Skip to main content

Advertisement

Log in

Aortic occlusion for cerebral ischemia: From theory to practice

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Ischemic stroke is a devastating disorder with limited treatment options. Arterial recanalization with thrombolysis or mechanical thrombectomy may be used to restore perfusion in only a subset of cases. Collateral therapeutic strategies such as partial aortic occlusion attempt to reverse ischemia, the principal detrimental element in stroke pathophysiology. This article considers the theoretic basis of aortic occlusion as a therapeutic strategy for cerebral ischemia, procedural details employing the NeuroFlo (CoAxia, Maple Grove, MN) device, ongoing and prior clinical studies, and potential practice implications in the future. The hemodynamic mechanisms associated with flow redistribution due to aortic occlusion and impact on the dynamic role of collateral perfusion in the ischemic brain are considered. Targeting ischemia rather than clot disruption or consideration of venous hemodynamics and flow redistribution may initiate a radical transformation in stroke care. Ultimately, demonstration of a rational mechanism that averts ischemia will be essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Liebeskind DS, Kasner SE: Neuroprotection for ischaemic stroke: an unattainable goal? CNS Drugs 2001, 15:165–174.

    Article  PubMed  CAS  Google Scholar 

  2. Heiss WD, Graf R: The ischemic penumbra. Curr Opin Neurol 1994, 7:11–19.

    Article  PubMed  CAS  Google Scholar 

  3. Hossmann KA: Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 2006, 26:1057–1083.

    Article  PubMed  Google Scholar 

  4. Liebeskind DS: Collateral circulation. Stroke 2003, 34:2279–2284.

    Article  PubMed  Google Scholar 

  5. Smith WS, Sung G, Starkman S, et al.: Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke 2005, 36:1432–1438.

    Article  PubMed  Google Scholar 

  6. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group: Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995, 333:1581–1587.

    Article  Google Scholar 

  7. Alexandrov AV, Grotta JC: Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator. Neurology 2002, 59:862–867.

    Article  PubMed  CAS  Google Scholar 

  8. Liebeskind DS: Collaterals in acute stroke: beyond the clot. Neuroimaging Clin N Am 2005, 15:553–573.

    Article  PubMed  Google Scholar 

  9. Forest Laboratories, Inc.: Topline Results of Phase III Study in Acute Ischemic Stroke (DIAS-2) Do Not Demonstrate Difference Between Desmoteplase and Placebo. Available at http://www.frx.com/news/PressRelease.aspx?ID=1009782. Accessed September 26, 2007.

  10. Liebeskind DS: Neuroprotection from the collateral perspective. IDrugs 2005, 8:222–228.

    PubMed  Google Scholar 

  11. Shuaib A, Lees KR, Lyden P, et al.: NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 2007, 357:562–571.

    Article  PubMed  CAS  Google Scholar 

  12. Fisher M, Lees K, Papadakis M, Buchan AM: NXY-059: brain or vessel protection. Stroke 2006, 37:2189–2190.

    Article  PubMed  Google Scholar 

  13. Liebeskind DS: Collateral therapeutics for cerebral ischemia. Expert Rev Neurother 2004, 4:255–265.

    Article  PubMed  Google Scholar 

  14. Becker KJ, Brott TG: Approval of the MERCI clot retriever: a critical view. Stroke 2005, 36:400–403.

    Article  PubMed  Google Scholar 

  15. Felten RP, Ogden NR, Pena C, et al.: The Food and Drug Administration medical device review process: clearance of a clot retriever for use in ischemic stroke. Stroke 2005, 36:404–406.

    Article  PubMed  Google Scholar 

  16. Furlan AJ, Fisher M: Devices, drugs, and the Food and Drug Administration: increasing implications for ischemic stroke. Stroke 2005, 36:398–399.

    Article  PubMed  Google Scholar 

  17. Lampl Y, Zivin JA, Fisher M, et al.: Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 2007, 38:1843–1849.

    Article  PubMed  Google Scholar 

  18. Henninger N, Fisher M: Stimulating circle of Willis nerve fibers preserves the diffusion-perfusion mismatch in experimental stroke. Stroke 2007, 38:2779–2786.

    Article  PubMed  Google Scholar 

  19. Gelman S, Khazaeli MB, Orr R, Henderson T: Blood volume redistribution during cross-clamping of the descending aorta. Anesth Analg 1994, 78:219–224.

    PubMed  CAS  Google Scholar 

  20. Stokland O, Miller MM, Ilebekk A, Kiil F: Mechanism of hemodynamic responses to occlusion of the descending thoracic aorta. Am J Physiol 1980, 238:H423–H429.

    PubMed  CAS  Google Scholar 

  21. Stokland O, Molaug M, Thorvaldson J, et al.: Cardiac effects of splanchnic and non-splanchnic blood volume redistribution during aortic occlusions in dogs. Acta Physiol Scand 1981, 113:139–146.

    PubMed  CAS  Google Scholar 

  22. Stokland O, Thorvaldson J, Ilebekk A, Kiil F: Contributions of blood drainage from the liver, spleen and intestines to cardiac effects of aortic occlusion in the dog. Acta Physiol Scand 1982, 114:351–362.

    Article  PubMed  CAS  Google Scholar 

  23. Gelman S, Rabbani S, Bradley EL Jr: Inferior and superior vena caval blood flows during cross-clamping of the thoracic aorta in pigs. J Thorac Cardiovasc Surg 1988, 96:387–392.

    PubMed  CAS  Google Scholar 

  24. Saether OD, Juul R, Aadahl P, et al.: Cerebral haemodynamics during thoracic-and thoracoabdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 1996, 12:81–85.

    Article  PubMed  CAS  Google Scholar 

  25. Stromholm T, Dale LG, Saether OD, et al.: Selective carotid angiography during cross-clamping of the descending thoracic aorta in pigs. Int Angiol 1996, 15:263–267.

    PubMed  CAS  Google Scholar 

  26. Stromholm T, Saether OD, Aadahl P, et al.: Alterations in intracranial volume following cross-clamping of the descending thoracic aorta in pigs—an experimental study using MRI. Eur J Vasc Endovasc Surg 1995, 10:36–39.

    Article  PubMed  CAS  Google Scholar 

  27. Cheung AT, Levy WJ, Weiss SJ, et al.: Relationships between cerebral blood flow velocities and arterial pressures during intra-aortic counterpulsation. J Cardiothorac Vasc Anesth 1998, 12:51–57.

    Article  PubMed  CAS  Google Scholar 

  28. Nussbaum ES, Sebring LA, Ganz WF, Madison MT: Intra-aortic balloon counterpulsation augments cerebral blood flow in the patient with cerebral vasospasm: a xenon-enhanced computed tomography study. Neurosurgery 1998, 42:206–213; discussion 213–214.

    Article  PubMed  CAS  Google Scholar 

  29. Simeone FA: Enhancement of cerebral flood flow by intermittent aortic occlusion. Eur Neurol 1972, 8:142–144.

    Article  PubMed  CAS  Google Scholar 

  30. Simeone FA, Laurent JP, Trepper PJ, et al.: Experimental augmentation of cerebral blood flow by intermittent aortic occlusion. J Neurosurg 1972, 36:700–713.

    PubMed  CAS  Google Scholar 

  31. Nussbaum ES, Heros RC, Solien EE, et al.: Intra-aortic balloon counterpulsation augments cerebral blood flow in a canine model of subarachnoid hemorrhage-induced cerebral vasospasm. Neurosurgery 1995, 36:879–884; discussion 884–886.

    Article  PubMed  CAS  Google Scholar 

  32. Tranmer BI, Peniston C, Iacobacci R, et al.: Intra-aortic balloon counterpulsation: a treatment for ischaemic stroke? Neurol Res 1989, 11:109–113.

    PubMed  CAS  Google Scholar 

  33. Werner D, Marthol H, Brown CM, et al.: Changes of cerebral blood flow velocities during enhanced external counterpulsation. Acta Neurol Scand 2003, 107:405–411.

    Article  PubMed  CAS  Google Scholar 

  34. Pranevicius M, Pranevicius O: Cerebral venous steal: blood flow diversion with increased tissue pressure. Neurosurgery 2002, 51:1267–1273; discussion 1273–1274.

    Article  PubMed  Google Scholar 

  35. Apostolides PJ, Greene KA, Zabramski JM, et al.: Intraaortic balloon pump counterpulsation in the management of concomitant cerebral vasospasm and cardiac failure after subarachnoid hemorrhage: technical case report. Neurosurgery 1996, 38:1056–1059; discussion 1059–1060.

    Article  PubMed  CAS  Google Scholar 

  36. Lylyk P, Vila JF, Miranda C, et al.: Partial aortic obstruction improves cerebral perfusion and clinical symptoms in patients with symptomatic vasospasm. Neurol Res 2005, 27(suppl 1):S129–S135.

    Article  PubMed  Google Scholar 

  37. Campbell MS, Grotta JC, Gomez CR, et al.: Perfusion augmentation in stroke using controlled aortic obstruction: pilot study results. Stroke 2004, 35:291.

    Google Scholar 

  38. Adams HP Jr, del Zoppo G, Alberts MJ, et al.: Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 2007, 38:1655–1711.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Liebeskind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebeskind, D.S. Aortic occlusion for cerebral ischemia: From theory to practice. Curr Cardiol Rep 10, 31–36 (2008). https://doi.org/10.1007/s11886-008-0007-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-008-0007-3

Keywords

Navigation