Skip to main content

Advertisement

Log in

Engineering Closed-Loop, Autoregulatory Gene Circuits for Osteoarthritis Cell-Based Therapies

  • Osteoarthritis (M Goldring and T Griffin, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Genetic engineering offers the possibility to simultaneously target multiple cellular pathways in the joints affected by osteoarthritis (OA). The purpose of this review is to summarize the ongoing efforts to develop disease-modifying osteoarthritis drugs (DMOADs) using genetic engineering, including targeting approaches, genome editing techniques, and delivery methods.

Recent Findings

Several gene circuits have been developed that reprogram cells to autonomously target inflammation, and their efficacy has been demonstrated in chondrocytes and stem cells. Gene circuits developed for metabolic disorders, such as those targeting insulin resistance and obesity, also have the potential to mitigate the impact of these conditions on OA onset and/or progression.

Summary

Despite the strides made in characterizing the inflammatory environment of the OA joint, our incomplete understanding of how the multiple regulators interact to control signal transduction, gene transcription, and translation to protein limits the development of targeted disease-modifying therapeutics. Continuous advances in targeted genome editing, combined with online toolkits that simplify the design and production of gene circuits, have the potential to accelerate the discovery and clinical application of multi-target gene circuits with disease-modifying properties for the treatment of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. He Y, Li Z, Alexander PG, Ocasio-Nieves BD, Yocum L, Lin H, et al. Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models. Biology (Basel). 2020;9(8):194.

    CAS  Google Scholar 

  2. Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10267):2006–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol. 2018;30(2):160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Murphy LB, Cisternas MG, Pasta DJ, Helmick CG, Yelin EH. Medical expenditures and earnings losses among US adults with arthritis in 2013. Arthritis Care Res (Hoboken). 2018;70(6):869–76.

    Article  Google Scholar 

  5. Kotlarz H, Gunnarsson CL, Fang H, Rizzo JA. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arthritis Rheum. 2009;60(12):3546–53.

    Article  PubMed  Google Scholar 

  6. Tanikella AS, Hardy MJ, Frahs SM, Cormier AG, Gibbons KD, Fitzpatrick CK, et al. Emerging gene-editing modalities for osteoarthritis. Int J Mol Sci. 2020;21(17):6046.

    Article  CAS  PubMed Central  Google Scholar 

  7. Primorac D, Molnar V, Rod E, Jeleč Ž, Čukelj F, Matišić V, et al. Knee osteoarthritis: a review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Vol. 11, Genes. MDPI AG; 2020. p. 1–35.

  8. Eriksen EF, Shabestari M, Ghouri A, Conaghan PG. Bisphosphonates as a treatment modality in osteoarthritis. Bone. 2021;1(143):115352.

    Article  CAS  Google Scholar 

  9. Grandi FC, Bhutani N. Epigenetic therapies for osteoarthritis. Trends Pharmacol Sci. 2020;41(8):557–69.

    Article  CAS  PubMed  Google Scholar 

  10. Karsdal MA, Michaelis M, Ladel C, Siebuhr AS, Bihlet AR, Andersen JR, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future. Osteoarthritis and Cartilage. 2016;12(4):2013–21.

    Article  Google Scholar 

  11. Ratneswaran A, Kapoor M. Year in review: genetics, genomics, epigenetics. Osteoarthr Cartil. 2020.

  12. Dell’Isola A, Allan R, Smith SL, Marreiros SSP, Steultjens M. Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature. BMC Musculoskelet Disord. 2016;17(1):1–12.

    Article  CAS  Google Scholar 

  13. Yang R, Chen F, Guo J, Zhou D, Luan S. Recent advances in polymeric biomaterials-based gene delivery for cartilage repair. Bioact Mater. 2020;5(4):990–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol. 2012;8(9):543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mor A, Grijota M, Nørgaard M, Munthe J, Lind M, Déruaz A, et al. Trends in arthroscopy-documented cartilage injuries of the knee and repair procedures among 15-60-year-old patients. Scand J Med Sci Sports. 2015;25(4):e400–7.

    Article  CAS  PubMed  Google Scholar 

  16. Mobasheri A. Future cell and gene therapy for osteoarthritis (OA): potential for using mammalian protein production platforms, irradiated and transfected protein packaging cell lines for over-production of therapeutic proteins and growth factors. Adv Exp Med Biol. 2020;1247:17–31.

    Article  CAS  PubMed  Google Scholar 

  17. Reynard LN. Analysis of genetics and DNA methylation in osteoarthritis: what have we learnt about the disease? In: Seminars in Cell and Developmental Biology, vol. 62: Academic Press; 2017. p. 57–66.

    Google Scholar 

  18. Pradhan AD. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 2001;286(3):327.

    Article  CAS  PubMed  Google Scholar 

  19. Thorand B, Löwel H, Schneider A, Kolb H, Meisinger C, Fröhlich M, et al. C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men. Arch Intern Med. 2003;163(1):93.

    Article  CAS  PubMed  Google Scholar 

  20. Festa A, D’Agostino R, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes. 2002;51(4):1131–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bruunsgaard H, Skinhøj P, Pedersen AN, Schroll M, Pedersen BK. Ageing, tumour necrosis factor-alpha (TNF- α ) and atherosclerosis. Clin Exp Immunol. 2000;121(2):255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greene MA, Loeser RF. Aging-related inflammation in osteoarthritis. Osteoarthr Cartil. 2015;23(11):1966–71.

    Article  CAS  Google Scholar 

  23. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and “Garb-aging.” Trends Endocrinol Metab. 2017;28(3):199–212.

    Article  CAS  PubMed  Google Scholar 

  24. Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010;140(6):798–804.

    Article  CAS  PubMed  Google Scholar 

  25. Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy. 2005;1(3):131–40.

    Article  PubMed  Google Scholar 

  26. Brunk UT, Terman A. The mitochondrial-lysosomal axis theory of aging. Eur J Biochem. 2002;269(8):1996–2002.

    Article  CAS  PubMed  Google Scholar 

  27. Caramés B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62(3):791–801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Vinatier C, Domínguez E, Guicheux J, Caramés B. Role of the inflammation-autophagy-senescence integrative network in Osteoarthritis. Front Physiol. 2018;9(JUN):1–25.

    Google Scholar 

  29. Childs BG, Durik M, Baker DJ, Van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Page Thomas DP, King B, Stephens T, Dingle JT. In vivo studies of cartilage regeneration after damage induced by catabolin/interleukin-1. Ann Rheum Dis. 1991;50(2):75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van der Kraan PM, van den Berg WB. Anabolic and destructive mediators in osteoarthritis. Curr Opin Clin Nutr Metab Care. 2000;3(3):205–11.

    Article  PubMed  Google Scholar 

  32. Blanco Garcia FJ. Catabolic events in osteoarthritic cartilage. Osteoarthr Cartil. 1999;7(3):308–9.

    Article  CAS  Google Scholar 

  33. Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal. 2012;24(4):835–45.

    Article  CAS  PubMed  Google Scholar 

  35. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sobieh BH, Kassem DH, Zakaria ZM, El-Mesallamy HO. Potential emerging roles of the novel adipokines adipolin/CTRP12 and meteorin-like/METRNL in obesity-osteoarthritis interplay. Cytokine. 2021:138, 155368.

  37. Zapata-Linares N, Eymard F, Berenbaum F, Houard X. Role of adipose tissues in osteoarthritis. Curr Opin Rheumatol. 2021;33(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  38. Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018;44:38–50.

    Article  PubMed  CAS  Google Scholar 

  39. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Styrkarsdottir U, Helgason H, Sigurdsson A, Norddahl GL, Agustsdottir AB, Reynard LN, et al. Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nat Genet. 2017;49(5):801–5.

    Article  CAS  PubMed  Google Scholar 

  41. Attur M, Zhou H, Samuels J, Krasnokutsky S, Yau M, Scher JU, et al. Interleukin 1 receptor antagonist (IL1RN) gene variants predict radiographic severity of knee osteoarthritis and risk of incident disease. Ann Rheum Dis. 2020;79(3):400–7.

    Article  CAS  PubMed  Google Scholar 

  42. Peffers MJ, Balaskas P, Smagul A. Osteoarthritis year in review 2017: genetics and epigenetics. Osteoarthritis and Cartilage WB Saunders Ltd. 2018;26:304–11.

  43. Reynard LN, Barter MJ. Osteoarthritis year in review 2019: genetics, genomics and epigenetics. Osteoarthritis Cartilage. 2020;28(3):275–84.

    Article  CAS  PubMed  Google Scholar 

  44. Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Vol. 10, Nature Reviews Rheumatology. Nature Publishing Group; 2014. p. 437–41.

  45. Little CB, Hunter DJ. Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat Rev Rheumatol. 2013;9:485–97.

  46. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13(4):456–60.

    Article  CAS  PubMed  Google Scholar 

  47. Heir S, Nerhus TK, Røtterud JH, Løken S, Ekeland A, Engebretsen L, et al. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis. Am J Sports Med. 2010;38(2):231–7.

    Article  PubMed  Google Scholar 

  48. Arøen A, Løken S, Heir S, Alvik E, Ekeland A, Granlund OG, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004;32(1):211–5.

    Article  PubMed  Google Scholar 

  49. Snoeker B, Turkiewicz A, Magnusson K, Frobell R, Yu D, Peat G, et al. Risk of knee osteoarthritis after different types of knee injuries in young adults: a population-based cohort study. Br J Sports Med. 2020;54(12):725–30.

    Article  PubMed  Google Scholar 

  50. Rai MF, Brophy RH, Rosen V. Molecular biology of meniscus pathology: lessons learned from translational studies and mouse models. J Orthop Res. 2020;38(9):1895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Khan T, Alvand A, Prieto-Alhambra D, Culliford DJ, Judge A, Jackson WF, et al. ACL and meniscal injuries increase the risk of primary total knee replacement for osteoarthritis: a matched case-control study using the Clinical Practice Research Datalink (CPRD).  Br J Sports Med. 2019;53(15):965–968.

  52. Riordan EA, Little C, Hunter D. Pathogenesis of post-traumatic OA with a view to intervention. Vol. 28, Best Practice and Research: Clinical Rheumatology. Bailliere Tindall Ltd; 2014. p. 17–30.

  53. Mendez ME, Sebastian A, Murugesh DK, Hum NR, McCool JL, Hsia AW, et al. LPS-induced inflammation prior to injury exacerbates the development of post-traumatic osteoarthritis in mice. J Bone Miner Res. 2020;35(11):2229–41.

    Article  CAS  PubMed  Google Scholar 

  54. Lee JH, Fitzgerald JB, DiMicco MA, Grodzinsky AJ. Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum. 2005;52(8):2386–95.

    Article  CAS  PubMed  Google Scholar 

  55. Sui Y, Lee JH, DiMicco MA, Vanderploeg EJ, Blake SM, Hung H-H, et al. Mechanical injury potentiates proteoglycan catabolism induced by interleukin-6 with soluble interleukin-6 receptor and tumor necrosis factor α in immature bovine and adult human articular cartilage. Arthritis Rheum. 2009;60(10):2985–96.

    Article  CAS  PubMed  Google Scholar 

  56. Zhou Y, Wang T, Hamilton JL, Chen D. Wnt/β-catenin signaling in osteoarthritis and in other forms of arthritis. Vol. 19, Current Rheumatology Reports. Current Medicine Group LLC 1; 2017.

  57. LeGrand A, Fermor B, Fink C, Pisetsky DS, Weinberg JB, Vail TP, et al. Interleukin-1, tumor necrosis factor α, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E2 production in explants of human osteoarthritic knee menisci. Arthritis Rheum. 2001;44(9):2078–83.

    Article  CAS  PubMed  Google Scholar 

  58. Legendre F, Dudhia J, Pujol JP, Bogdanowicz P. JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of Sox9 expression. J Biol Chem. 2003;278(5):2903–12.

    Article  CAS  PubMed  Google Scholar 

  59. Katz Y, Nadiv O, Beer Y. Interleukin-17 enhances tumor necrosis factor α-induced synthesis of interleukins 1, 6, and 8 in skin and synovial fibroblasts: a possible role as a “fine-tuning cytokine” in inflammation processes. Arthritis Rheum. 2001;44(9):2176–84.

  60. Goldberg M, Nadiv O, Luknar-Gabor N, Agar G, Beer Y, Katz Y. Synergism between tumor necrosis factor alpha and interleukin-17 to induce IL-23 p19 expression in fibroblast-like synoviocytes.  Mol Immunol. 2009;46(8-9):1854–9.

  61. Rowan AD, Koshy PJT, Shingleton WD, Degnan BA, Heath JK, Vernallis AB, et al. Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown.  Arthritis Rheum. 2001;44(7):1620–32.

  62. Takahashi A, de Andrés MC, Hashimoto K, Itoi E, Oreffo ROC. Epigenetic regulation of interleukin-8, an inflammatory chemokine, in osteoarthritis. Osteoarthr Cartil. 2015;23(11):1946–54.

    Article  CAS  Google Scholar 

  63. Catterall JB, Stabler TV, Flannery CR, Kraus VB. Changes in serum and synovial fluid biomarkers after acute injury (NCT00332254). Arthritis Res Ther. 2010;12(6):R229.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kokebie R, Aggarwal R, Lidder S, Hakimiyan AA, Rueger DC, Block JA, et al. The role of synovial fluid markers of catabolism and anabolism in osteoarthritis, rheumatoid arthritis and asymptomatic organ donors. Arthritis Res Ther. 2011;13(2):1–10.

    Article  CAS  Google Scholar 

  65. Westacott CI, Whicher JT, Barnes IC, Thompson D, Swan AJ, Dieppe PA. Synovial fluid concentration of five different cytokines in rheumatic diseases. Ann Rheum Dis. 1990;49(9):676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bigoni M, Sacerdote P, Turati M, Franchi S, Gandolla M, Gaddi D, et al. Acute and late changes in intraarticular cytokine levels following anterior cruciate ligament injury. J Orthop Res. 2013;31(2):315–21.

    Article  CAS  PubMed  Google Scholar 

  67. Kahle P, Saal JG, Schaudt K, Zacher J, Fritz P, Pawelec G. Determination of cytokines in synovial fluids: correlation with diagnosis and histomorphological characteristics of synovial tissue. Ann Rheum Dis. 1992;51(6):731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santos Savio A, Cecilia Machado Diaz A, Chico Capote A, Miranda Navarro J, Rodríguez Alvarez Y, Bringas Pérez R, et al. Differential expression of pro-inflammatory cytokines IL-15Ralpha, IL-15, IL-6 and TNFalpha in synovial fluid from Rheumatoid arthritis patients. BMC Musculoskelet Disord. 2015;16:51.

  69. Rowland CR, Glass KA, Ettyreddy AR, Gloss CC, Matthews JRL, Huynh NPT, et al. Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs. Biomaterials. 2018;177:161–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Olson SA, Furman BD, Kraus VB, Huebner JL, Guilak F. Therapeutic opportunities to prevent post-traumatic arthritis: lessons from the natural history of arthritis after articular fracture. J Orthop Res. 2015;33(9):1266–77.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ross AK, Coutinho de Almeida R, Ramos YFM, Li J, Meulenbelt I, Guilak F. The miRNA-mRNA interactome of murine induced pluripotent stem cell-derived chondrocytes in response to inflammatory cytokines. FASEB J. 2020;34(9):11546–61.

    Article  CAS  PubMed  Google Scholar 

  72. Ji Q, Xu X, Zhang Q, Kang L, Xu Y, Zhang K, et al. The IL-1β/AP-1/miR-30a/ADAMTS-5 axis regulates cartilage matrix degradation in human osteoarthritis. J Mol Med. 2016;94(7):771–85.

    Article  CAS  PubMed  Google Scholar 

  73. Tang J, Cui W, Song F, Zhai C, Hu H, Zuo Q, et al. Effects of mesenchymal stem cells on interleukin-1β-treated chondrocytes and cartilage in a rat osteoarthritic model. Mol Med Rep. 2015;12(2):1753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Merz D, Liu R, Johnson K, Terkeltaub R. IL-8/CXCL8 and growth-related oncogene α/CXCL1 induce chondrocyte hypertrophic differentiation. J Immunol. 2003;171(8):4406–15.

    Article  CAS  PubMed  Google Scholar 

  75. Hampel U, Sesselmann S, Iserovich P, Sel S, Paulsen F, Sack R. Chemokine and cytokine levels in osteoarthritis and rheumatoid arthritis synovial fluid. J Immunol Methods. 2013;396(1–2):134–9.

    Article  CAS  PubMed  Google Scholar 

  76. Bertazzolo N, Punzi L, Stefani MP, Cesaro G, Pianon M, Finco B, et al. Interrelationships between interleukin (IL)-1, IL-6 and IL-8 in synovial fluid of various arthropathies. Agents Actions. 1994;41(1–2):90–2.

    Article  CAS  PubMed  Google Scholar 

  77. Monibi F, Roller BL, Stoker A, Garner B, Bal S, Cook JL. Identification of synovial fluid biomarkers for knee osteoarthritis and correlation with radiographic assessment. J Knee Surg. 2016;29(3):242–7.

    Article  PubMed  Google Scholar 

  78. Cuéllar VG, Cuéllar JM, Kirsch T, Strauss EJ. Correlation of synovial fluid biomarkers with cartilage pathology and associated outcomes in knee arthroscopy. Arthrosc - J Arthrosc Relat Surg. 2016;32(3):475–85.

    Article  Google Scholar 

  79. Barreto G, Soliymani R, Baumann M, Waris E, Eklund KK, Zenobi-Wong M, et al. Functional analysis of synovial fluid from osteoarthritic knee and carpometacarpal joints unravels different molecular profiles. Rheumatol (United Kingdom). 2019;58(5):897–907.

    CAS  Google Scholar 

  80. Leung YY, Huebner JL, Haaland B, Wong SBS, Kraus VB. Synovial fluid pro-inflammatory profile differs according to the characteristics of knee pain. Osteoarthr Cartil. 2017;25(9):1420–7.

    Article  CAS  Google Scholar 

  81. Flannery CR, Little CB, Hughes CE, Curtis CL, Caterson B, Jones SA. IL-6 and its soluble receptor augment aggrecanase-mediated proteoglycan catabolism in articular cartilage. Matrix Biol. 2000;19(6):549–53. 

  82. De Bruin T, De Rooster H, Van Bree H, Cox E. Interleukin-8 mRNA expression in synovial fluid of canine stifle joints with osteoarthritis. Vet Immunol Immunopathol. 2005;108(3–4):387–97.

    Article  PubMed  CAS  Google Scholar 

  83. Ruan G, Xu J, Wang K, Zheng S, Wu J, Bian F, et al. Associations between serum IL-8 and knee symptoms, joint structures, and cartilage or bone biomarkers in patients with knee osteoarthritis. Clin Rheumatol. 2019;38(12):3609–17.

    Article  PubMed  Google Scholar 

  84. Sun G, Ba CL, Gao R, Liu W, Ji Q. Association of IL-6, IL-8, MMP-13 gene polymorphisms with knee osteoarthritis susceptibility in the Chinese Han population.  Biosci Rep. 2019;39(2):BSR20181346

  85. Kaneko S, Satoh T, Chiba J, Ju C, Inoue K, Kagawa J. Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis. Cytokines Cell Mol Ther. 2000;6(2):71–9. 

  86. Pierzchala AW, Kusz DJ, Hajduk G. CXCL8 and CCL5 expression in synovial fluid and blood serum in patients with osteoarthritis of the knee. Arch Immunol Ther Exp. 2011;59(2):151–5.

    Article  CAS  Google Scholar 

  87. Cecil DL, Rose DM, Terkeltaub R, Liu-Bryan R. Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. Arthritis Rheum. 2005;52(1):144–54.

    Article  CAS  PubMed  Google Scholar 

  88. Chen B, Deng Y, Tan Y, Qin J, Bin CL. Association between severity of knee osteoarthritis and serum and synovial fluid interleukin 17 concentrations. J Int Med Res. 2014;42(1):138–44.

    Article  PubMed  CAS  Google Scholar 

  89. Liu Y, Peng H, Meng Z, Wei M. Correlation of IL-17 level in synovia and severity of knee osteoarthritis. Med Sci Monit. 2015;21:1732–6.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Snelling SJB, Bas S, Puskas GJ, Dakin SG, Suva D, Finckh A, et al. Presence of IL-17 in synovial fluid identifies a potential inflammatory osteoarthritic phenotype.  PLoS One. 2017;12(4):e0175109

  91. Sinkeviciute D, Aspberg A, He Y, Bay-Jensen A-C, Önnerfjord P. Characterization of the interleukin-17 effect on articular cartilage in a translational model: an explorative study. BMC Rheumatol. 2020;4(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Honorati MC, Cattini L, Facchini A. IL-17, IL-1β and TNF-α stimulate VEGF production by dedifferentiated chondrocytes. Osteoarthr Cartil. 2004;12(9):683–91.

    Article  Google Scholar 

  93. Koenders MI, Marijnissen RJ, Devesa I, Lubberts E, Joosten LAB, Roth J, et al. Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin-1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: rationale for combination treatment during arthritis. Arthritis Rheum. 2011;63(8):2329–39.

    Article  CAS  PubMed  Google Scholar 

  94. Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets. 2010;11(5):599–613.

  95. Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND. Transcriptional profiling of the LPS induced NF-κB response in macrophages. BMC Immunol. 2007;8:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. De Luca F. Regulatory role of NF-κB in growth plate chondrogenesis and its functional interaction with Growth Hormone. Vol. 514, Molecular and Cellular Endocrinology. Elsevier Ireland Ltd; 2020. 110916.

  97. Jimi E, Fei H, Nakatomi C. Nf-κb signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci. 2019;20(24):6275. 

  98. Nakatomi C, Nakatomi M, Matsubara T, Komori T, Doi-Inoue T, Ishimaru N, et al. Constitutive activation of the alternative NF-κB pathway disturbs endochondral ossification. Bone. 2019;121:29–41.

    Article  CAS  PubMed  Google Scholar 

  99. Li L, Li Z, Li Y, Hu X, Zhang Y, Fan P. Profiling of inflammatory mediators in the synovial fluid related to pain in knee osteoarthritis. BMC Musculoskelet Disord. 2020;21(1):99.

  100. De Santis M, Di Matteo B, Chisari E, Cincinelli G, Angele P, Lattermann C, et al. The role of Wnt pathway in the pathogenesis of OA and its potential therapeutic implications in the field of regenerative medicine. Vol. 2018, BioMed Research International. Hindawi Limited; 2018.

  101. Tu J, Huang W, Zhang W, Mei J, Zhu C. The emerging role of lncRNAs in chondrocytes from osteoarthritis patients. Biomed Pharmacother. 2020;131:110642

  102. Zhai G. Alteration of metabolic pathways in osteoarthritis. Metab. 2019;9(1):11.

    Google Scholar 

  103. Jiménez G, Cobo-Molinos J, Antich C, López-Ruiz E. Osteoarthritis: trauma vs disease. In: Advances in experimental medicine and biology. New York LLC: Springer; 2018. p. 63–83.

    Google Scholar 

  104. Kuusalo L, Felson DT, Wang N, Lewis CE, Torner J, Nevitt MC, et al. Metabolic osteoarthritis – relation of diabetes and cardiovascular disease with knee osteoarthritis. Osteoarthr Cartil. 2021;29(2):230–4.

    Article  CAS  Google Scholar 

  105. Dubey NK, Ningrum DNA, Dubey R, Deng Y-H, Li Y-C, Wang PD, et al. Correlation between diabetes mellitus and knee osteoarthritis: a dry-to-wet lab approach. Int J Mol Sci. 2018;19(10):3021.

    Article  PubMed Central  CAS  Google Scholar 

  106. Zhang W, Randell EW, Sun G, Likhodii S, Liu M, Furey A, et al. Hyperglycemia-related advanced glycation end-products is associated with the altered phosphatidylcholine metabolism in osteoarthritis patients with diabetes. PLoS One. 2017;12(9):e0184105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Takano M, Hirose N, Sumi C, Yanoshita M, Nishiyama S, Onishi A, et al. ANGPTL2 promotes inflammation via integrin α5β1 in chondrocytes. Cartilage. 2019.

  108. Shan W, Cheng C, Huang W, Ding Z, Luo S, Guanjun C, Cui G, Lu W, Liu F, Xu Jiegou, He W, Yin Z. Angiopoietin-like 2 upregulation promotes human chondrocyte injury via NF-κB and p38/MAPK signaling pathway. J Bone Miner Metab. 2019;37(6):976–86.

    Article  CAS  PubMed  Google Scholar 

  109. Collins KH, Lenz KL, Pollitt EN, Ferguson D, Hutson I, Springer LE, et al. Adipose tissue is a critical regulator of osteoarthritis. Proc Natl Acad Sci USA. 2021;118(1):e2021096118. 

  110. Abella V, Scotece M, Conde J, Pino J, Gonzalez-Gay MA, Gómez-Reino JJ, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol. 2017;13(2):100–9.

    Article  CAS  PubMed  Google Scholar 

  111. Choi YR, Collins KH, Lee JW, Kang HJ, Guilak F. Genome engineering for osteoarthritis: from designer cells to disease-modifying drugs. Vol. 16, Tissue Engineering and Regenerative Medicine. Korean Tissue Engineering and Regenerative Medicine Society; 2019. 335–43.

  112. Zhang P, Sun J, Liang C, Gu B, Xu Y, Lu H, et al. lncRNA IGHC γ 1 Acts as a ceRNA to regulate macrophage inflammation via the miR-6891-3p/TLR4 axis in osteoarthritis. Mediat Inflamm. 2020;17(2020):1–11.

    CAS  Google Scholar 

  113. Huang J, Zhao L, Fan Y, Liao L, Ma PX, Xiao G, et al. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression.  Nat Commun. 2019;10(1):2876

  114. Zhou ZB, Huang GX, Fu Q, Han B, Lu JJ, Chen AM, et al. circRNA.33186 contributes to the pathogenesis of osteoarthritis by sponging miR-127-5p. Mol Ther. 2019;27(3):531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Coutinho De Almeida R, Ramos YFM, Mahfouz A, Den Hollander W, Lakenberg N, Houtman E, et al. RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage. Ann Rheum Dis. 2019;78(2):270–7.

    Article  PubMed  CAS  Google Scholar 

  116. Swingler TE, Niu L, Smith P, Paddy P, Le L, Barter MJ, et al. The function of microRNAs in cartilage and osteoarthritis. Clin Exp Rheumatol. 2019;37 Suppl 120(5):40–47.

  117. Ding Y, Wang L, Zhao Q, Wu Z, Kong L. MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-κB signaling pathway. Int J Mol Med. 2019;43(2):779–90.

    CAS  PubMed  Google Scholar 

  118. Zhou ZB, Du D, Huang GX, Chen A, Zhu L. Circular RNA Atp9b, a competing endogenous RNA, regulates the progression of osteoarthritis by targeting miR-138-5p. Gene. 2018:646, 203–9.

  119. Duan L, Liang Y, Xu X, Xiao Y, Wang D. Recent progress on the role of miR-140 in cartilage matrix remodelling and its implications for osteoarthritis treatment. Vol. 22, Arthritis research & therapy. NLM (Medline); 2020. 194.

  120. Nakamura A, Rampersaud YR, Nakamura S, Sharma A, Zeng F, Rossomacha E, et al. microRNA-181a-5p antisense oligonucleotides attenuate osteoarthritis in facet and knee joints. Ann Rheum Dis. 2019;78(1):111–21.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage. 2020;28(5):555–561. 

  122. Wang T, Hao Z, Liu C, Yuan L, Li L, Yin M, et al. LEF1 mediates osteoarthritis progression through circRNF121/miR-665/MYD88 axis via NF-кB signaling pathway. Cell Death Dis. 2020;11(7):598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zhu H, Hu Y, Wang C, Zhang X, He D. CircGCN1L1 promotes synoviocyte proliferation and chondrocyte apoptosis by targeting miR-330-3p and TNF-α in TMJ osteoarthritis. Cell Death Dis. 2020;11(4):284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen C, Yin P, Hu S, Sun X, Li B. Circular RNA-9119 protects IL-1β-treated chondrocytes from apoptosis in an osteoarthritis cell model by intercepting the microRNA-26a/PTEN axis. Life Sci. 2020:256.

  125. Xi P, Zhang CL, Wu SY, Liu L, Li WJ, Li YM. CircRNA circ-IQGAP1 knockdown alleviates interleukin-1β-induced osteoarthritis progression via targeting miR-671-5p/TCF4. Orthop Surg. 2021;13(3):1036–46.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sun H, Peng G, Ning X, Wang J, Yang H, Deng J. Emerging roles of long noncoding RNA in chondrogenesis, osteogenesis, and osteoarthritis. Am J Transl Res. 2019;11(1):16.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen H, Yang S, Shao R. Long non-coding XIST raises methylation of TIMP-3 promoter to regulate collagen degradation in osteoarthritic chondrocytes after tibial plateau fracture. Arthritis Res Ther. 2019;21(1):271.

  128. Xiao Y, Yan X, Yang Y, Ma X. Downregulation of long noncoding RNA HOTAIRM1 variant 1 contributes to osteoarthritis via regulating miR-125b/BMPR2 axis and activating JNK/MAPK/ERK pathway. Biomed Pharmacother. 2019;109:1569–77.

    Article  CAS  PubMed  Google Scholar 

  129. Smeriglio P, Grandi FC, Davala S, Masarapu V, Indelli PF, Goodman SB, et al. Inhibition of TET1 prevents the development of osteoarthritis and reveals the 5hmC landscape that orchestrates pathogenesis. Sci Transl Med. 2020;12(539):eaax2332.

    Article  CAS  PubMed  Google Scholar 

  130. Du X, Chen Y, Zhang Q, Lin J, Yu Y, Pan Z, et al. Ezh2 ameliorates osteoarthritis by activating TNFSF13B. J Bone Miner Res. 2020;35(5):956–65.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang H, Ji L, Yang Y, Zhang X, Gang Y, Bai L. The role of HDACs and HDACi in cartilage and osteoarthritis. Vol. 8, Frontiers in Cell and Developmental Biology. Frontiers Media S.A.; 2020.

  132. Du K, Fang X, Li Z. Ferulic acid suppresses interleukin-1β-induced degeneration of chondrocytes isolated from patients with osteoarthritis through the SIRT1/AMPK/PGC-1α signaling pathway. Immun Inflamm Dis. 2021;9(3):710–720. 

  133. Chae DS, Han S, Lee MK, Kim SW. Genome edited Sirt1-overexpressing human mesenchymal stem cells exhibit therapeutic effects in treating collagen-induced arthritis. Mol Cell. 2021;44(4):245–53.

    Article  CAS  Google Scholar 

  134. Collias D, Beisel CL. CRISPR technologies and the search for the PAM-free nuclease. Nat Commun. 2021;12(1):1–12.

    Article  CAS  Google Scholar 

  135. Smargon AA, Shi YJ, Yeo GW. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol. 2020;22(2):143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Guilak F, Pferdehirt L, Ross AK, Choi Y, Collins K, Nims RJ, et al. Designer stem cells: genome engineering and the next generation of cell-based therapies. J Orthop Res. 2019;37(6):1287–93.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Adkar SS, Brunger JM, Willard VP, Wu CL, Gersbach CA, Guilak F. Genome engineering for personalized arthritis therapeutics. Vol. 23, Trends in Molecular Medicine. Elsevier Ltd; 2017. 917–31.

  138. Chuang Y-F, Phipps AJ, Lin F-L, Hecht V, Hewitt AW, Wang P-Y, et al. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cell Mol Life Sci. 2021;78(6):2683–708.

    Article  CAS  PubMed  Google Scholar 

  139. Bellavia D, Veronesi F, Carina V, Costa V, Raimondi L, De Luca A, et al. Gene therapy for chondral and osteochondral regeneration: is the future now? Cell Mol Life Sci. 2018;75(4):649–67.

    Article  CAS  PubMed  Google Scholar 

  140. Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary transposon tools: a review and guide through mechanisms and applications of Sleeping Beauty, piggyBac and Tol2 for genome engineering. Int J Mol Sci. 2021;22(10):5084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sedlmayer F, Aubel D, Fussenegger M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat Biomed Eng. 2018;2(6):399–415.

    Article  CAS  PubMed  Google Scholar 

  142. Fonseca JP, Bonny AR, Kumar GR, Ng AH, Town J, Wu QC, et al. A toolkit for rapid modular construction of biological circuits in mammalian cells. ACS Synth Biol. 2019;8(11):2593–606.

    Article  CAS  PubMed  Google Scholar 

  143. Jones S, Martella A, Cai Y. EMMA assembly explained: a step-by-step guide to assemble synthetic mammalian vectors. Methods Enzymol. 2019 Jan;1(617):463–93.

    Article  CAS  Google Scholar 

  144. Gräwe A, Ranglack J, Weyrich A, Stein V. iFLinkC: an iterative functional linker cloning strategy for the combinatorial assembly and recombination of linker peptides with functional domains. Nucleic Acids Res. 2020;48(4):E24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Smole A, Lainšček D, Bezeljak U, Horvat S, Jerala R. A synthetic mammalian therapeutic gene circuit for sensing and suppressing inflammation. Mol Ther. 2017;25(1):102–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Karlsen TA, Pernas PF, Staerk J, Caglayan S, Brinchmann JE. Generation of IL1β-resistant chondrocytes using CRISPR-CAS genome editing. Osteoarthr Cartil. 2016;24:S325.

    Article  Google Scholar 

  147. Pferdehirt L, Ross AK, Brunger JM, Guilak F. A synthetic gene circuit for self-regulating delivery of biologic drugs in engineered tissues. Tissue Eng - Part A. 2019;25(9–10):809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nims RJ, Pferdehirt L, Ho NB, Savadipour A, Lorentz J, Sohi S, et al. A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. Sci Adv. 2021;7(5):eabd9858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ye H, Xie M, Xue S, Hamri GC-E, Yin J, Zulewski H, et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat Biomed Eng. 2017;1(1):0005.

    Article  CAS  PubMed  Google Scholar 

  150. Qudrat A, Al MA, Truong K. Engineered proteins program mammalian cells to target inflammatory disease sites. Cell. Chem Biol. 2017;24(6).

Download references

Funding

The preparation of this manuscript was supported by the OREF Soft Tissue Repair and Regeneration Sports Medicine Grant in Honor of Russell F. Warren, MD in collaboration with the American Orthopaedic Society for Sports Medicine (AOSSM) #18-051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhima M. Coleman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, R.M. Engineering Closed-Loop, Autoregulatory Gene Circuits for Osteoarthritis Cell-Based Therapies. Curr Rheumatol Rep 24, 96–110 (2022). https://doi.org/10.1007/s11926-022-01061-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-022-01061-x

Keywords

Navigation