Skip to main content

Advertisement

Log in

Cerebral Ischemic Preconditioning: the Road So Far…

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebral preconditioning constitutes the brain’s adaptation to lethal ischemia when first exposed to mild doses of a subtoxic stressor. The phenomenon of preconditioning has been largely studied in the heart, and data from in vivo and in vitro models from past 2–3 decades have provided sufficient evidence that similar machinery exists in the brain as well. Since preconditioning results in a transient protective phenotype labeled as ischemic tolerance, it can open many doors in the medical warfare against stroke, a debilitating cerebrovascular disorder that kills or cripples thousands of people worldwide every year. Preconditioning can be induced by a variety of stimuli from hypoxia to pharmacological anesthetics, and each, in turn, induces tolerance by activating a multitude of proteins, enzymes, receptors, transcription factors, and other biomolecules eventually leading to genomic reprogramming. The intracellular signaling pathways and molecular cascades behind preconditioning are extensively being investigated, and several first-rate papers have come out in the last few years centered on the topic of cerebral ischemic tolerance. However, translating the experimental knowledge into the clinical scaffold still evades practicality and faces several challenges. Of the various preconditioning strategies, remote ischemic preconditioning and pharmacological preconditioning appears to be more clinically relevant for the management of ischemic stroke. In this review, we discuss current developments in the field of cerebral preconditioning and then examine the potential of various preconditioning agents to confer neuroprotection in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IT:

Ischemic tolerance

IPC:

Ischemic preconditioning

CPC:

Cerebral preconditioning

HPC:

Hypoxic preconditioning

RIPC:

Remote ischemic preconditioning

PPC:

Pharmacological preconditioning

ADK:

Adenosine kinase

NCX:

Na+/Ca2+ exchanger

TACE:

Tumor necrosis factor-α converting enzyme

HRE:

Hypoxia-responsive elements

EPO:

Erythropoietin

VEGF:

Vascular endothelial growth factor

SIP:

Sphingosine-1-phosphate

εPKC:

Epsilon protein kinase C

CCL:

Chemokine (C–C motif) ligand

SPK:

Sphingosine kinase

COX:

Cyclooxygenase

TLR:

Toll-like receptor

CNS:

Central nervous system

LPS:

Lipopolysaccharide

TNF-α:

Tumor necrosis factor-α

IL:

Interleukin

ROS:

Reactive oxygen species

SAH:

Subarachnoid haemorrhage

iNOS:

Inducible nitric oxide synthase

nNOS:

Neuronal nitric oxide synthase

eNOS:

Endothelial nitric oxide synthase

NOS:

Nitric oxide synthase

NO:

Nitric oxide

cAMP:

Cyclic adenosine monophosphate

AMP:

Adenosine monophosphate

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AMPK:

Adenosine 5′-monophosphate-activated protein kinase

JNK:

c-Jun N-terminal kinase

ERK:

Extracellular signal-regulated kinase

NF-κB:

Nuclear factor-κB

NMDA:

N-methyl-D-aspartate

EA:

Electroacupuncture

3-NPA:

3-Nitropropionic acid

CREB:

cAMP responsive element binding

HIF:

Hypoxia inducible factor

HBO:

Hyperbaric oxygenation

ATP:

Adenosine triphosphate

MCAO:

Middle cerebral artery occlusion

OGD:

Oxygen–glucose deprivation

tPA:

Tissue plasminogen activator

IPost:

Ischemic post-conditioning

TGF:

Transforming growth factor

TGF-α:

Transforming growth factor alpha

HSP:

Heat shock protein

MeCP2:

Methyl-CpG-binding protein 2

IGF:

Insulin-like growth factor

PcG:

Polycomb group

TrxG:

Trithorax group

TIA:

Transient ischemic attack

IRI:

Ischemia-reperfusion injury

IR:

Ionizing radiation

HCA:

Hypothermic circulatory arrest

BAIPC:

Bilateral arm ischemic preconditioning

IAS:

Intracranial arterial stenosis

AKT:

Protein kinase B

RHP:

Repetitive hypoxic preconditioning

p53:

Tumor protein p53

References

  1. Mackay J, Mensah G (2004) The Atlas of Heart Disease and Stroke. Organization, World Health

    Google Scholar 

  2. Mendis S, Puska P, Norrving B (2011) Global Atlas on cardiovascular disease prevention and control. Organization, World Health

    Google Scholar 

  3. Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12:723–5. doi:10.1161/01.STR.12.6.723

    Article  CAS  PubMed  Google Scholar 

  4. Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24:133–150. doi:10.1097/01.WCB.0000111614.19196.04

    Article  PubMed  Google Scholar 

  5. Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14:1363–1368. doi:10.1038/nn.2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Albers GW, Bates VE, Clark WM, Bell R, Verro P, Hamilton SA (2000) Intravenous tissue-type plasminogen activator for treatment of acute stroke: the Standard Treatment with Alteplase to Reverse Stroke (STARS) study. JAMA 283(9):1145–1150

  7. Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8:398–412. doi:10.1016/S1474-4422(09)70054-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247. doi:10.1152/physrev.00039.2006

    Article  CAS  PubMed  Google Scholar 

  9. Bickler PE, Donohoe PH (2002) Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol 205:3579–3586

    CAS  PubMed  Google Scholar 

  10. Shpargel KB et al (2008) Preconditioning paradigms and pathways in the brain. Cleve Clin J Med 75(Suppl 2):S77–82

    Article  PubMed  Google Scholar 

  11. Durukan A, Tatlisumak T (2010) Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection. Exp Transl Stroke Med 2:2. doi:10.1186/2040-7378-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448. doi:10.1038/nrn1927

    Article  CAS  PubMed  Google Scholar 

  13. Della-Morte D et al (2013) Age-related reduction of cerebral ischemic preconditioning: myth or reality? Clin Interv Aging 8:1055–1061. doi:10.2147/CIA.S47462

    PubMed  PubMed Central  Google Scholar 

  14. Wang L, Traystman RJ, Murphy SJ (2008) Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol 8:104–110. doi:10.1016/j.coph.2007.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raval AP, Dave KR, Pérez-Pinzón MA (2006) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab 26:1141–1147. doi:10.1038/sj.jcbfm.9600262

    CAS  PubMed  Google Scholar 

  16. Kapinya KJ et al (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33:1889–1898. doi:10.1161/01.STR.0000020092.41820.58

    Article  CAS  PubMed  Google Scholar 

  17. Dezfulian C (2013) Clinical Cerebral Preconditioning and Postconditioning. In: Gidday JM, Perez-Pinzon MA, Zhang JH (eds) Innate tolerance in the CNS. Springer, New York, pp 553–566

    Chapter  Google Scholar 

  18. Dahl NA, Balfour WM (1964) Prolonged anoxic survival due to anoxia pre-exposure: brain ATP, lactate, and pyruvate. Am J Physiol 207:452–456

    CAS  PubMed  Google Scholar 

  19. Vannucci RC, Duffy TE (1976) Carbohydrate metabolism in fetal and neonatal rat brain during anoxia and recovery. Am J Physiol 230:1269–1275

    CAS  PubMed  Google Scholar 

  20. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. doi:10.1161/01.CIR.74.5.1124

    Article  CAS  PubMed  Google Scholar 

  21. Cohen MV, Yang XM, Downey JM (1994) Conscious rabbits become tolerant to multiple episodes of ischemic preconditioning. Circ Res 74:998–1004. doi:10.1161/01.RES.74.5.998

    Article  CAS  PubMed  Google Scholar 

  22. Schurr A et al (1986) Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res 374(2):244–248. doi:10.1016/0006-8993(86)90418-X

    Article  CAS  PubMed  Google Scholar 

  23. Chopp M et al (1989) Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurology 39:1396–1396. doi:10.1212/WNL.39.10.1396

    Article  CAS  PubMed  Google Scholar 

  24. Kitagawa K et al (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24. doi:10.1016/0006-8993(90)90189-I

    Article  CAS  PubMed  Google Scholar 

  25. Gidday JM, Fitzgibbons JC, Shah AR, Park TS (1994) Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett 168:221–224. doi:10.1016/0304-3940(94)90455-3

    Article  CAS  PubMed  Google Scholar 

  26. Adolph EF (1971) Physiological adaptation to hypoxia in newborn rats. Am J Physiol 221:123–127

    CAS  PubMed  Google Scholar 

  27. Schurr A et al (1988) Lactic acidosis and recovery of neuronal function following cerebral hypoxia in vitro. Brain Res 438:311–314. doi:10.1016/0006-8993(88)91354-6

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Graham SH, Zhu RL, Simon RP (1996) Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 16:566–77. doi:10.1097/00004647-199607000-00006

    Article  CAS  PubMed  Google Scholar 

  29. Glazier SS, O'Rourke DM, Graham DI, Welsh FA (1994) Induction of ischemic tolerance following brief focal ischemia in rat brain. J Cereb Blood Flow Metab 14:545–553. doi:10.1038/jcbfm.1994.68

    Article  CAS  PubMed  Google Scholar 

  30. Stenzel-Poore MP et al (2003) Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362:1028–1037. doi:10.1016/S0140-6736(03)14412-1

    Article  CAS  PubMed  Google Scholar 

  31. Dhodda VK, Sailor KA, Bowen KK, Vemuganti R (2004) Putative endogenous mediators of preconditioning‐induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 89:73–89. doi:10.1111/j.1471-4159.2004.02316.x

    Article  CAS  PubMed  Google Scholar 

  32. Benardete EA, Bergold PJ (2009) Genomic analysis of ischemic preconditioning in adult rat hippocampal slice cultures. Brain Res 1292:107–122. doi:10.1016/j.brainres.2009.07.027

    Article  CAS  PubMed  Google Scholar 

  33. Xu H, Lu A, Sharp FR (2011) Regional genome transcriptional response of adult mouse brain to hypoxia. BMC Genomics 12:499. doi:10.1186/1471-2164-12-499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim E et al (2007) Ischemic preconditioning via epsilon PKC activation requires cyclooxygenase-2 activation in vitro. Neuroscience 145:931–941. doi:10.1016/j.neuroscience.2006.12.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu GP et al (2002) Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures. Brain Res 952(2):153–158. doi:10.1016/S0006-8993(02)02988-8

    Article  CAS  PubMed  Google Scholar 

  36. Raval AP, Bramlett H, Perez-Pinzon MA (2006) Estrogen preconditioning protects the hippocampal CA1 against ischemia. Neuroscience 141:1721–1730. doi:10.1016/j.neuroscience.2006.05.016

    Article  CAS  PubMed  Google Scholar 

  37. Egashira Y et al (2012) The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res 1461:87–95. doi:10.1016/j.brainres.2012.04.033

    Article  CAS  PubMed  Google Scholar 

  38. Ara J et al (2011) Hypoxic-preconditioning induces neuroprotection against hypoxia–ischemia in newborn piglet brain. Neurobiol Dis 43:473–485. doi:10.1016/j.nbd.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  39. Cantagrel S et al (2003) Hypoxic preconditioning reduces apoptosis in a rat model of immature brain hypoxia-ischaemia. Neurosci Lett 347:106–110. doi:10.1016/S0304-3940(03)00525-1

    Article  CAS  PubMed  Google Scholar 

  40. Azad P, Haddad GG (2013) Genetic animal models of preconditioning. Transl Stroke Res 4:51–55. doi:10.1007/s12975-012-0218-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang N et al (2007) Neuron-specific phosphorylation of c-Jun N-terminal kinase increased in the brain of hypoxic preconditioned mice. Neurosci Lett 423:219–224. doi:10.1016/j.neulet.2007.07.028

    Article  CAS  PubMed  Google Scholar 

  42. Traystman RJ (2003) Animal models of focal and global cerebral ischemia. ILAR J 44(2):85–95

    Article  CAS  PubMed  Google Scholar 

  43. Liu C, Chen S, Kamme F, Hu BR (2005) Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience 134:69–80. doi:10.1016/j.neuroscience.2005.03.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu C et al (2001) A forebrain ischemic preconditioning model established in C57Black/Crj6 mice. J Neurosci Methods 107:101–106. doi:10.1016/S0165-0270(01)00356-9

    Article  CAS  PubMed  Google Scholar 

  45. Zhang QG et al (2006) Ischemic preconditioning negatively regulates plenty of SH3s–mixed lineage kinase 3–Rac1 complex and c-Jun N-terminal kinase 3 signaling via activation of Akt. Neuroscience 143:431–444. doi:10.1016/j.neuroscience.2006.07.049

    Article  CAS  PubMed  Google Scholar 

  46. Geddes JW et al (1996) Permanent focal and transient global cerebral ischemia increase glial and neuronal expression of heme oxygenase-1, but not heme oxygenase-2, protein in rat brain. Neurosci Lett 210:205–208. doi:10.1016/0304-3940(96)12703-8

    Article  CAS  PubMed  Google Scholar 

  47. Masada T et al (2001) Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J Cereb Blood Flow Metab 21:22–33. doi:10.1097/00004647-200101000-00004

    Article  CAS  PubMed  Google Scholar 

  48. Miyashita K et al (1994) Induction of ischaemic tolerance in gerbil hippocampus by pretreatment with focal ischaemia. Neuroreport 6:46–48

    Article  CAS  PubMed  Google Scholar 

  49. Mark LP et al (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol 22:1813–1824

    CAS  PubMed  Google Scholar 

  50. Hazell AS (2007) Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int 50:941–953. doi:10.1016/j.neuint.2007.04.026

    Article  CAS  PubMed  Google Scholar 

  51. Paschen W (1996) Glutamate excitotoxicity in transient global cerebral ischemia. Acta Neurobiol Exp (Wars) 56:313–322

    CAS  Google Scholar 

  52. Watters O, O’Connor JJ (2011) A role for tumor necrosis factor-α in ischemia and ischemic preconditioning. J Neuroinflammation 8:87. doi:10.1186/1742-2094-8-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Navon H, Bromberg Y, Sperling O, Shani E (2012) Neuroprotection by NMDA preconditioning against glutamate cytotoxicity is mediated through activation of ERK 1/2, inactivation of JNK, and by prevention of glutamate-induced CREB inactivation. J Mol Neurosci 46:100–108. doi:10.1007/s12031-011-9532-4

    Article  CAS  PubMed  Google Scholar 

  54. Soriano FX et al (2006) Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 26:4509–4518. doi:10.1523/JNEUROSCI.0455-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miao B et al (2005) Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation. J Biol Chem 280:21693–21699. doi:10.1074/jbc.M500003200

    Article  CAS  PubMed  Google Scholar 

  56. Lin CH, Chen PS, Gean PW (2008) Glutamate preconditioning prevents neuronal death induced by combined oxygen–glucose deprivation in cultured cortical neurons. Eur J Pharmacol 589(1-3):85–93. doi:10.1016/j.ejphar.2008.05.047

    Article  CAS  PubMed  Google Scholar 

  57. Gong SJ et al (2012) Intermittent hypobaric hypoxia preconditioning induced brain ischemic tolerance by up-regulating glial glutamate transporter-1 in rats. Neurochem Res 37(3):527–537

    Article  CAS  PubMed  Google Scholar 

  58. Scorziello A et al (2007) NO‐induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn‐SOD activity and expression via RAS/ERK1/2 pathway. J Neurochem 103(4):1472–1480

    Article  CAS  PubMed  Google Scholar 

  59. Kawahara K et al (2004) Nitric oxide produced during ischemia is toxic but crucial to preconditioning-induced ischemic tolerance of neurons in culture. Neurochem Res 29:797–804. doi:10.1023/B:NERE.0000018853.30131.4d

    Article  CAS  PubMed  Google Scholar 

  60. Gidday JM (1999) Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab 19(3):331–340. doi:10.1097/00004647-199903000-00011

    Article  CAS  PubMed  Google Scholar 

  61. Centeno JM et al (1999) Nitric oxide is involved in anoxic preconditioning neuroprotection in rat hippocampal slices. Brain Res 836(1-2):62–69. doi:10.1016/S0006-8993(99)01610-8

    Article  CAS  PubMed  Google Scholar 

  62. Atochin DN et al (2003) Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases. Stroke 34(5):1299–1303. doi:10.1161/01.STR.0000066870.70976.57

    Article  CAS  PubMed  Google Scholar 

  63. Zhao P, Zuo Z (2004) Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase–dependent in neonatal rats. Anesthesiology 101(3):695–703

    Article  CAS  PubMed  Google Scholar 

  64. Cho S (2005) Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J Cereb Blood Flow Metab 25(4):493–501. doi:10.1038/sj.jcbfm.9600058

    Article  CAS  PubMed  Google Scholar 

  65. Vellimana et al (2011) Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 42(3):776–782. doi:10.1161/STROKEAHA.110.607200

    Article  CAS  PubMed  Google Scholar 

  66. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68. doi:10.1016/j.jneuroim.2006.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789. doi:10.1189/jlb.1109766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stevens SL, Stenzel-Poore MP (2006) Toll-like receptors and tolerance to ischaemic injury in the brain. Biochem Soc Trans 34:1352–1355. doi:10.1042/BST0341352

    Article  CAS  PubMed  Google Scholar 

  69. Stevens SL et al (2008) Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab 28:1040–1047. doi:10.1038/sj.jcbfm.9600606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Karikó K, Weissman D, Welsh FA (2004) Inhibition of toll-like receptor and cytokine signaling—a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab 24:1288–1304. doi:10.1097/01.WCB.0000145666.68576.71

    Article  PubMed  Google Scholar 

  71. Pradillo JM et al (2009) Toll‐like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem 109:287–294. doi:10.1111/j.1471-4159.2009.05972.x

    Article  CAS  PubMed  Google Scholar 

  72. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158:1007–1020. doi:10.1016/j.neuroscience.2008.07.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen Z et al (2012) Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J Neurosci 32:11706–11715. doi:10.1523/JNEUROSCI.0730-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rosenzweig HL et al (2007) Endotoxin preconditioning protects against the cytotoxic effects of TNFα after stroke: a novel role for TNFα in LPS-ischemic tolerance. J Cereb Blood Flow Metab 27:1663–1674. doi:10.1038/sj.jcbfm.9600464

    Article  CAS  PubMed  Google Scholar 

  75. Vartanian KB et al (2011) LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury. J Neuroinflammation 8:140. doi:10.1186/1742-2094-8-140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sakata H et al (2012) Interleukin 6-preconditioned neural stem cells reduce ischaemic injury in stroke mice. Brain 135:3298–3310. doi:10.1093/brain/aws259

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ohtsuki T, Ruetzler CA, Tasaki K, Hallenbeck JM (1996) Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J Cereb Blood Flow Metab 16:1137–1142. doi:10.1097/00004647-199611000-00007

    Article  CAS  PubMed  Google Scholar 

  78. Spera PA, Ellison JA, Feuerstein GZ, Barone FC (1998) IL-10 reduces rat brain injury following focal stroke. Neurosci Lett 251:189–192

    Article  CAS  PubMed  Google Scholar 

  79. Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17:2746–2755

    CAS  PubMed  Google Scholar 

  80. Cheng O et al (2011) Cyclooxygenase-2 mediates hyperbaric oxygen preconditioning in the rat model of transient global cerebral ischemia. Stroke 42:484–490. doi:10.1161/STROKEAHA.110.604421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Colangelo V et al (2004) Downregulation of COX-2 and JNK expression after induction of ischemic tolerance in the gerbil brain. Brain Res 1016:195–200. doi:10.1016/j.brainres.2004.05.017

    Article  CAS  PubMed  Google Scholar 

  82. Iadecola C et al (2001) Increased susceptibility to ischemic brain injury in cyclooxygenase-1–deficient mice. J Cereb Blood Flow Metab 21:1436–1441. doi:10.1097/00004647-200112000-00008

    Article  CAS  PubMed  Google Scholar 

  83. Yung LM et al (2012) Sphingosine kinase 2 mediates cerebral preconditioning and protects the mouse brain against ischemic injury. Stroke 43:199–204. doi:10.1161/STROKEAHA.111.626911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wacker BK, Perfater JL, Gidday JM (2012) Hypoxic preconditioning induces stroke tolerance in mice via a cascading HIF, sphingosine kinase, and CCL2 signaling pathway. J Neurochem 123:954–962. doi:10.1111/jnc.12047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yan W et al (2013) SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab 33:396–406. doi:10.1038/jcbfm.2012.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thompson JW et al (2013) Epsilon PKC increases brain mitochondrial SIRT1 protein levels via heat shock protein 90 following ischemic preconditioning in rats. PLoS One 8:e75753. doi:10.1371/journal.pone.0075753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou AM et al (2004) A short cerebral ischemic preconditioning upregulates adenosine receptors in the hippocampal CA1 region of rats. Neurosci Res 48:397–404. doi:10.1016/j.neures.2003.12.010

    Article  CAS  PubMed  Google Scholar 

  88. Shen HY et al (2011) Adenosine kinase determines the degree of brain injury after ischemic stroke in mice. J Cereb Blood Flow Metab 31:1648–1659. doi:10.1038/jcbfm.2011.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pignataro G et al (2012) NCX1 and NCX3: two new effectors of delayed preconditioning in brain ischemia. Neurobiol Dis 45:616–623. doi:10.1016/j.nbd.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  90. Valsecchi V et al (2011) NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke 42:754–763. doi:10.1161/STROKEAHA.110.597583

    Article  CAS  PubMed  Google Scholar 

  91. Venna VR, Li J, Benashski SE, Tarabishy S, McCullough LD (2012) Preconditioning induces sustained neuroprotection by downregulation of AMPK. Neuroscience 201:280–287. doi:10.1016/j.neuroscience.2011.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chavez JC, Baranova O, Lin J, Pichiule P (2006) The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci 26:9471–9481. doi:10.1523/JNEUROSCI.2838-06.2006

    Article  CAS  PubMed  Google Scholar 

  93. Terasaki Y et al (2010) Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J Cereb Blood Flow Metab 30:1441–1449. doi:10.1038/jcbfm.2010.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bigdeli MR, Khoshbaten A (2008) In vivo preconditioning with normobaric hyperoxia induces ischemic tolerance partly by triggering tumor necrosis factor-α converting enzyme/tumor necrosis factor-α/nuclear factor-κB. Neuroscience 153:671–678. doi:10.1016/j.neuroscience.2008.02.064

    Article  CAS  PubMed  Google Scholar 

  95. Sharp FR et al (2004) Hypoxic preconditioning protects against ischemic brain injury. NeuroRx 1:26–35. doi:10.1602/neurorx.1.1.26

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ruscher K et al (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22:10291–10301

    CAS  PubMed  Google Scholar 

  97. Bernaudin M et al (2002) Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22:393–403. doi:10.1097/00004647-200204000-00003

    Article  CAS  PubMed  Google Scholar 

  98. Jones NM, Bergeron M (2001) Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J Cereb Blood Flow Metab 21:1105–1114. doi:10.1097/00004647-200109000-00008

    Article  CAS  PubMed  Google Scholar 

  99. Vangeison G, Rempe DA (2009) The Janus-faced effects of hypoxia on astrocyte function. Neuroscientist 15:579–588. doi:10.1177/1073858409332405

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhan L et al (2010) Activation of Akt/FoxO signaling pathway contributes to induction of neuroprotection against transient global cerebral ischemia by hypoxic pre‐conditioning in adult rats. J Neurochem 114:897–908. doi:10.1111/j.1471-4159.2010.06816.x

    Article  CAS  PubMed  Google Scholar 

  101. Wang LW, Tu YF, Huang CC, Ho CJ (2012) JNK signaling is the shared pathway linking neuroinflammation, blood–brain barrier disruption, and oligodendroglial apoptosis in the white matter injury of the immature brain. J Neuroinflammation 9:175. doi:10.1186/1742-2094-9-175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kapinya K, Penzel R, Sommer C, Kiessling M (2000) Temporary changes of the AP-1 transcription factor binding activity in the gerbil hippocampus after transient global ischemia, and ischemic tolerance induction. Brain Res 872:282–293. doi:10.1016/S0006-8993(00)02503-8

    Article  CAS  PubMed  Google Scholar 

  103. Huang CY et al (2001) Overexpression of copper-zinc superoxide dismutase attenuates acute activation of activator protein-1 after transient focal cerebral ischemia in mice. Stroke 32:741–747. doi:10.1161/01.STR.32.3.741

    Article  CAS  PubMed  Google Scholar 

  104. Guan J (2013) Bone morphogenetic protein-7 (BMP-7) mediates ischemic preconditioning-induced ischemic tolerance via attenuating apoptosis in rat brain. Biochem Biophys Res Commun 441(3):560–566. doi:10.1016/j.bbrc.2013.10.121

    Article  CAS  PubMed  Google Scholar 

  105. Guan J et al (2014) Bone morphogenic protein-7 contributes to cerebral ischemic preconditioning induced-ischemic tolerance by activating p38 mitogen-activated protein kinase signaling pathway. Inflammation 37(4):1289–1296. doi:10.1007/s10753-014-9856-7

    Article  CAS  PubMed  Google Scholar 

  106. Lusardi TA et al (2010) Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab 30:744–756. doi:10.1038/jcbfm.2009.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vannucci RC, Towfighi J, Vannucci SJ (1998) Hypoxic preconditioning and hypoxic‐ischemic brain damage in the immature rat: pathologic and metabolic correlates. J Neurochem 71:1215–1220. doi:10.1046/j.1471-4159.1998.71031215.x

    Article  CAS  PubMed  Google Scholar 

  108. Bickler PE, Buck LT (1998) Adaptations of vertebrate neurons to hypoxia and anoxia: maintaining critical Ca2+ concentrations. J Exp Biol 201(8):1141–1152

    CAS  PubMed  Google Scholar 

  109. Li S et al (2013) Hypoxic preconditioning stimulates angiogenesis in ischemic penumbra after acute cerebral infarction. Neural Regen Res 8(31):2895–2903

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Grabb MC, Choi DW (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci 19(5):1657–1662

    CAS  PubMed  Google Scholar 

  111. Bigdeli MR (2011) Neuroprotection caused by hyperoxia preconditioning in animal stroke models. ScientificWorldJournal 11:403–421. doi:10.1100/tsw.2011.23

    Article  CAS  PubMed  Google Scholar 

  112. Ostrowski RP et al (2008) The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiol Dis 29(1):1–13. doi:10.1016/j.nbd.2007.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yan W (2013) SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab 33(3):396–406. doi:10.1038/jcbfm.2012.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hemmen TM et al (2010) Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L) final results. Stroke 41(10):2265–2270. doi:10.1161/STROKEAHA.110.592295

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yenari MA, Hemmen TM (2010) Therapeutic hypothermia for brain ischemia: where have we come and where do we go? Stroke 41(10 Suppl):S72–S74. doi:10.1161/STROKEAHA.110.595371

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yunoki M et al (2003) Hypothermic preconditioning induces rapid tolerance to focal ischemic injury in the rat. Exp Neurol 181(2):291–300. doi:10.1016/S0014-4886(03)00056-6

    Article  PubMed  Google Scholar 

  117. Nishio S et al (2000) Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg 93(5):845–851. doi:10.3171/jns.2000.93.5.0845

    Article  CAS  PubMed  Google Scholar 

  118. Ikeda T, Xia XY, Xia YX, Ikenoue T (1999) Hyperthermic preconditioning prevents blood–brain barrier disruption produced by hypoxia–ischemia in newborn rat. Brain Res Dev Brain Res 117(1):53–58. doi:10.1016/S0165-3806(99)00097-8

    Article  CAS  PubMed  Google Scholar 

  119. Du F et al (2010) Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. Biochim Biophys Acta 1802(11):1048–1053. doi:10.1016/j.bbadis.2010.06.013

    Article  CAS  PubMed  Google Scholar 

  120. Riepe MW et al (1997) Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: “chemical preconditioning”. J Cereb Blood Flow Metab 17(3):257–264. doi:10.1097/00004647-199703000-00002

    Article  CAS  PubMed  Google Scholar 

  121. Kitano H, Kirsch JR, Hurn PD, Murphy SJ (2007) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 27(6):1108–1128. doi:10.1038/sj.jcbfm.9600410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine Al receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Pharmacology 92(10):4666–4670. doi:10.1073/pnas.92.10.4666

    CAS  Google Scholar 

  123. Wang H et al (2011) Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Front Biosci (Elite Ed) 3:604–615

    Article  Google Scholar 

  124. Li L, Zuo Z (2009) Isoflurane preconditioning improves short-term and long-term neurological outcome after focal brain ischemia in adult rats. Neuroscience 164(2):497–506. doi:10.1016/j.neuroscience.2009.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Statler KD et al (2006) Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res 1076(1):216–224. doi:10.1016/j.brainres.2005.12.106

    Article  CAS  PubMed  Google Scholar 

  126. Adamczyk S et al (2010) Sevoflurane pre- and post-conditioning protect the brain via the mitochondrial KATP channel. Br J Anaesth 104(2):191–200. doi:10.1093/bja/aep365

    Article  CAS  PubMed  Google Scholar 

  127. Kitano H, Kirsch JR, Hurn PD, Murphy SJ (2007) Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 27:1108–1128. doi:10.1038/sj.jcbfm.9600410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zheng S, Zuo Z (2004) Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol 65(5):1172–1180. doi:10.1124/mol.65.5.1172

    Article  CAS  PubMed  Google Scholar 

  129. Morris KC et al (2011) Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning. J Cereb Blood Flow Metab 31(4):1003–1019. doi:10.1038/jcbfm.2010.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nunes RR et al (2013) Anesthetics, cerebral protection and preconditioning. Braz J Anesthesiol 63(1):119–138. doi:10.1016/S0034-7094(13)70204-6

    Article  Google Scholar 

  131. Zhu H, Sun S, Li H, Xu Y (2006) Cerebral ischemic tolerance induced by 3-nitropropionic acid is associated with increased expression of erythropoietin in rats. J Huazhong Univ Sci Technolog Med Sci 26(4):440–443. doi:10.1007/s11596-006-0416-8

    Article  CAS  PubMed  Google Scholar 

  132. Lin HY, Wu CL, Huang CC (2010) The Akt-endothelial nitric oxide synthase pathway in lipopolysaccharide preconditioning-induced hypoxic-ischemic tolerance in the neonatal rat brain. Stroke 41(7):1543–1551. doi:10.1161/STROKEAHA.109.574004

    Article  CAS  PubMed  Google Scholar 

  133. Jensen HA et al (2011) Remote ischemic preconditioning protects the brain against injury after hypothermic circulatory arrest. Circulation 123(7):714–721. doi:10.1161/CIRCULATIONAHA.110.986497

    Article  CAS  PubMed  Google Scholar 

  134. Moskowitz MA, Waeber C (2011) Remote ischemic preconditioning: making the brain more tolerant, safely and inexpensively. Circulation 123(7):709–711. doi:10.1161/CIRCULATIONAHA.110.009688

    Article  PubMed  Google Scholar 

  135. Wang W et al (2014) Limb ischemic preconditioning attenuates cerebral ischemic injury in rat model. Perfusion 29(3):210–218

    Article  CAS  PubMed  Google Scholar 

  136. Ren C, Gao X, Steinberg GK, Zhao H (2008) Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience 151(4):1099–1103. doi:10.1016/j.neuroscience.2007.11.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hudetz JA et al (2014) Remote ischemic preconditioning prevents deterioration of short-term postoperative cognitive function after cardiac surgery using cardiopulmonary bypass: results of a Pilot Investigation. J Cardiothorac Vasc Anesth 29(2):382–388

    Article  PubMed  Google Scholar 

  138. Koch S, Katsnelson M, Dong C, Perez-Pinzon M (2011) Remote ischemic limb preconditioning after subarachnoid hemorrhage a phase Ib study of safety and feasibility. Stroke 42(5):1387–1391

    Article  PubMed  PubMed Central  Google Scholar 

  139. Kim JH et al (2013) Electroacupuncture preconditioning reduces cerebral ischemic injury via BDNF and SDF-1α in mice. BMC Complement Altern Med 13:22. doi:10.1186/1472-6882-13-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Douen AG (2000) Preconditioning with cortical spreading depression decreases intraischemic cerebral glutamate levels and down-regulates excitatory amino acid transporters EAAT1 and EAAT2 from rat cerebal cortex plasma membranes. J Neurochem 75(2):812–818. doi:10.1046/j.1471-4159.2000.0750812.x

    Article  CAS  PubMed  Google Scholar 

  141. Liebelt B et al (2010) Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 166(4):1091–1100. doi:10.1016/j.neuroscience.2009.12.067

    Article  CAS  PubMed  Google Scholar 

  142. Thompson JW, Dave KR, Young JI, Perez-Pinzon MA (2013) Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics 10(4):789–797. doi:10.1007/s13311-013-0202-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Endres M et al (2000) DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 20(9):3175–3181

    CAS  PubMed  Google Scholar 

  144. Lundberg J, Karimi M, von Gertten C, Holmin S, Ekström TJ, Sandberg-Nordqvist AC (2009) Traumatic brain injury induces relocalization of DNA-methyltransferase 1. Neurosci Lett 457:8–11. doi:10.1016/j.neulet.2009.03.10

    Article  CAS  PubMed  Google Scholar 

  145. Markus HS et al (2013) Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis. Stroke 44(5):1220–1225. doi:10.1161/STROKEAHA.111.000217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Langley B, Gensert JM, Beal MF, Ratan RR (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 4(1):41–50. doi:10.2174/1568007053005091

    Article  CAS  PubMed  Google Scholar 

  147. Stapels M et al (2010) Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal 3(111):ra15. doi:10.1126/scisignal.2000502

    Article  PubMed  CAS  Google Scholar 

  148. Hernández-Jiménez M et al (2013) Silent information regulator 1 protects the brain against cerebral ischemic damage. Stroke 44(8):2333–2337. doi:10.1161/STROKEAHA.113.001715

    Article  PubMed  CAS  Google Scholar 

  149. Simon RP, Meller R, Zhou A, Henshall D (2012) Can genes modify stroke outcome and by what mechanisms? Stroke 43(1):286–291. doi:10.1161/STROKEAHA.111.622225

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kim DH, Sætrom P, Snøve O, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 105(42):16230–16235. doi:10.1073/pnas.0808830105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee ST et al (2010) MicroRNAs induced during ischemic preconditioning. Stroke 41(8):1646–1651. doi:10.1161/STROKEAHA.110.579649

    Article  PubMed  CAS  Google Scholar 

  152. Lee YJ et al (2009) SUMOylation participates in induction of ischemic tolerance. J Neurochem 109(1):257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tu XK et al (2014) Repetitive ischemic preconditioning attenuates inflammatory reaction and brain damage after focal cerebral ischemia in rats: involvement of PI3K/Akt and ERK1/2 signaling pathway. J Mol Neurosci 55(4):912–922. doi:10.1007/s12031-014-0446-9, Epub 2014 Oct 22

    Article  PubMed  CAS  Google Scholar 

  154. Jiang T et al (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre‐activation of AMPK‐dependent autophagy. Br J Pharmacol 171(13):3146–3157. doi:10.1111/bph.12655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wei L et al (2012) Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 46(3):635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li S et al (2015) Safety and feasibility of remote limb ischemic preconditioning in patients with unilateral middle cerebral artery stenosis and healthy volunteers. Cell Transplant. doi:10.3727/096368914X683520

    PubMed Central  Google Scholar 

  157. Kokošová N, Danielisova V, Smajda B, Burda J (2014) Ionizing radiation as preconditioning against transient cerebral ischemia in rats. Gen Physiol Biophys 33(4):403–410

    Article  PubMed  Google Scholar 

  158. Rana G et al (2012) Cortical spreading depression differentially affects lysine methylation of H3 histone at neuroprotective genes and retrotransposon sequences. Brain Res 1467:113–119

    Article  CAS  PubMed  Google Scholar 

  159. Lee JY, et al (2015) Indomethacin preconditioning induces ischemic tolerance by modifying zinc availability in the brain. Neurobiol Dis (14)00390-8. doi: 10.1016/j.nbd.2014.12.019

  160. Keep RF et al (2014) Full steam ahead with remote ischemic conditioning for stroke. Transl Stroke Res 5(5):535–537

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lovett JK et al (2003) Very early risk of stroke after a first transient ischemic attack. Stroke 34(8):e138–e140. doi:10.1161/01.STR.0000080935.01264.91

    Article  CAS  PubMed  Google Scholar 

  162. Weih M et al (1999) Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke 30(9):1851–1854. doi:10.1161/01.STR.30.9.1851

    Article  CAS  PubMed  Google Scholar 

  163. Moncayo J et al (2000) Do transient ischemic attacks have a neuroprotective effect? Neurology 54(11):2089–2094. doi:10.1212/WNL.54.11.2089

    Article  CAS  PubMed  Google Scholar 

  164. Wegener et al (2004) Transient ischemic attacks before ischemic stroke: preconditioning the human brain?: a multicenter magnetic resonance imaging study. Stroke 35(3):616–621. doi:10.1161/01.STR.0000115767.17923.6A

    Article  PubMed  Google Scholar 

  165. Sitzer M et al (2004) Transient ischaemic attack preceding anterior circulation infarction is independently associated with favourable outcome. J Neurol Neurosurg Psychiatry 75(4):659–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Schaller B (2005) Ischemic preconditioning as induction of ischemic tolerance after transient ischemic attacks in human brain: its clinical relevance. Neurosci Lett 377(3):206–211. doi:10.1016/j.neulet.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  167. Zsuga J et al (2008) Prior transient ischemic attack is independently associated with lesser in‐hospital case fatality in acute stroke. Psychiatry Clin Neurosci 62(6):705–712. doi:10.1111/j.1440-1819.2008.01874.x

    Article  PubMed  Google Scholar 

  168. Johnston SC (2004) Ischemic preconditioning from transient ischemic attacks? Data from the Northern California TIA Study. Stroke 35(11 Suppl 1):2680–2682. doi:10.1161/01.STR.0000143322.20491.0f

    Article  PubMed  Google Scholar 

  169. Hecker JG, McGarvey M (2011) Heat shock proteins as biomarkers for the rapid detection of brain and spinal cord ischemia: a review and comparison to other methods of detection in thoracic aneurysm repair. Cell Stress Chaperones 16(2):119–131. doi:10.1007/s12192-010-0224-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Castillo J et al (2003) The release of tumor necrosis factor–α is associated with ischemic tolerance in human stroke. Ann Neurol 54(6):811–819. doi:10.1002/ana.10765

    Article  CAS  PubMed  Google Scholar 

  171. Laudenbach V et al (2007) Neonatal hypoxic preconditioning involves vascular endothelial growth factor. Neurobiol Dis 26(1):243–252. doi:10.1016/j.nbd.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  172. Matsuo R et al (2013) Clinical significance of plasma VEGF value in ischemic stroke- research for biomarkers in ischemic stroke (REBIOS) study. BMC Neurol 13:32. doi:10.1186/1471-2377-13-32

    Article  PubMed  PubMed Central  Google Scholar 

  173. Vasdekis SN, Athanasiadis D, Lazaris A et al (2013) The role of remote ischemic preconditioning in the treatment of atherosclerotic diseases. Brain Behav 3(6):606–616. doi:10.1002/brb3.161

    Article  PubMed  PubMed Central  Google Scholar 

  174. Meng R et al (2012) Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 79(18):1853–1861. doi:10.1212/WNL.0b013e318271f76a

    Article  PubMed  Google Scholar 

  175. Gonzalez NR et al (2013) Cerebral hemodynamic and metabolic effects of remote ischemic preconditioning in patients with subarachnoid hemorrhage, Cerebral Vasospasm: Neurovascular Events After Subarachnoid Hemorrhage. Springer, Vienna, pp 193–198

    Google Scholar 

  176. Hausenloy DJ et al (2007) Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 370(9587):575–579. doi:10.1016/S0140-6736(07)61296-3

    Article  PubMed  Google Scholar 

  177. Thielmann et al (2010) Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with crystalloid cardioplegic arrest. Basic Res Cardiol 105(5):657–664. doi:10.1007/s00395-010-0104-5

    Article  CAS  PubMed  Google Scholar 

  178. Zuo Z (2012) Are volatile anesthetics neuroprotective or neurotoxic. Med Gas Res 2(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Caplan LR (2013) Creating one problem to try and fix another: the saga of ischemic preconditioning. Brain Behav 3(6):603–605. doi:10.1002/brb3.170

    Article  PubMed  PubMed Central  Google Scholar 

  180. Schaller B, Graf R (2002) Cerebral ischemic preconditioning. J Neurol 249(11):1503–1511. doi:10.1007/s00415-002-0933-8

    Article  CAS  PubMed  Google Scholar 

  181. Mergenthaler P, Dirnagl U (2011) Protective conditioning of the brain: expressway or roadblock? J Physiol 589(17):4147–4155. doi:10.1113/jphysiol.2011.209718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Koch S (2010) Preconditioning the human brain: practical considerations for proving cerebral protection. Transl Stroke Res 1(3):161–169. doi:10.1007/s12975-010-0025-5

    Article  PubMed  Google Scholar 

  183. Correia et al (2010) Mitochondrial preconditioning: a potential neuroprotective strategy. Front Aging Neurosci: 138. doi: 10.3389/fnagi.2010.00138

Download references

Disclosure

All authors have approved of the final article.

Funding Source

No specific funding was received for this study.

Conflict of Interest

The author(s) confirm that this article content has no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajanikant GK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N, T., Sangwan, A., Sharma, B. et al. Cerebral Ischemic Preconditioning: the Road So Far…. Mol Neurobiol 53, 2579–2593 (2016). https://doi.org/10.1007/s12035-015-9278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9278-z

Keywords

Navigation