Skip to main content

Advertisement

Log in

Novel Treatments in Neuroprotection for Aneurysmal Subarachnoid Hemorrhage

  • Critical Care Neurology (K Sheth, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

New neuroprotective treatments aimed at preventing or minimizing “delayed brain injury” are attractive areas of investigation and hold the potential to have substantial beneficial effects on aneurysmal subarachnoid hemorrhage (aSAH) survivors. The underlying mechanisms for this “delayed brain injury” are multi-factorial and not fully understood. The most ideal treatment strategies would have the potential for a pleotropic effect positively modulating multiple implicated pathophysiological mechanisms at once. My personal management (RFJ) of patients with aneurysmal subarachnoid hemorrhage closely follows those treatment recommendations contained in modern published guidelines. However, over the last 5 years, I have also utilized a novel treatment strategy, originally developed at the University of Maryland, which consists of a 14-day continuous low-dose intravenous heparin infusion (LDIVH) beginning 12 h after securing the ruptured aneurysm. In addition to its well-known anti-coagulant properties, unfractionated heparin has potent anti-inflammatory effects and through multiple mechanisms may favorably modulate the neurotoxic and neuroinflammatory processes prominent in aneurysmal subarachnoid hemorrhage. In my personal series of patients treated with LDIVH, I have found significant preservation of neurocognitive function as measured by the Montreal Cognitive Assessment (MoCA) compared to a control cohort of my patients treated without LDIVH (RFJ unpublished data presented at the 2015 AHA/ASA International Stroke Conference symposium on neuroinflammation in aSAH and in abstract format at the 2015 AANS/CNS Joint Cerebrovascular Section Annual Meeting). It is important for academic physicians involved in the management of these complex patients to continue to explore new treatment options that may be protective against the potentially devastating “delayed brain injury” following cerebral aneurysm rupture. Several of the treatment options included in this review show promise and could be carefully adopted as the level of evidence for each improves. Other proposed neuroprotective treatments like statins and magnesium sulfate were previously thought to be very promising and to varying degrees were adopted at numerous institutions based on somewhat limited human evidence. Recent clinical trials and meta-analysis have shown no benefit for these treatments, and I currently no longer utilize either treatment as prophylaxis in my practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8:635–42.

    Article  PubMed  Google Scholar 

  2. Samuels O, Webb A, Culler S, Martin K, Barrow D. Impact of a dedicated neurocritical care team in treating patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;14:334–40.

    Article  PubMed  Google Scholar 

  3. Tam AK, Kapadia A, Ilodigwe D, Li Z, Schweizer TA, Macdonald RL. Impact of global cerebral atrophy on clinical outcome after subarachnoid hemorrhage. J Neurosurg. 2013;119:198–206. An excellent article demonstrating that aSAH can cause global cerebral atrophy leading to poor cognitive function.

    Article  PubMed  Google Scholar 

  4. Tam AK, Ilodigwe D, Li Z, Schweizer TA, Macdonald RL. Global cerebral atrophy after subarachnoid hemorrhage: a possible marker of acute brain injury and assessment of its impact on outcome. Acta Neurochir Suppl. 2013;115:17–21.

    PubMed  Google Scholar 

  5. Bendel P, Koivisto T, Niskanen E, Kononen M, Aikia M, Hanninen T, et al. Brain atrophy and neuropsychological outcome after treatment of ruptured anterior cerebral artery aneurysms: a voxel-based morphometric study. Neuroradiology. 2009;51:711–22.

    Article  PubMed  Google Scholar 

  6. Kwon MS, Woo SK, Kurland DB, Yoon SH, Palmer AF, Banerjee U, et al. Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci. 2015;16:5028–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2010;41:e519–36.

    Article  PubMed  Google Scholar 

  8. Passier PE, Visser-Meily JM, Rinkel GJ, Lindeman E, Post MW. Life satisfaction and return to work after aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2011;20:324–9.

    Article  PubMed  Google Scholar 

  9. Lindahl U, Lidholt K, Spillmann D, Kjellen L. More to “heparin” than anticoagulation. Thromb Res. 1994;75:1–32.

    Article  CAS  PubMed  Google Scholar 

  10. Simard JM, Schreibman D, Aldrich EF, Stallmeyer B, Le B, James RF, et al. Unfractionated heparin: multitargeted therapy for delayed neurological deficits induced by subarachnoid hemorrhage. Neurocrit Care. 2010;13:439–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des. 2008;72:455–82.

    Article  CAS  PubMed  Google Scholar 

  12. Hirsh J, Anand SS, Halperin JL, Fuster V. Mechanism of action and pharmacology of unfractionated heparin. Arterioscler Thromb Vasc Biol. 2001;21:1094–6.

    Article  CAS  PubMed  Google Scholar 

  13. Young E. The anti-inflammatory effects of heparin and related compounds. Thromb Res. 2008;122:743–52.

    Article  CAS  PubMed  Google Scholar 

  14. Kandrotas RJ. Heparin pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 1992;22:359–74.

    Article  CAS  PubMed  Google Scholar 

  15. Casu B. Structure of heparin and heparin fragments. Ann N Y Acad Sci. 1989;556:1–17.

    Article  CAS  PubMed  Google Scholar 

  16. Coombe DR. Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol Cell Biol. 2008;86:598–607.

    Article  CAS  PubMed  Google Scholar 

  17. Elsayed E, Becker RC. The impact of heparin compounds on cellular inflammatory responses: a construct for future investigation and pharmaceutical development. J Thromb Thrombolysis. 2003;15:11–8.

    Article  CAS  PubMed  Google Scholar 

  18. Tyrrell DJ, Horne AP, Holme KR, Preuss JM, Page CP. Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol. 1999;46:151–208.

    Article  CAS  PubMed  Google Scholar 

  19. Amiconi G, Zolla L, Vecchini P, Brunori M, Antonini E. The effect of macromolecular polyanions on the functional properties of human hemoglobin. Eur J Biochem. 1977;76:339–43.

    Article  CAS  PubMed  Google Scholar 

  20. Engelberg H. Actions of heparin that may affect the malignant process. Cancer. 1999;85:257–72.

    Article  CAS  PubMed  Google Scholar 

  21. Chansel D, Ciroldi M, Vandermeersch S, Jackson LF, Gomez AM, Henrion D, et al. Heparin binding EGF is necessary for vasospastic response to endothelin. FASEB J. 2006;20:1936–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kuwahara-Watanabe K, Hidai C, Ikeda H, Aoka Y, Ichikawa K, Iguchi N, et al. Heparin regulates transcription of endothelin-1 gene in endothelial cells. J Vasc Res. 2005;42:183–9.

    Article  CAS  PubMed  Google Scholar 

  23. Yokokawa K, Mandal AK, Kohno M, Horio T, Murakawa K, Yasunari K, et al. Heparin suppresses endothelin-1 action and production in spontaneously hypertensive rats. Am J Physiol. 1992;263:R1035–41.

    CAS  PubMed  Google Scholar 

  24. Rider CC. Heparin/heparan sulphate binding in the TGF-beta cytokine superfamily. Biochem Soc Trans. 2006;34:458–60.

    Article  CAS  PubMed  Google Scholar 

  25. Kalmes A, Daum G, Clowes AW. EGFR transactivation in the regulation of SMC function. Ann N Y Acad Sci. 2001;947:42–54. discussion 54–45.

    Article  CAS  PubMed  Google Scholar 

  26. Higashiyama S, Iwabuki H, Morimoto C, Hieda M, Inoue H, Matsushita N. Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci. 2008;99:214–20.

    Article  CAS  PubMed  Google Scholar 

  27. Simard JM, Tosun C, Ivanova S, Kurland DB, Hong C, Radecki L, et al. Heparin reduces neuroinflammation and transsynaptic neuronal apoptosis in a model of subarachnoid hemorrhage. Transl Stroke Res. 2012;3:155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wurm G, Tomancok B, Nussbaumer K, Adelwohrer C, Holl K. Reduction of ischemic sequelae following spontaneous subarachnoid hemorrhage: a double-blind, randomized comparison of enoxaparin versus placebo. Clin Neurol Neurosurg. 2004;106:97–103.

    Article  PubMed  Google Scholar 

  29. Siironen J, Juvela S, Varis J, Porras M, Poussa K, Ilveskero S, et al. No effect of enoxaparin on outcome of aneurysmal subarachnoid hemorrhage: a randomized, double-blind, placebo-controlled clinical trial. J Neurosurg. 2003;99:953–9.

    Article  CAS  PubMed  Google Scholar 

  30. Simard JM, Aldrich EF, Schreibman D, James RF, Polifka A, Beaty N. Low-dose intravenous heparin infusion in patients with aneurysmal subarachnoid hemorrhage: a preliminary assessment. J Neurosurg. 2013;119:1611–9. This human study demonstrates impressive protection against vasospasm related infarction in the heparin treated group.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wong GK, Lam SW, Wong A, Ngai K, Poon WS, Mok V. Comparison of montreal cognitive assessment and mini-mental state examination in evaluating cognitive domain deficit following aneurysmal subarachnoid haemorrhage. PLoS One. 2013;8, e59946. Validation of the Montreal Cognitive Assessment in aneurysmal SAH patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schweizer TA, Al-Khindi T, Macdonald RL. Mini-Mental State Examination versus Montreal Cognitive Assessment: rapid assessment tools for cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. J Neurol Sci. 2012;316:137–40.

    Article  PubMed  Google Scholar 

  33. Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J Biol Chem. 2013;288:3655–67. Detailed information on the SUR1-Trpm4 channel.

    Article  CAS  PubMed  Google Scholar 

  34. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12:433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, et al. Targeting secondary injury in intracerebral haemorrhage—perihaematomal oedema. Nat Rev Neurol. 2015;11:111–22.

    Article  PubMed  Google Scholar 

  36. Mehta RI, Tosun C, Ivanova S, Tsymbalyuk N, Famakin BM, Kwon MS, et al. Sur1-Trpm4 cation channel expression in human cerebral infarcts. J Neuropathol Exp Neurol. 2015;74:835–49.

    Article  CAS  PubMed  Google Scholar 

  37. Caffes N, Kurland DB, Gerzanich V, Simard JM. Glibenclamide for the treatment of ischemic and hemorrhagic stroke. Int J Mol Sci. 2015;16:4973–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tosun C, Kurland DB, Mehta R, Castellani RJ, de Jong JL, Kwon MS, et al. Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke. 2013;44:3522–8. This study demonstrates glibenclamide inhibition of SAH induced neuroinflammation and cognitive impairment in the rat.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.

    Article  CAS  PubMed  Google Scholar 

  40. Kunte H, Busch MA, Trostdorf K, Vollnberg B, Harms L, Mehta RI, et al. Hemorrhagic transformation of ischemic stroke in diabetics on sulfonylureas. Ann Neurol. 2012;72:799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheth KN, Kimberly WT, Elm JJ, Kent TA, Mandava P, Yoo AJ, et al. Pilot study of intravenous glyburide in patients with a large ischemic stroke. Stroke. 2014;45:281–3.

    Article  CAS  PubMed  Google Scholar 

  42. Sheth KN, Elm J, Hinson H, Molyneaux B, Beslow L, Sze G, et al. GAMES (Glyburide Advantage in Malignant Edema and Stroke) RP: a phase II study toward preventing edema after ischemia (S7.004). Neurology. 2016;86:1526–1632X.

    Google Scholar 

  43. Kapiotis S, Sengoelge G, Sperr WR, Baghestanian M, Quehenberger P, Bevec D, et al. Ibuprofen inhibits pyrogen-dependent expression of VCAM-1 and ICAM-1 on human endothelial cells. Life Sci. 1996;58:2167–81.

    Article  CAS  PubMed  Google Scholar 

  44. Bavbek M, Polin R, Kwan AL, Arthur AS, Kassell NF, Lee KS. Monoclonal antibodies against ICAM-1 and CD18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke. 1998;29:1930–5.

    Article  CAS  PubMed  Google Scholar 

  45. Polin RS, Bavbek M, Shaffrey ME, Billups K, Bogaev CA, Kassell NF, et al. Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. J Neurosurg. 1998;89:559–67.

    Article  CAS  PubMed  Google Scholar 

  46. Aihara Y, Kasuya H, Onda H, Hori T, Takeda J. Quantitative analysis of gene expressions related to inflammation in canine spastic artery after subarachnoid hemorrhage. Stroke. 2001;32:212–7.

    Article  CAS  PubMed  Google Scholar 

  47. Nissen JJ, Mantle D, Gregson B, Mendelow AD. Serum concentration of adhesion molecules in patients with delayed ischaemic neurological deficit after aneurysmal subarachnoid haemorrhage: the immunoglobulin and selectin superfamilies. J Neurol Neurosurg Psychiatry. 2001;71:329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oshiro EM, Hoffman PA, Dietsch GN, Watts MC, Pardoll DM, Tamargo RJ. Inhibition of experimental vasospasm with anti-intercellular adhesion molecule-1 monoclonal antibody in rats. Stroke. 1997;28:2031–7. discussion 2037–2038.

    Article  CAS  PubMed  Google Scholar 

  49. Sills Jr AK, Clatterbuck RE, Thompson RC, Cohen PL, Tamargo RJ. Endothelial cell expression of intercellular adhesion molecule 1 in experimental posthemorrhagic vasospasm. Neurosurgery. 1997;41:453–60. discussion 460–451.

    Article  PubMed  Google Scholar 

  50. Gallia GL, Tamargo RJ. Leukocyte-endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage. Neurol Res. 2006;28:750–8.

    Article  CAS  PubMed  Google Scholar 

  51. Lin CL, Shih HC, Lieu AS, Lee KS, Dumont AS, Kassell NF, et al. Attenuation of experimental subarachnoid hemorrhage-induced cerebral vasospasm by the adenosine A(2A) receptor agonist CGS 21680. J Neurosurg. 2007;106:436–41.

    Article  PubMed  Google Scholar 

  52. Mack WJ, Mocco J, Hoh DJ, Huang J, Choudhri TF, Kreiter KT, et al. Outcome prediction with serum intercellular adhesion molecule-1 levels after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2002;96:71–5.

    Article  CAS  PubMed  Google Scholar 

  53. Mocco J, Mack WJ, Kim GH, Lozier AP, Laufer I, Kreiter KT, et al. Rise in serum soluble intercellular adhesion molecule-1 levels with vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2002;97:537–41.

    Article  CAS  PubMed  Google Scholar 

  54. Chyatte D. Prevention of chronic cerebral vasospasm in dogs with ibuprofen and high-dose methylprednisolone. Stroke. 1989;20:1021–6.

    Article  CAS  PubMed  Google Scholar 

  55. Chyatte D, Fode NC, Nichols DA, Sundt TM. Preliminary-report - effects of high-dose methylprednisolone on delayed cerebral-ischemia in patients at high-risk for vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1987;21:157–60.

    Article  CAS  PubMed  Google Scholar 

  56. Thai QA, Oshiro EM, Tamargo RJ. Inhibition of experimental vasospasm in rats with the periadventitial administration of ibuprofen using controlled-release polymers. Stroke. 1999;30:140–7.

    Article  CAS  PubMed  Google Scholar 

  57. Frazier JL, Pradilla G, Wang PP, Tamargo RJ. Inhibition of cerebral vasospasm by intracranial delivery of ibuprofen from a controlled-release polymer in a rabbit model of subarachnoid hemorrhage. J Neurosurg. 2004;101:93–8.

    Article  CAS  PubMed  Google Scholar 

  58. Pradilla G, Thai QA, Legnani FG, Clatterbuck RE, Gailloud P, Murphy KP, et al. Local delivery of ibuprofen via controlled-release polymers prevents angiographic vasospasm in a monkey model of subarachnoid hemorrhage. Neurosurgery. 2005;57:184–90. discussion 184–190.

    Article  PubMed  Google Scholar 

  59. Smith HS, Voss B. Pharmacokinetics of intravenous ibuprofen: implications of time of infusion in the treatment of pain and fever. Drugs. 2012;72:327–37.

    Article  CAS  PubMed  Google Scholar 

  60. Kamal AK, Naqvi I, Husain MR, Khealani BA: Cilostazol versus aspirin for secondary prevention of vascular events after stroke of arterial origin. Cochrane Database Syst Rev 2011:CD008076.

  61. Yamaguchi-Okada M, Nishizawa S, Mizutani A, Namba H. Multifaceted effects of selective inhibitor of phosphodiesterase III, cilostazol, for cerebral vasospasm after subarachnoid hemorrhage in a dog model. Cerebrovasc Dis. 2009;28:135–42.

    Article  CAS  PubMed  Google Scholar 

  62. Suzuki S, Sayama T, Nakamura T, Nishimura H, Ohta M, Inoue T, et al. Cilostazol improves outcome after subarachnoid hemorrhage: a preliminary report. Cerebrovasc Dis. 2011;32:89–93.

    Article  CAS  PubMed  Google Scholar 

  63. Kimura H, Okamura Y, Chiba Y, Shigeru M, Ishii T, Hori T, et al. Cilostazol administration with combination enteral and parenteral nutrition therapy remarkably improves outcome after subarachnoid hemorrhage. Acta Neurochir Suppl. 2015;120:147–52. Cilastazol demonstrates improved outcomes in aSAH.

    PubMed  Google Scholar 

  64. Murahashi T, Kamiyama K, Hara K, Ozaki M, Mikamoto M, Nakagaki Y, et al. The efficiency of cilostazol for cerebral vasospasm following subarachnoid hemorrhage. No Shinkei Geka. 2013;41:393–400.

    PubMed  Google Scholar 

  65. Senbokuya N, Kinouchi H, Kanemaru K, Ohashi Y, Fukamachi A, Yagi S, et al. Effects of cilostazol on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a multicenter prospective, randomized, open-label blinded end point trial. J Neurosurg. 2013;118:121–30. Inhibition of cerebral vasospasm by cilostazol.

    Article  CAS  PubMed  Google Scholar 

  66. Yoshimoto T, Shirasaka T, Fujimoto S, Yoshidumi T, Yamauchi T, Tokuda K, et al. Cilostazol may prevent cerebral vasospasm following subarachnoid hemorrhage. Neurol Med Chir (Tokyo). 2009;49:235–40. discussion 240–231.

    Article  Google Scholar 

  67. Niu PP, Yang G, Xing YQ, Guo ZN, Yang Y. Effect of cilostazol in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurol Sci. 2014;336:146–51. Pooled results from four controlled studies with 340 patients.

    Article  CAS  PubMed  Google Scholar 

  68. Pilitsis JG, Coplin WM, O’Regan MH, Wellwood JM, Diaz FG, Fairfax MR, et al. Measurement of free fatty acids in cerebrospinal fluid from patients with hemorrhagic and ischemic stroke. Brain Res. 2003;985:198–201.

    Article  CAS  PubMed  Google Scholar 

  69. Pilitsis JG, Coplin WM, O’Regan MH, Wellwood JM, Diaz FG, Fairfax MR, et al. Free fatty acids in human cerebrospinal fluid following subarachnoid hemorrhage and their potential role in vasospasm: a preliminary observation. J Neurosurg. 2002;97:272–9.

    Article  CAS  PubMed  Google Scholar 

  70. Bazan NG, Birkle DL, Tang W, Reddy TS. The accumulation of free arachidonic acid, diacylglycerols, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy. Adv Neurol. 1986;44:879–902.

    CAS  PubMed  Google Scholar 

  71. Jang YG, Ilodigwe D, Macdonald RL. Metaanalysis of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2009;10:141–7.

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki H, Kanamaru K, Kuroki M, Sun H, Waga S, Miyazawa T. Effects of tirilazad mesylate on vasospasm and phospholipid hydroperoxides in a primate model of subarachnoid hemorrhage. Stroke. 1999;30:450–5. discussion 455–456.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang S, Wang L, Liu M, Wu B: Tirilazad for aneurysmal subarachnoid haemorrhage. Cochrane Database of Syst Rev:CD006778.

  74. Badjatia N, Seres D, Carpenter A, Schmidt JM, Lee K, Mayer SA, et al. Free Fatty acids and delayed cerebral ischemia after subarachnoid hemorrhage. Stroke. 2012;43:691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Singer P, Shapiro H, Theilla M, Anbar R, Singer J, Cohen J. Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective. Intensive Care Med. 2008;34:1580–92.

    Article  CAS  PubMed  Google Scholar 

  76. Pontes-Arruda A, Demichele S, Seth A, Singer P. The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data.[see comment]. JPEN J Parenter Enteral Nutr. 2008;32:596–605.

    Article  CAS  PubMed  Google Scholar 

  77. Yoneda H, Shirao S, Nakagawara J, Ogasawara K, Tominaga T, Suzuki M. A prospective, multicenter, randomized study of the efficacy of eicosapentaenoic acid for cerebral vasospasm: the EVAS study. World Neurosurg. 2014;81:309–15.

    Article  PubMed  Google Scholar 

  78. Badjatia N, Carpenter A, Fernandez L, Schmidt JM, Mayer SA, Claassen J, et al. Relationship between C-reactive protein, systemic oxygen consumption, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke. 2011;42:2436–42.

    Article  CAS  PubMed  Google Scholar 

  79. Shirao S, Fujisawa H, Kudo A, Kurokawa T, Yoneda H, Kunitsugu I, et al. Inhibitory effects of eicosapentaenoic acid on chronic cerebral vasospasm after subarachnoid hemorrhage: possible involvement of a sphingosylphosphorylcholine-rho-kinase pathway. Cerebrovasc Dis. 2008;26:30–7.

    Article  CAS  PubMed  Google Scholar 

  80. Yoneda H, Shirao S, Kurokawa T, Fujisawa H, Kato S, Suzuki M. Does eicosapentaenoic acid (EPA) inhibit cerebral vasospasm in patients after aneurysmal subarachnoid hemorrhage? Acta Neurol Scand. 2008;118:54–9.

    Article  CAS  PubMed  Google Scholar 

  81. Adamczyk P, He S, Amar AP, Mack WJ. Medical management of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: a review of current and emerging therapeutic interventions. Neurol Res Int. 2013;2013:462491.

    PubMed  PubMed Central  Google Scholar 

  82. Crowley RW, Medel R, Kassell NF, Dumont AS. New insights into the causes and therapy of cerebral vasospasm following subarachnoid hemorrhage. Drug Discov Today. 2008;13:254–60.

    Article  CAS  PubMed  Google Scholar 

  83. Gabikian P, Clatterbuck RE, Eberhart CG, Tyler BM, Tierney TS, Tamargo RJ. Prevention of experimental cerebral vasospasm by intracranial delivery of a nitric oxide donor from a controlled-release polymer: toxicity and efficacy studies in rabbits and rats. Stroke. 2002;33:2681–6.

    Article  PubMed  Google Scholar 

  84. Lee TJ. Nitric oxide and the cerebral vascular function. J Biomed Sci. 2000;7:16–26.

    Article  CAS  PubMed  Google Scholar 

  85. Momin EN, Schwab KE, Chaichana KL, Miller-Lotan R, Levy AP, Tamargo RJ. Controlled delivery of nitric oxide inhibits leukocyte migration and prevents vasospasm in haptoglobin 2–2 mice after subarachnoid hemorrhage. Neurosurgery. 2009;65:937–45. discussion 945.

    Article  PubMed  Google Scholar 

  86. Ehlert A, Schmidt C, Wölfer J, Manthei G, Jacobs AH, Brüning R, Heindel W, Ringelstein EB, Stummer W, Pluta RM, et al. Molsidomine for the prevention of vasospasm-related delayed ischemic neurological deficits and delayed brain infarction and the improvement of clinical outcome after subarachnoid hemorrhage: a single-center clinical observational study. J Neurosurg. 2016;124(1):51–8.Single-center clinical observational study of 29 SAH patients with proven cerebral vasospasm (CVS) receiving molsidomine plus nimodipine, 25 SAH patients with proven CVS receiving only nimodipine, and 20 SAH patients without CVS treated with nimodipine alone. Results were 4 of 29 patients in the first group had vasospasm-associated infarcts on MRI compared to 22 of 45 of the patients receiving nimodipine alone (groups 2 and 3 combined; P < 0.01). NIHSS and mRS in the molsidomine group were 3.0 and 2.5 respectively while the CVS group with nimodipine alone had NIHSS and mRS of 11.5 and 5.0 respectively (P < 0.001). This post-hoc analysis shows promise for molsidomine treatment in SAH patients with cerebral vasospasm.

  87. Takano K, Latour LL, Formato JE, Carano RA, Helmer KG, Hasegawa Y, et al. The role of spreading depression in focal ischemia evaluated by diffusion mapping. Ann Neurol. 1996;39:308–18.

    Article  CAS  PubMed  Google Scholar 

  88. Kraig RP, Nicholson C. Extracellular ionic variations during spreading depression. Neuroscience. 1978;3:1045–59.

    Article  CAS  PubMed  Google Scholar 

  89. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–47.

    Article  CAS  PubMed  Google Scholar 

  90. Tozzi A, de Iure A, Di Filippo M, Costa C, Caproni S, Pisani A, et al. Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proc Natl Acad Sci U S A. 2012;109:18985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;117(Pt 1):199–210.

    Article  PubMed  Google Scholar 

  92. Dreier JP, Korner K, Ebert N, Gorner A, Rubin I, Back T, et al. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cereb Blood Flow Metab. 1998;18:978–90.

    Article  CAS  PubMed  Google Scholar 

  93. Dreier JP, Victorov IV, Petzold GC, Major S, Windmuller O, Fernandez-Klett F, et al. Electrochemical failure of the brain cortex is more deleterious when it is accompanied by low perfusion. Stroke. 2013;44:490–6.

    Article  CAS  PubMed  Google Scholar 

  94. Bosche B, Graf R, Ernestus RI, Dohmen C, Reithmeier T, Brinker G, et al. Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann Neurol. 2010;67:607–17.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dreier JP, Petzold G, Tille K, Lindauer U, Arnold G, Heinemann U, et al. Ischaemia triggered by spreading neuronal activation is inhibited by vasodilators in rats. J Physiol. 2001;531:515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006;129:3224–37.

    Article  PubMed  Google Scholar 

  97. Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–81.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Dreier JP, Drenckhahn C, Woitzik J, Major S, Offenhauser N, Weber-Carstens S, et al. Spreading ischemia after aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:125–9.

    PubMed  Google Scholar 

  99. Hartings JA, Strong AJ, Fabricius M, Manning A, Bhatia R, Dreier JP, et al. Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma. 2009;26:1857–66.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Woitzik J, Dreier JP, Hecht N, Fiss I, Sandow N, Major S, et al. Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2012;32:203–12.

    Article  PubMed  Google Scholar 

  101. Dreier JP, Windmuller O, Petzold G, Lindauer U, Einhaupl KM, Dirnagl U. Ischemia triggered by red blood cell products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats. Neurosurgery. 2002;51:1457–65. discussion 1465–1457.

    PubMed  Google Scholar 

  102. Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. In Stroke. Edited by; 2012:1711–1737. vol 43.

  103. Busch E, Gyngell ML, Eis M, Hoehn-Berlage M, Hossmann KA. Potassium-induced cortical spreading depressions during focal cerebral ischemia in rats: contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J Cereb Blood Flow Metab. 1996;16:1090–9.

    Article  CAS  PubMed  Google Scholar 

  104. Mies G, Iijima T, Hossmann KA. Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport. 1993;4:709–11.

    Article  CAS  PubMed  Google Scholar 

  105. Back T, Ginsberg MD, Dietrich WD, Watson BD. Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: effect on infarct morphology. J Cereb Blood Flow Metab. 1996;16:202–13.

    Article  CAS  PubMed  Google Scholar 

  106. Gill R, Andine P, Hillered L, Persson L, Hagberg H. The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J Cereb Blood Flow Metab. 1992;12:371–9.

    Article  CAS  PubMed  Google Scholar 

  107. Dreier JP, Kleeberg J, Petzold G, Priller J, Windmuller O, Orzechowski HD, et al. Endothelin-1 potently induces Leao’s cortical spreading depression in vivo in the rat: a model for an endothelial trigger of migrainous aura? Brain. 2002;125:102–12.

    Article  PubMed  Google Scholar 

  108. Dreier JP, Kleeberg J, Alam M, Major S, Kohl-Bareis M, Petzold GC, et al. Endothelin-1-induced spreading depression in rats is associated with a microarea of selective neuronal necrosis. Exp Biol Med (Maywood). 2007;232:204–13.

    CAS  Google Scholar 

  109. Jorks D, Major S, Oliveira-Ferreira AI, Kleeberg J, Dreier JP. Endothelin-1(1–31) induces spreading depolarization in rats. Acta Neurochir Suppl. 2011;110:111–7.

    CAS  PubMed  Google Scholar 

  110. Kleeberg J, Petzold GC, Major S, Dirnagl U, Dreier JP. ET-1 induces cortical spreading depression via activation of the ETA receptor/phospholipase C pathway in vivo. Am J Physiol Heart Circ Physiol. 2004;286:H1339–46.

    Article  CAS  PubMed  Google Scholar 

  111. Lauritzen M, Hansen AJ. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab. 1992;12:223–9.

    Article  CAS  PubMed  Google Scholar 

  112. Lu XC, Williams AJ, Wagstaff JD, Tortella FC, Hartings JA. Effects of delayed intrathecal infusion of an NMDA receptor antagonist on ischemic injury and peri-infarct depolarizations. Brain Res. 2005;1056:200–8.

    Article  CAS  PubMed  Google Scholar 

  113. Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003;26:248–54.

    Article  CAS  PubMed  Google Scholar 

  114. Mergenthaler P, Dirnagl U. Protective conditioning of the brain: expressway or roadblock? J Physiol. 2011;589:4147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87:893–9.

    Article  CAS  PubMed  Google Scholar 

  116. Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis. 2009;204:334–41.

    Article  CAS  PubMed  Google Scholar 

  117. TV N, Sangwan A, Sharma B, Majid A, Gk R. Cerebral ischemic preconditioning: the road so far. Mol Neurobiol. 2016;53:2579–93.

    Article  CAS  Google Scholar 

  118. Zhao H. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab. 2009;29:873–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kitagawa K. Ischemic tolerance in the brain: endogenous adaptive machinery against ischemic stress. J Neurosci Res. 2012;90:1043–54.

    Article  CAS  PubMed  Google Scholar 

  120. Kirino T. Ischemic tolerance. J Cereb Blood Flow Metab. 2002;22:1283–96.

    Article  PubMed  Google Scholar 

  121. Wang Y, Reis C, Applegate II R, Stier G, Martin R, Zhang JH. Ischemic conditioning-induced endogenous brain protection: applications pre-, per- or post-stroke. Exp Neurol. 2015;272:26–40. This study is a good review of the concept of ischemic conditioning.

    Article  CAS  PubMed  Google Scholar 

  122. Jones NM, Bergeron M. Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J Cereb Blood Flow Metab. 2001;21:1105–14.

    Article  CAS  PubMed  Google Scholar 

  123. Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet. 2003;362:1028–37.

    Article  CAS  PubMed  Google Scholar 

  124. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    Article  CAS  PubMed  Google Scholar 

  125. Haji Mohd Yasin NA, Herbison P, Saxena P, Praporski S, Konstantinov IE. The role of remote ischemic preconditioning in organ protection after cardiac surgery: a meta-analysis. J Surg Res. 2014;186:207–16.

    Article  PubMed  Google Scholar 

  126. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, et al. ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 1990;528:21–4.

    Article  CAS  PubMed  Google Scholar 

  127. Malhotra S, Naggar I, Stewart M, Rosenbaum DM. Neurogenic pathway mediated remote preconditioning protects the brain from transient focal ischemic injury. Brain Res. 2011;1386:184–90.

    Article  CAS  PubMed  Google Scholar 

  128. Dave KR, Saul I, Busto R, Ginsberg MD, Sick TJ, Perez-Pinzon MA. Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. J Cereb Blood Flow Metab. 2001;21:1401–10.

    Article  CAS  PubMed  Google Scholar 

  129. Zhan RZ, Fujihara H, Baba H, Yamakura T, Shimoji K. Ischemic preconditioning is capable of inducing mitochondrial tolerance in the rat brain. Anesthesiology. 2002;97:896–901.

    Article  CAS  PubMed  Google Scholar 

  130. Ren C, Gao X, Niu G, Yan Z, Chen X, Zhao H. Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS One. 2008;3, e3851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Perez-Pinzon MA, Xu GP, Dietrich WD, Rosenthal M, Sick TJ. Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J Cereb Blood Flow Metab. 1997;17:175–82.

    Article  CAS  PubMed  Google Scholar 

  132. Weih M, Kallenberg K, Bergk A, Dirnagl U, Harms L, Wernecke KD, et al. Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke. 1999;30:1851–4.

    Article  CAS  PubMed  Google Scholar 

  133. Moncayo J, de Freitas GR, Bogousslavsky J, Altieri M, van Melle G. Do transient ischemic attacks have a neuroprotective effect? Neurology. 2000;54:2089–94.

    Article  CAS  PubMed  Google Scholar 

  134. Johnston SC. Ischemic preconditioning from transient ischemic attacks? Data from the Northern California TIA Study. Stroke. 2004;35:2680–2.

    Article  PubMed  Google Scholar 

  135. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Koch S, Gonzalez N. Preconditioning the human brain: proving the principle in subarachnoid hemorrhage. Stroke. 2013;44:1748–53.

    Article  PubMed  Google Scholar 

  137. Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N, et al. Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke. 2009;40:1963–8.

    Article  PubMed  Google Scholar 

  138. Gonzalez NR, Connolly M, Dusick JR, Bhakta H, Vespa P. Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery. 2014;75:590–8. discussion 598. This study is an initial feasbility study and demonstrated promising results encouraging further study.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Koch S, Katsnelson M, Dong C, Perez-Pinzon M. Remote ischemic limb preconditioning after subarachnoid hemorrhage: a phase Ib study of safety and feasibility. Stroke. 2011;42:1387–91.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Mayor F, Bilgin-Freiert A, Connolly M, Katsnelson M, Dusick JR, Vespa P, et al. Effects of remote ischemic preconditioning on the coagulation profile of patients with aneurysmal subarachnoid hemorrhage: a case–control study. Neurosurgery. 2013;73:808–15. discussion 815. A good study detailing positive effects of remote ischemic preconditioning in aSAH.

  141. Nikkola E, Laiwalla A, Ko A, Alvarez M, Connolly M, Ooi YC, et al. Remote ischemic conditioning alters methylation and expression of cell cycle genes in aneurysmal subarachnoid hemorrhage. Stroke. 2015;46:2445–51.

    Article  CAS  PubMed  Google Scholar 

  142. Keep RF, Wang MM, Xiang J, Hua Y, Xi G. Full steam ahead with remote ischemic conditioning for stroke. Transl Stroke Res. 2014;5:535–7.

    Article  PubMed  PubMed Central  Google Scholar 

  143. CoAxia: NeuroFlo perfusion augmentation: Instructions for use. Edited by; 2005. vol 2016.

  144. Liebeskind DS. Aortic occlusion for cerebral ischemia: from theory to practice. Curr Cardiol Rep. 2008;10:31–6.

    Article  PubMed  Google Scholar 

  145. Lylyk P, Vila JF, Miranda C, Ferrario A, Romero R, Cohen JE. Partial aortic obstruction improves cerebral perfusion and clinical symptoms in patients with symptomatic vasospasm. Neurol Res. 2005;27 Suppl 1:S129–35.

    Article  PubMed  Google Scholar 

  146. Ramakrishnan G, Dong B, Todd KG, Shuaib A, Winship IR. Transient aortic occlusion augments collateral blood flow and reduces mortality during severe ischemia due to proximal middle cerebral artery occlusion. Transl Stroke Res. 2016;7:149–55. Evidence supporting the use of partial aortic occlusion.

    Article  CAS  PubMed  Google Scholar 

  147. Alnaami I, Saqqur M, Chow M. A novel treatment of distal cerebral vasospasm. A case report. Interv Neuroradiol. 2009;15:417–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Emery DJ, Schellinger PD, Selchen D, Douen AG, Chan R, Shuaib A, et al. Safety and feasibility of collateral blood flow augmentation after intravenous thrombolysis. Stroke. 2011;42:1135–7.

    Article  PubMed  Google Scholar 

  149. Shuaib A, Bornstein NM, Diener HC, Dillon W, Fisher M, Hammer MD, et al. Partial aortic occlusion for cerebral perfusion augmentation: safety and efficacy of NeuroFlo in Acute Ischemic Stroke trial. Stroke. 2011;42:1680–90.

    Article  PubMed  Google Scholar 

  150. Appelboom G, Strozyk D, Hwang BY, Prowda J, Badjatia N, Helbok R, et al. Bedside use of a dual aortic balloon occlusion for the treatment of cerebral vasospasm. Neurocrit Care. 2010;13:385–8.

    Article  PubMed  Google Scholar 

  151. van den Bergh WM, Dijkhuizen RM, Rinkel GJ. Potentials of magnesium treatment in subarachnoid haemorrhage. Magnes Res. 2004;17:301–13.

    PubMed  Google Scholar 

  152. Wong GK, Poon WS, Chan MT, Boet R, Gin T, Ng SC, et al. Intravenous magnesium sulphate for aneurysmal subarachnoid hemorrhage (IMASH): a randomized, double-blinded, placebo-controlled, multicenter phase III trial. Stroke. 2010;41:921–6.

    Article  CAS  PubMed  Google Scholar 

  153. Reddy D, Fallah A, Petropoulos JA, Farrokhyar F, Macdonald RL, Jichici D. Prophylactic magnesium sulfate for aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurocrit Care. 2014;13:356–64. This study pools results of prophylactic magnesium treatment for subarachnoid hemorrhage and demonstrates no positive treatment effect.

    Article  CAS  Google Scholar 

  154. Vergouwen MD, Meijers JC, Geskus RB, Coert BA, Horn J, Stroes ES, et al. Biologic effects of simvastatin in patients with aneurysmal subarachnoid hemorrhage: a double-blind, placebo-controlled randomized trial. J Cereb Blood Flow Metab. 2009;29:1444–53.

    Article  CAS  PubMed  Google Scholar 

  155. Liu Z, Liu L, Zhang Z, Chen Z, Zhao B. Cholesterol-reducing agents for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2013;4, Cd008184.

    PubMed  Google Scholar 

  156. Tseng MY, Hutchinson PJ, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute pravastatin treatment on intensity of rescue therapy, length of inpatient stay, and 6-month outcome in patients after aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:1545–50.

    Article  CAS  PubMed  Google Scholar 

  157. Kramer AH, Gurka MJ, Nathan B, Dumont AS, Kassell NF, Bleck TP. Statin use was not associated with less vasospasm or improved outcome after subarachnoid hemorrhage. Neurosurgery. 2008;62:422–7. discussion 427–430.

    Article  PubMed  Google Scholar 

  158. Kirkpatrick PJ, Turner CL, Smith C, Hutchinson PJ, Murray GD. Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol. 2014;13:666–75. This study is a multi-center randomized trial of 803 patients evaluating 40 mg of simvastatin versus placebo for 21 days with primary outcomes at 6 months. There was no benefit of simvastatin at 6 month outcomes and similar morbidity and mortality between groups.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. James MD.

Ethics declarations

Conflict of Interest

Robert F. James, MD and J. Marc Simard, MD, PhD, are national co-principal investigators for the ASTROH study (A phase II, multi-center randomized trial evaluating a continuous low-dose IV heparin infusion for aneurysmal SAH). Neither has any personal financial gain at stake for this therapeutic option. NCT02501434 Robert F. James, MD and J. Marc Simard, MD, PhD, own private stock in Remedy Pharmaceuticals, which manufactures and develops therapeutic indications for intravenous glyburide (Cirara/RP1127). Dr. Simard is a company board member for Remedy Pharmaceuticals, Inc. and has received royalty payments.

Neeraj Badjatia, MD is the national study chair for the NASH trial (Normothermia after Aneurysmal Subarachnoid Hemorrhage) which is a double-blinded, placebo-controlled study evaluating continuous intravenous ibuprofen in aSAH. Dr. Badjatia has no personal financial gain at stake for this therapeutic option.

Daniel R. Kramer, Zaid S. Aljuboori, Gunjan Parikh, Shawn W. Adams, Jessica C. Eaton, Hussam Abou Al-Shaar, and William J. Mack declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Critical Care Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, R.F., Kramer, D.R., Aljuboori, Z.S. et al. Novel Treatments in Neuroprotection for Aneurysmal Subarachnoid Hemorrhage. Curr Treat Options Neurol 18, 38 (2016). https://doi.org/10.1007/s11940-016-0421-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-016-0421-6

Keywords

Navigation