Skip to main content

Advertisement

Log in

Novel Therapies in Heart Failure with Reduced Ejection Fraction: from Soluble Guanylyl Cyclase Stimulators to Cardiac Myosin Activators

  • Heart Failure (W Tang, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

In this review, our goal was to provide a brief background on the evolution of therapeutic targets for heart failure with reduced ejection fraction (HFrEF), summarize the results of recent clinical trials with diverse pharmacological targets, discuss potential limitations of these findings, and provide future perspectives.

Recent findings

Despite advances in pharmacological and device therapy, HFrEF still carries a considerably high morbidity and mortality. For the past four decades, the neurohormonal model has been pivotal in the development of efficacious pharmacotherapies for HFrEF. However, recent clinical trials with sodium-glucose cotransporter 2 inhibitors (SGLT2i), soluble guanylate cyclase stimulators, and cardiac myosin activators have yielded positive results and created a new spectrum of pharmacologic targets to further improve outcomes in HFrEF. Specifically for SGLT2i, the data point to a class disease-modifying effect with mortality benefit in HFrEF, in addition to a substantial reduction in healthcare resources utilization.

Summary

We are currently witnessing a paradigm shift away from neurohormonal inhibition as the sole line of disease-modifying pharmacotherapies in HFrEF, as encouraging data emerge about alternative pathophysiologic pathways. Further research is needed to identify the optimal target subpopulations for these therapies and to improve outcomes in patients with HFrEF decompensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017;14(1):30–8. https://doi.org/10.1038/nrcardio.2016.163.

    Article  CAS  PubMed  Google Scholar 

  2. Jhund PS, McMurray JJ. The neprilysin pathway in heart failure: a review and guide on the use of sacubitril/valsartan. Heart. 2016;102(17):1342–7. https://doi.org/10.1136/heartjnl-2014-306775.

    Article  CAS  PubMed  Google Scholar 

  3. Mehra MR, Uber PA, Francis GS. Heart failure therapy at a crossroad: are there limits to the neurohormonal model? J Am Coll Cardiol. 2003;41(9):1606–10. https://doi.org/10.1016/s0735-1097(03)00245-6.

    Article  PubMed  Google Scholar 

  4. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  PubMed  Google Scholar 

  5. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  CAS  PubMed  Google Scholar 

  6. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond). 2016;130(2):57–77. https://doi.org/10.1042/CS20150469.

    Article  CAS  Google Scholar 

  7. Publication Committee for the VI. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA. 2002;287(12):1531–40. https://doi.org/10.1001/jama.287.12.1531.

    Article  Google Scholar 

  8. O'Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365(1):32–43. https://doi.org/10.1056/NEJMoa1100171.

    Article  CAS  PubMed  Google Scholar 

  9. Swedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med. 1992;327(10):678–84. https://doi.org/10.1056/nejm199209033271002.

    Article  CAS  PubMed  Google Scholar 

  10. Metra M, Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, et al. Effects of serelaxin in patients with acute heart failure. N Engl J Med. 2019;381(8):716–26. https://doi.org/10.1056/NEJMoa1801291.

    Article  CAS  PubMed  Google Scholar 

  11. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  CAS  PubMed  Google Scholar 

  12. Menendez JT. The mechanism of action of LCZ696. Cardiac failure review. 2016;2(1):40–6. https://doi.org/10.15420/cfr.2016:1:1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776–803. https://doi.org/10.1016/j.jacc.2017.04.025.

    Article  PubMed  Google Scholar 

  14. Felker GM, Benza RL, Chandler AB, Leimberger JD, Cuffe MS, Califf RM, et al. Heart failure etiology and response to milrinone in decompensated heart failure. J Am Coll Cardiol. 2003;41(6):997–1003. https://doi.org/10.1016/s0735-1097(02)02968-6.

    Article  CAS  PubMed  Google Scholar 

  15. O'Connor CM, Gattis WA, Uretsky BF, Adams KF, McNulty SE, Grossman SH, et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1999;138(1):78–86. https://doi.org/10.1016/S0002-8703(99)70250-4.

    Article  CAS  PubMed  Google Scholar 

  16. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89. https://doi.org/10.1056/NEJMoa0907118.

    Article  PubMed  Google Scholar 

  17. Burkhoff D, Naidu SS. The science behind percutaneous hemodynamic support: a review and comparison of support strategies. Catheter Cardiovasc Interv. 2012;80(5):816–29. https://doi.org/10.1002/ccd.24421.

    Article  PubMed  Google Scholar 

  18. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43. https://doi.org/10.1056/NEJMoa012175.

    Article  CAS  PubMed  Google Scholar 

  19. Psotka MA, Gottlieb SS, Francis GS, Allen LA, Teerlink JR, Adams KF Jr, et al. Cardiac calcitropes, myotropes, and mitotropes: JACC review topic of the week. J Am Coll Cardiol. 2019;73(18):2345–53. https://doi.org/10.1016/j.jacc.2019.02.051.

    Article  PubMed  Google Scholar 

  20. Teerlink JR, Felker GM, McMurray JJV, Ponikowski P, Metra M, Filippatos GS, et al. Acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure: the ATOMIC-AHF study. J Am Coll Cardiol. 2016;67(12):1444–55. https://doi.org/10.1016/j.jacc.2016.01.031.

    Article  CAS  PubMed  Google Scholar 

  21. Teerlink JR, Felker GM, McMurray JJ, Solomon SD, Adams KF Jr, Cleland JG, et al. Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF): a phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet (London, England). 2016;388(10062):2895–903. https://doi.org/10.1016/S0140-6736(16)32049-9.

    Article  CAS  Google Scholar 

  22. Teerlink JR, Diaz R, Felker GM, McMurray JJV, Metra M, Solomon SD, et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med. 2020;384:105–16. https://doi.org/10.1056/NEJMoa2025797.

    Article  PubMed  Google Scholar 

  23. Sandner P. From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators. Biol Chem. 2018;399(7):679–90. https://doi.org/10.1515/hsz-2018-0155.

    Article  CAS  PubMed  Google Scholar 

  24. Singh P, Vijayakumar S, Kalogeroupoulos A, Butler J. Multiple avenues of modulating the nitric oxide pathway in heart failure clinical trials. Curr Heart Fail Rep. 2018;15(2):44–52. https://doi.org/10.1007/s11897-018-0383-y.

    Article  CAS  PubMed  Google Scholar 

  25. Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol. 2019. https://doi.org/10.1007/164_2018_197.

  26. Ghofrani HA, Galie N, Grimminger F, Grunig E, Humbert M, Jing ZC, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(4):330–40. https://doi.org/10.1056/NEJMoa1209655.

    Article  CAS  PubMed  Google Scholar 

  27. Ghofrani HA, D'Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29. https://doi.org/10.1056/NEJMoa1209657.

    Article  CAS  PubMed  Google Scholar 

  28. Bonderman D, Ghio S, Felix SB, Ghofrani HA, Michelakis E, Mitrovic V, et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013;128(5):502–11. https://doi.org/10.1161/CIRCULATIONAHA.113.001458.

    Article  CAS  PubMed  Google Scholar 

  29. Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CS, Maggioni AP, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA. 2015;314(21):2251–62. https://doi.org/10.1001/jama.2015.15734.

    Article  CAS  PubMed  Google Scholar 

  30. Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382(20):1883–93. https://doi.org/10.1056/NEJMoa1915928.

    Article  CAS  PubMed  Google Scholar 

  31. Sandner P, Stasch JP. Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Respir Med. 2017;122(Suppl 1):S1–9. https://doi.org/10.1016/j.rmed.2016.08.022.

    Article  PubMed  Google Scholar 

  32. Irvine JC, Ganthavee V, Love JE, Alexander AE, Horowitz JD, Stasch JP, et al. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy. PLoS One. 2012;7(11):e44481. https://doi.org/10.1371/journal.pone.0044481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720 The first large-scale trial demonsrating a clear benefit with SGLT2i on CV outcomes and providing a strong signal for reductions in HF incidence and HF-related outcomes.

    Article  CAS  PubMed  Google Scholar 

  34. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  35. McMurray JJV, DeMets DL, Inzucchi SE, Kober L, Kosiborod MN, Langkilde AM, et al. A trial to evaluate the effect of the sodium-glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF). Eur J Heart Fail. 2019;21(5):665–75. https://doi.org/10.1002/ejhf.1432.

    Article  CAS  PubMed  Google Scholar 

  36. •• McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303 The first trial of an SGLT2i enrolling exclusively patients with HFrEF regardless of a background of diabetes. The benefit with dapagliglozin was equally impressive in patients with and without diabetes.

    Article  CAS  PubMed  Google Scholar 

  37. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24. https://doi.org/10.1056/NEJMoa2022190.

    Article  CAS  PubMed  Google Scholar 

  38. • Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J med. 2020. https://doi.org/10.1056/NEJMoa2030183 Despite early termination, this is the first trial with an SGLT2i demonstrating benefit, driven by HF rehospitalizations, in a post-discharge HF setting. The only comparable results in this seeting can be traced back to the PIONEER-HF trial with sacubitril/valsartan.

  39. Katsiki N, Dimitriadis G, Hahalis G, Papanas N, Tentolouris N, Triposkiadis F, et al. Sodium-glucose co-transporter-2 inhibitors (SGLT2i) use and risk of amputation: an expert panel overview of the evidence. Metabolism. 2019;96:92–100. https://doi.org/10.1016/j.metabol.2019.04.008.

    Article  CAS  PubMed  Google Scholar 

  40. McGill JB, Subramanian S. Safety of sodium-glucose co-transporter 2 inhibitors. Am J Cardiol. 2019;124:S45–52. https://doi.org/10.1016/j.amjcard.2019.10.029.

    Article  CAS  PubMed  Google Scholar 

  41. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20(3):479–87. https://doi.org/10.1111/dom.13126.

    Article  CAS  PubMed  Google Scholar 

  42. Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci. 2019;20(3). https://doi.org/10.3390/ijms20030629.

  43. Sano M, Takei M, Shiraishi Y, Suzuki Y. Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. Journal of clinical medicine research. 2016;8(12):844–7. https://doi.org/10.14740/jocmr2760w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marton A, Kaneko T, Kovalik JP, Yasui A, Nishiyama A, Kitada K, et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat Rev Nephrol. 2021;17(1):65–77. https://doi.org/10.1038/s41581-020-00350-x.

    Article  CAS  PubMed  Google Scholar 

  45. Brito D, Bettencourt P, Carvalho D, Ferreira J, Fontes-Carvalho R, Franco F, et al. Sodium-glucose co-transporter 2 inhibitors in the failing heart: a growing potential. Cardiovasc Drugs Ther. 2020;34(3):419–36. https://doi.org/10.1007/s10557-020-06973-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Packer M, O'Connor C, McMurray JJV, Wittes J, Abraham WT, Anker SD, et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med. 2017;376(20):1956–64. https://doi.org/10.1056/NEJMoa1601895.

    Article  CAS  PubMed  Google Scholar 

  47. Felker GM, McMurray JJV, Cleland JG, O'Connor CM, Teerlink JR, Voors AA, et al. Effects of a novel nitroxyl donor in acute heart failure: the STAND-UP AHF study. JACC Heart Fail. 2020. https://doi.org/10.1016/j.jchf.2020.10.012.

  48. Butler J, Epstein SE, Greene SJ, Quyyumi AA, Sikora S, Kim RJ, et al. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: safety and efficacy results of a phase II-A randomized trial. Circ Res. 2017;120(2):332–40. https://doi.org/10.1161/CIRCRESAHA.116.309717.

    Article  CAS  PubMed  Google Scholar 

  49. Greenberg B, Butler J, Felker GM, Ponikowski P, Voors AA, Desai AS, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet. 2016;387(10024):1178–86. https://doi.org/10.1016/S0140-6736(16)00082-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lampros Papadimitriou MD, PhD.

Ethics declarations

Conflict of Interest

LP, GH, BL, and AK report no disclosures. RCL has been on Speaker’s Bureau for Astra Zeneca, Novartis, and Gilead. JB reports receiving research support from the National Institutes of Health, and European Union, and serves as a consultant to Abbott, Adrenomed, Amgen, Applied Therapeutics, Array, Astra Zeneca, Bayer, Boehringer Ingelheim, CVRx, G3 Pharma, Impulse Dynamics, Innolife, Janssen, LivaNova, Luitpold, Medtronic, Merck, Novartis, NovoNordisk, Relypsa, Sequana Medical, V-Wave Limited, and Vifor.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadimitriou, L., Hernandez, G.A., Lennep, B. et al. Novel Therapies in Heart Failure with Reduced Ejection Fraction: from Soluble Guanylyl Cyclase Stimulators to Cardiac Myosin Activators. Curr Treat Options Cardio Med 23, 33 (2021). https://doi.org/10.1007/s11936-021-00905-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-021-00905-6

Keywords

Navigation