  74. Bisschops LLA, Van Der Hoeven JG, Hoedemaekers CWE (2012) Effects of prolonged mild hypothermia on cerebral blood flow after cardiac arrest. Crit Care Med 40(8):2362–2367

    Article  PubMed  Google Scholar 

  75. Lemiale V, Huet O, Vigué B, Mathonnet A, Spaulding C, Mira JP, Carli P, Duranteau J, Cariou A (2008) Changes in cerebral blood flow and oxygen extraction during post-resuscitation syndrome. Resuscitation 76(1):17–24

    Article  PubMed  Google Scholar 

  76. Iida K, Satoh H, Arita K, Nakahara T, Kurisu K, Ohtani M (1997) Delayed hyperemia causing intracranial hypertension after cardiopulmonary resuscitation. Crit Care Med 25(6):971–976

    Article  CAS  PubMed  Google Scholar 

  77. Buunk G, Van Der Hoeven JG, Meinders AE (1999) Prognostic significance of the difference between mixed venous and jugular bulb oxygen saturation in comatose patients resuscitated from a cardiac arrest. Resuscitation 41(3):257–262

    Article  CAS  PubMed  Google Scholar 

  78. Aarrevaara T, Dobson IR (2013) Is there a conflict between teaching and research? the views of engineering academics in Europe. Glob J Eng Educ 15(2):75–81

    Google Scholar 

  79. Álvarez-Fernández JA, Pérez-Quintero R (2009) Use of transcranial Doppler ultrasound in the management of post-cardiac arrest syndrome. Resuscitation 80(11):1321–1322

    Article  PubMed  Google Scholar 

  80. Carbutti G, Romand JA, Carballo JS, Bendjelid SMH, Suter PM, Bendjelid K (2003) Transcranial Doppler: an early predictor of ischemic stroke after cardiac arrest? Anesth Analg 97(5):1262–1265

    Article  PubMed  Google Scholar 

  81. Rincon F, Ghosh S, Dey S, Maltenfort M, Vibbert M, Urtecho J, McBride W, Moussouttas M, Bell R, Ratliff JK, Jallo J (2012) Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States. Neurosurgery 71(4):795–803

    Article  PubMed  Google Scholar 

  82. Veeravagu A, Chen YR, Ludwig C, Rincon F, Maltenfort M, Jallo J, Choudhri O, Steinberg GK, Ratliff JK (2014) Acute lung injury in patients with subarachnoid hemorrhage: a nationwide inpatient sample study. World Neurosurgery 82(1–2):e235–e241

    Article  PubMed  Google Scholar 

  83. Elizabeth Wilcox M, Brummel NE, Archer K, Wesley Ely E, Jackson JC, Hopkins RO (2013) Cognitive dysfunction in ICU patients: risk factors, predictors, and rehabilitation interventions. Crit Care Med 41(9 SUPPL 1):S81–S98

    Article  PubMed  Google Scholar 

  84. Young N, Rhodes JKJ, Mascia L, Andrews PJD (2010) Ventilatory strategies for patients with acute brain injury. Curr Opin Crit Care 16(1):45–52

    Article  PubMed  Google Scholar 

  85. Corradi F, Robba C, Tavazzi G, Via G (2018) Combined lung and brain ultrasonography for an individualized ‘brain-protective ventilation strategy’ in neurocritical care patients with challenging ventilation needs. Crit Ultrasound J 10(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  86. Schramm P, Closhen D, Felkel M, Berres M, Klein KU, David M, Werner C, Engelhard K (2013) Influence of PEEP on cerebral blood flow and cerebrovascular autoregulation in patients with acute respiratory distress syndrome. J Neurosurg Anesthesiol 25(2):162–167

    Article  PubMed  Google Scholar 

  87. Young GB, Bolton CF, Archibald YM, Austin TW, Wells GA (1992) The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol 9(1):145–152

    Article  CAS  PubMed  Google Scholar 

  88. Robba C, Crippa IA, Taccone FS (2018) Septic Encephalopathy. Curr. Neurol. Neurosci. Rep. 18(12):82

    Article  PubMed  Google Scholar 

  89. Pfister D, Siegemund M, Dell-Kuster S, Smielewski P, Rüegg S, Strebel SP, Marsch SCU, Pargger H, Steiner LA (2008) Cerebral perfusion in sepsis-associated delirium. Crit Care 12(3):R63

    Article  PubMed  PubMed Central  Google Scholar 

  90. Scalea TM, Rodriguez A, Chiu WC, Brenneman FD, Fallon WF, Kato K, McKenney MG, Nerlich ML, Ochsner MG, Yoshii H (1999) Focused assessment with sonography for trauma (FAST): results from an International Consensus Conference. J Trauma Inj Infect Crit Care 46(3):466–472

    Article  CAS  Google Scholar 

  91. Neri L, Storti E, Lichtenstein D (2007) Toward an ultrasound curriculum for critical care medicine. Crit Care Med 35(Suppl):S290–S304

    Article  PubMed  Google Scholar 

  92. Bouzat P, Almeras L, Manhes P, Sanders L, Levrat A, David JS, Cinotti R, Chabanne R, Gloaguen A, Bobbia X, Thoret S, Oujamaa L, Bosson JL, Payen JF (2016) Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology 125(2):346–354

    Article  PubMed  Google Scholar 

  93. Houzé-Cerfon CH, Bounes V, Guemon J, Le Gourrierec T, Geeraerts T (2018) Quality and feasibility of sonographic measurement of the optic nerve sheath diameter to estimate the risk of raised intracranial pressure after traumatic brain injury in prehospital setting. Prehosp Emerg Care 23:277–283

    Article  PubMed  Google Scholar 

  94. Pou JL, Centellas JA, Sans MP, Barcena JP, Vivas MC, Ramirez JH, Juve JI (2004) Monitoring midline shift by transcranial color-coded sonography in traumatic brain injury. Intensive Care Med 30(8):1672–1675

    Google Scholar 

  95. Tazarourte K, Atchabahian A, Tourtier JP, David JS, Ract C, Savary D, Monchi M, Vigué B (2011) Pre-hospital transcranial Doppler in severe traumatic brain injury: a pilot study. Acta Anaesthesiol Scand 55(4):422–428

    Article  CAS  PubMed  Google Scholar 

  96. Rasulo FA, Bertuetti R, Robba C, Lusenti F, Cantoni A, Bernini M, Girardini A, Calza S, Piva S, Fagoni N, Latronico N (2017) The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care 21(1):44

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Mazen Elwishi, Andrea Petropolis, Carolina B. Gomez, Andrea Rigamonti and Simon Abrahamson for generously sharing their educational material.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Robba.

Ethics declarations

Conflicts of interest

GC is Editor-in-Chief of Intensive Care Medicine. CR is Junior Editor of Intensive Care Medicine. The other authors have nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Probes/Technology, TCCD anatomy (DOC 42 kb)

134_2019_5610_MOESM2_ESM.jpg

TCCD-basic technique. Basic steps for the insonation of the MCA. Using two-dimensional B-mode imaging, midbrain is identified in the transtemporal window (step 1), and subsequently pulsations of the cerebral arteries at the level of the circle of Willis are identified anterior and lateral to the midbrain. Colour Doppler is then used to better identify each artery by its depth and direction of flow in relation to the probe and other visualised arteries (step 2). Once the target vessel is identified, spectral Doppler waveforms can be obtained through pulsed-wave (PW) Doppler with a sample volume of 3–6-mm gate for the anterior circulation and up to 10-mm gate for posterior circulation (step 3) (JPEG 1745 kb)

134_2019_5610_MOESM3_ESM.jpg

1c–d Summary of identification criteria for arteries of the circle of Willis. MCA, middle cerebral artery; ACA, anterior cerebral artery; PCA, posterior cerebral artery (JPEG 2159 kb)

Supplementary material 4 (JPEG 1521 kb)

Video demonstrating TCCD examination and vessels insonation (MP4 18745 kb)

Basic and advanced TCD-derived parameters (DOC 356 kb)

Video demonstrating how to perform ONSD examination (MP4 17572 kb)

TCD for the diagnosis of vasospasm (DOCX 737 kb)

Changes in the middle cerebral artery waveform morphology during progressive increase of ICP and decrease in CPP. When ICP equalizes to diastolic blood pressure, cerebral blood flow is only detected during systole. If ICP reaches values greater than diastolic blood pressure, an oscillatory movement of blood with reversal of diastolic flow appears. When ICP reaches the systolic blood pressure, only sharp systolic spikes are evident (reverberating flow), indicating the absence of any net forward flow (i.e., absence of cerebral blood supply) compatible with cerebral circulatory arrest (MP4 24921 kb)

134_2019_5610_MOESM10_ESM.doc

B-mode and colour Doppler video of middle cerebral artery showing only Doppler signals during the systolic phase of the cardiac cycle. This pattern is concerning for high ICPs and progression to cerebral circulatory arrest (DOC 58 kb)

Brain ultrasonography in the context of stroke management (JPEG 1691 kb)

Figure demonstrating the use of point-of-care ultrasound in the context of cardiac arrest. Brain ultrasonography can be implemented as part of the whole-body sonographic assessment of patients suffering cardiac arrest for resuscitation guidance or for monitoring in the post-cardiac arrest management (MOV 4015 kb)

The use of brain ultrasonography in the context of cardiac arrest and post-resuscitation syndrome (JPEG 890 kb)

134_2019_5610_MOESM14_ESM.jpg

Table 2a. Summary of studies exploring ultrasonography-TCCD prognostic performance in cardiac arrest. CPC: cerebral performance category; CVR: cerebrovascular resistance; Dia: diastolic; SD: standard deviations from previously published normative values for children of similar age and gender; EDV: end-diastolic velocity; EFV: extreme flow velocity (= a value greater than or less than two standard deviations from normative); GOS-E: Extended Glasgow Outcome Scale, dFV: diastolic flow velocity; MFVMCA: mean flow velocity middle of cerebral artery; NR: not reported; NS: non-survivors; PI: pulsatility index; PSV: peak systolic velocity; RI: resistivity index; Sys: systolic (JPEG 2352 kb)

134_2019_5610_MOESM15_ESM.docx

Table 2b. Summary of studies exploring ultrasonography-ONSD prognostic performance. Adm: admission; AUC: area under the curve; CI: confidence interval; CPC: cerebral performance category; d: day; GOS: Glasgow Outcome Scale; IQR: inter-quartile range; SD: standard deviation; Se: sensitivity; Sp: specificity; TTM: targeted temperature management (DOCX 231 kb)

134_2019_5610_MOESM16_ESM.docx

Special considerations: the use of brain ultrasonography in the paediatric population and in pregnant patients (DOCX 70 kb)

134_2019_5610_MOESM17_ESM.docx

Paediatric case 1. Video clip in axial plane demonstrating hyperechogenic tumour with a hypoechogenic cystic component and compression of surrounding cerebellar tissue (DOCX 30 kb)

134_2019_5610_MOESM18_ESM.docx

Paediatric case 2. Video demonstrating large arterial supply and venous drainage of an intraventricular choroid plexus tumour (DOCX 153 kb)

Supplementary material 19 (MOV 8283 kb)

Supplementary material 20 (MOV 7436 kb)

134_2019_5610_MOESM21_ESM.tiff

Different case scenarios in the paediatric population. Image A. Coronal image demonstrating marked ventriculomegaly, involving both lateral ventricles, frontal and occipital horns, as well the third ventricle. Image B. Coronal image demonstrating a large intraventricular cyst displacing the midline and causing contralateral entrapment hydrocephalus. Image C. Sagittal image demonstrating ventriculomegaly, with hyperdense choroid plexus in the posterior aspect of the lateral ventricle. Image D. Coronal image demonstrating hydrocephalus due to a tectal arachnoid cyst, with catheter insertion demonstrated in the inferior aspect of the cyst. Image E. Coronal image demonstrating marked ventriculomegaly and a cavum septum pellucidum. Image F. Axial image demonstrating large hyperechogenic tumour with hypoechogenic cystic component compressing the cerebellum. Image G. Coronal image demonstrating intraparenchymal hypoechogenic cystic lesion with surrounding superolateral hyperechogenic oedematous tissue. Image H. Sagittal image demonstrating a large, bilobar, hyperechogenic mass within the lateral ventricle, arising from the choroid plexus. Image I. Duplex Doppler imaging demonstrating the large vasculature which are the arterial supply and venous drainage of the tumour. (TIFF 1521 kb)

Pitfalls, artefacts and limitations of brain ultrasonography (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robba, C., Goffi, A., Geeraerts, T. et al. Brain ultrasonography: methodology, basic and advanced principles and clinical applications. A narrative review. Intensive Care Med 45, 913–927 (2019). https://doi.org/10.1007/s00134-019-05610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-019-05610-4

Keywords

Navigation