Skip to main content

Advertisement

Log in

Checkpoint Molecules in Rheumatology—or the Benefits of Being Exhausted

  • Pediatric Rheumatology (S Ozen, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will focus on the most common co-inhibitory molecules, emphasizing the importance of these in relation to rheumatic disease.

Recent Findings

Checkpoint molecules are pivotal in determining the outcome of antigen activation. Checkpoint molecules consist of co-stimulatory and co-inhibitory molecules, where the first activates and the latter inhibits the antigen presentation process. Studies show that increased activity of co-inhibitory molecules is associated with a good prognosis in rheumatic diseases. Opposite, when cancer patients are treated with antibodies blocking the inhibitory pathways, autoimmune diseases, including arthritis, develop as immune-related adverse events (IrAE). This emphasizes the importance of these pathways in autoimmune disease.

Summary

Co-inhibitory molecules are becoming increasingly interesting as future treatment targets in rheumatic conditions. Treatments with antibodies blocking these pathways result in IrAE, often manifesting as autoimmune rheumatic diseases. Therefore, a need to get acquainted with these molecules is growing so we can cope with future challenges in rheumatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol. 2003;33:2706–16.

    Article  CAS  PubMed  Google Scholar 

  2. Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol. 2009;11:21–7.

    Article  PubMed  CAS  Google Scholar 

  3. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McKinney EF, Lee JC, Jayne DRW, Lyons PA, Smith KGC. T cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523:612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blank CU, Haining WN, Held W, et al. Defining “T cell exhaustion.”. Nat Rev Immunol. 2019;19:665–74 1–10. This paper provides a thorough discussion of the term “T cell exhaustion.”.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yi JS, Cox MA, Zajac AJ. T cell exhaustion: characteristics, causes and conversion. Immunology. 2010;129:474–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frasca D, Diaz A, Romero M, Blomberg BB. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways. EXG. 2017;87:113–20.

    CAS  Google Scholar 

  9. Salimzadeh L, Le Bert N, Dutertre C-A, et al. PD-1 blockade partially recovers dysfunctional virus–specific B cells in chronic hepatitis B infection. J Clin Invest. 2018;128:4573–87 This study provides a thorough description of PD-1’s role in B cell exhaustion.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Allahmoradi E, Taghiloo S, Tehrani M, Hossein-Nattaj H, Janbabaei G, Shekarriz R, et al. CD4+ T cells are exhausted and show functional defects in chronic lymphocytic leukemia. Iran J Immunol. 2017;14:257–69.

    PubMed  Google Scholar 

  11. McKinney E, Lyons P, Lee J, Jayne D, Smith KGC. Making treatment personal: measurement of exhaustion to target treatment in autoimmunity, infection, and vaccination. Lancet. 2014;383:S12.

    Article  Google Scholar 

  12. McKinney DEF, Lee J, Lyons PA, Rayner TF, Carr EJ, Hatton A, et al. Signatures of CD4 T cell help and CD8 exhaustion predict clinical outcome in autoimmunity, infection, and vaccination. Lancet. 2013;381:S74.

    Article  Google Scholar 

  13. Zhang R, Li H, Bai L, Duan J. Association between T cell immunoglobulin and mucin domain 3 (TIM-3) genetic polymorphisms and susceptibility to autoimmune diseases. Immunol Investig. 2019;48:563–76.

    Article  CAS  Google Scholar 

  14. Lin S-C, Kuo C-C, Chan C-H. Association of a BTLA gene polymorphism with the risk of rheumatoid arthritis. J Biomed Sci. 2006;13:853–60.

    Article  CAS  PubMed  Google Scholar 

  15. Oki M, Watanabe N, Owada T, Oya Y, Ikeda K, Saito Y, et al. A functional polymorphism in B and T lymphocyte attenuator is associated with susceptibility to rheumatoid arthritis. Clin Dev Immunol. 2011;2011:305656–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zou Y, Zhang Z, Liu Y, Liu D, Xu W. Are programmed cell death 1 gene polymorphisms correlated with susceptibility to rheumatoid arthritis? Medicine (Baltimore). 2017;96:e7805–7.

    Article  CAS  Google Scholar 

  17. Walker EJ, Hirschfield GM, Xu C, Lu Y, Liu X, Lu Y, et al. CTLA4/ICOS gene variants and haplotypes are associated with rheumatoid arthritis and primary biliary cirrhosis in the Canadian population. Arthritis Rheum. 2009;60:931–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kailashiya V, Sharma HB, Kailashiya J. Role of CTLA4 A49G polymorphism in systemic lupus erythematosus and its geographical distribution. J Clin Pathol. 2019;72:659–62.

    Article  CAS  PubMed  Google Scholar 

  19. Kubo S, Saito K, Hirata S, Fukuyo S, Yamaoka K, Sawamukai N, et al. Abatacept inhibits radiographic progression in patients with rheumatoid arthritis: a retrospective analysis of 6 months of abatacept treatment in routine clinical practice. The ALTAIR study. Mod Rheumatol. 2013;24:42–51.

    Article  CAS  Google Scholar 

  20. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–13.

    Article  CAS  PubMed  Google Scholar 

  21. Krummel MF, Allison JP. Pillars article: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. The journal of experimental medicine. 1995. 182: 459-465. J Immunol. 2011;187:3459–65.

    CAS  PubMed  Google Scholar 

  22. Jago CB, Yates J, Olsen Saraiva Camara N, Ri L, Lombardi G. Differential expression of CTLA-4 among T cell subsets. Clin Exp Immunol. 2004;136:463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao J, Zou L, Luo P, Chen P, Zhang L. Increased production of circulating soluble co-stimulatory molecules CTLA-4, CD28 and CD80 in patients with rheumatoid arthritis. Int Immunopharmacol. 2012;14:585–92.

    Article  CAS  PubMed  Google Scholar 

  24. Wong CK, Lit LCW, Tam LS, Li EK, Lam CWK. Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2005;44:989–94.

    Article  CAS  Google Scholar 

  25. Hebbar M, Jeannin P, Magistrelli G, Hatron PY, Hachulla E, Devulder B, et al. Detection of circulating soluble CD28 in patients with systemic lupus erythematosus, primary Sjogren’s syndrome and systemic sclerosis. Clin Exp Immunol. 2004;136:388–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hashkes GG. Abatacept in the treatment of polyarticular JIA: development, clinical utility, and place in therapy. DDDT. 2011;5:61–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Noisette A, Hochberg M. Abatacept for the treatment of adults with psoriatic arthritis: patient selection and perspectives. PTT. 2018;8:31–9.

    Article  CAS  Google Scholar 

  28. Khanna D, Spino C, Johnson S, et al. Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2019;72:125–36.

    Article  CAS  Google Scholar 

  29. Pimentel-Quiroz VR, Ugarte-Gil MF, Alarcón GS. Abatacept for the treatment of systemic lupus erythematosus. Expert Opin Investig Drugs. 2016;25:493–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL, et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007;30:825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson DB, Sullivan RJ, Ott PA, Carlino MS, Khushalani NI, Ye F, et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2016;2:234–40.

    Article  PubMed  Google Scholar 

  32. Ramos-Casals M, Brahmer JR, Callahan MK, Chavez AF, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Disease Primers. 2020;6:38 1–21.

    Article  PubMed  Google Scholar 

  33. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68.

    Article  CAS  PubMed  Google Scholar 

  34. Kostine M, Finckh A, Bingham CO 3rd, et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis. 2020;80(1):36–48 217139–13. This paper provides a thorough discussion of treating patients with immune-related adverse events.

    Article  PubMed  CAS  Google Scholar 

  35. Montastruc F, Renoux C, Dell’Aniello S, Simon TA, Azoulay L, Hudson M, et al. Abatacept initiation in rheumatoid arthritis and the risk of cancer: a population-based comparative cohort study. Rheumatology (Oxford). 2018;58:683–91.

    Article  PubMed Central  CAS  Google Scholar 

  36. Mercer LK, Askling J, Raaschou P, Dixon WG, Dreyer L, Hetland ML, et al. Risk of invasive melanoma in patients with rheumatoid arthritis treated with biologics: results from a collaborative project of 11 European biologic registers. Ann Rheum Dis. 2017;76:386–91.

    Article  PubMed  Google Scholar 

  37. Dougados M, Soubrier M, Antunez A, et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA). Ann Rheum Dis. 2013;73:62–8.

    Article  PubMed  Google Scholar 

  38. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    Article  CAS  PubMed  Google Scholar 

  39. Gato-Cañas M, Zuazo M, Arasanz H, et al. PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep. 2017;20:1818–29.

    Article  PubMed  CAS  Google Scholar 

  40. Lecis D, Sangaletti S, Colombo MP, Chiodoni C. Immune checkpoint ligand reverse signaling: looking back to go forward in cancer therapy. Cancers. 2019;11:624–13.

    Article  CAS  PubMed Central  Google Scholar 

  41. You W, Shang B, Sun J, Liu X, Su L, Jiang S. Mechanistic insight of predictive biomarkers for antitumor PD-1/PD-L1 blockade: a paradigm shift towards immunome evaluation (review). Oncol Rep. 2020;44:424–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiao Y, Yu S, Zhu B, et al. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med. 2014;3:81.

    Google Scholar 

  43. Greisen SR, Kragstrup TW, Thomsen JS, et al. Programmed death ligand 2 - a link between inflammation and bone loss in rheumatoid arthritis. J Transl Autoimmun. 2020;3:100028.

    Article  PubMed  Google Scholar 

  44. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18:153–67.

    Article  CAS  PubMed  Google Scholar 

  45. Peled M, Tocheva AS, Sandigursky S, Nayak S, Philips EA, Nichols KE, et al. Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor. Proc Natl Acad Sci U S A. 2018;115:E468–77.

    Article  CAS  PubMed  Google Scholar 

  46. Jubel JM, Barbati ZR, Burger C, Wirtz DC, Schildberg FA. The role of PD-1 in acute and chronic infection. Front Immunol. 2020;11:79–15.

    Article  CAS  Google Scholar 

  47. Zehn D, Wherry EJ. Immune memory and exhaustion: clinically relevant lessons from the LCMV model. In: Crossroads between innate and adaptive immunity V. Cham: Springer International Publishing; 2015. p. 137–52.

    Chapter  Google Scholar 

  48. Dai S, Jia R, Zhang X, Fang Q, Huang L. Cellular immunology. Cell Immunol. 2014;290:72–9.

    Article  CAS  PubMed  Google Scholar 

  49. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Greisen S, Rasmussen T, Stengaard-Pedersen K, Hetland M, Horslev-Petersen K, Hvid M, et al. Increased soluble programmed death-1 (sPD-1) is associated with disease activity and radiographic progression in early rheumatoid arthritis. Scand J Rehabil Med. 2013;43:101–8.

    Article  Google Scholar 

  51. Yang L, Qiao G, Hassan Y, Li Z, Zhang X, Kong H, et al. Program death-1 suppresses autoimmune arthritis by inhibiting Th17 response. Arch Immunol Ther Exp. 2016;64:417–23.

    Article  CAS  Google Scholar 

  52. Nielsen C, Ohm-Laursen L, Barington T, Husby S, Lillevang ST. Alternative splice variants of the human PD-1 gene. Cell Immunol. 2005;235:109–16.

    Article  CAS  PubMed  Google Scholar 

  53. Hirahara S, Katsumata Y, Kawasumi H, Kawaguchi Y, Harigai M. Serum levels of soluble programmed cell death protein 1 and soluble programmed cell death protein ligand 2 are increased in systemic lupus erythematosus and associated with the disease activity. Lupus. 2020;56:096120332091651–11.

    Google Scholar 

  54. Liu C, Jiang J, Gao L, Wang X, Hu X, Wu M, et al. Soluble PD-1 aggravates progression of collagen-induced arthritis through Th1 and Th17 pathways. Arthritis Res Ther. 2015;17:340 1–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jalali S, Price-Troska T, Paludo J, Villasboas J, Kim H-J, Yang Z-Z, et al. Soluble PD-1 ligands regulate T cell function in Waldenstrom macroglobulinemia. Blood Adv. 2018;2:1985–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Greisen SR, Yan Y, Hansen AS, Venø MT, Nyengaard JR, Moestrup SK, et al. Extracellular vesicles transfer the receptor programmed death-1 in rheumatoid arthritis. Front Immunol. 2017;8:e1694–14.

    Article  CAS  Google Scholar 

  57. Pauken KE, Dougan M, Rose NR, Lichtman AH, Sharpe AH. Adverse events following cancer immunotherapy: obstacles and opportunities. Trends Immunol. 2019;40:511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liao W, Zheng H, Wu S, Zhang Y, Wang W, Zhang Z, et al. The systemic activation of programmed death 1-PD-L1 axis protects systemic lupus erythematosus model from nephritis. Am J Nephrol. 2017;46:371–9.

    Article  CAS  PubMed  Google Scholar 

  59. Stefanski AL, Wiedemann A, Reiter K, Hiepe F, Lino AC, Dörner T. Enhanced programmed death 1 and diminished programmed death ligand 1 up-regulation capacity of post-activated lupus B cells. Arthritis Rheum. 2019;71:1539–44.

    Article  CAS  Google Scholar 

  60. Wilde B, Hua F, Dolff S, Jun C, Cai X, Specker C, et al. Aberrant expression of the negative costimulator PD-1 on T cells in granulomatosis with polyangiitis. Rheumatology. 2012;51:1188–97.

    Article  CAS  PubMed  Google Scholar 

  61. Paluch C, Santos AM, Anzilotti C, Cornall RJ, Davis SJ. Immune checkpoints as therapeutic targets in autoimmunity. Front Immunol. 2018;9:711.

    Article  CAS  Google Scholar 

  62. Lui Y, Davis SJ. LAG-3: a very singular immune checkpoint. Nat Immunol. 2018;19:1278–9.

    Article  CAS  PubMed  Google Scholar 

  63. Casati C, Camisaschi C, Rini F, Arienti F, Rivoltini L, Triebel F, et al. Soluble human LAG-3 molecule amplifies the in vitro generation of type 1 tumor-specific immunity. Cancer Res. 2006;66:4450–60.

    Article  CAS  PubMed  Google Scholar 

  64. Andreae S, Buisson S, Triebel F. MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood. 2003;102:2130–7.

    Article  CAS  PubMed  Google Scholar 

  65. Li N, Jilisihan B, Wang W, Tang Y, Keyoumu S. Soluble LAG3 acts as a potential prognostic marker of gastric cancer and its positive correlation with CD8+T cell frequency and secretion of IL-12 and INF-γ in peripheral blood. CBM. 2018;23:341–51.

    Article  CAS  Google Scholar 

  66. Fougeray S, Brignone C, Triebel F. A soluble LAG-3 protein as an immunopotentiator for therapeutic vaccines: preclinical evaluation of IMP321. Vaccine. 2006;24:5426–33.

    Article  CAS  PubMed  Google Scholar 

  67. Narayanan S, Ahl PJ, Bijin VA, Kaliaperumal N, Lim SG, Wang C-I, et al. LAG3 is a central regulator of NK cell cytokine production. bioRxiv. 2020;2020:2020013192800.

    Google Scholar 

  68. Cook KD, Whitmire JK. LAG-3 confers a competitive disadvantage upon antiviral CD8+ T cell responses. J Immunol. 2016;197:119–27.

    Article  CAS  PubMed  Google Scholar 

  69. Nakachi S, Sumitomo S, Tsuchida Y, Tsuchiya H, Kono M, Kato R, et al. Interleukin-10-producing LAG3+ regulatory T cells are associated with disease activity and abatacept treatment in rheumatoid arthritis. Arthritis Res Ther. 2017;19:97–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Chen S-Y, Hsu W-T, Chen Y-L, Chien C-H, Chiang B-L. Lymphocyte-activation gene 3+ (LAG3+) forkhead box protein 3- (FOXP3-) regulatory T cells induced by B cells alleviates joint inflammation in collagen-induced arthritis. J Autoimmun. 2016;68:75–85.

    Article  CAS  PubMed  Google Scholar 

  71. Kato R, Sumitomo S, Tsuchida Y, et al. CD4+CD25+LAG3+ T cells with a feature of Th17 cells associated with systemic lupus erythematosus disease activity. Front Immunol. 2019;10:716–0.

    Article  CAS  Google Scholar 

  72. Puhr HC, Ilhan-Mutlu A. New emerging targets in cancer immunotherapy: the role of LAG3. ESMO Open. 2019;4:e000482–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Angin M, Brignone C, Triebel F. A LAG-3-specific agonist antibody for the treatment of T cell-induced autoimmune diseases. J Immunol. 2020;204:810–8 This paper shows the effects of LAG-3 agonistic in delayed-type hypersensitivity.

    Article  CAS  PubMed  Google Scholar 

  74. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–52.

    Article  CAS  PubMed  Google Scholar 

  75. Cao E, Zang X, Ramagopal UA, Mukhopadhaya A, Fedorov A, Fedorov E, et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity. 2007;26:311–21.

    Article  CAS  PubMed  Google Scholar 

  76. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid–mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol. 2012;13:832–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang Y-H, Zhu C, Kondo Y, et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 2014;517:386–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Banerjee H, Kane LP. Immune regulation by Tim-3. F1000Res. 2018;7:316–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Koohini Z, Hossein-Nataj H, Mobini M, Hosseinian-Amiri A, Rafiei A, Asgarian-Omran H. Analysis of PD-1 and Tim-3 expression on CD4+ T cells of patients with rheumatoid arthritis; negative association with DAS28. Clin Rheumatol. 2018;37(8):2063–71 1–9.

    Article  PubMed  Google Scholar 

  80. Li S, Peng D, He Y, Zhang H, Sun H, Shan S, et al. Expression of TIM-3 on CD4+ and CD8+ T cells in the peripheral blood and synovial fluid of rheumatoid arthritis. APMIS. 2014;122:899–904.

    Article  CAS  PubMed  Google Scholar 

  81. Song L, Wang Y, Sui Y, Sun J, Li D, Li G, et al. High interleukin-37 (IL-37) expression and increased mucin-domain containing-3 (TIM-3) on peripheral T cells in patients with rheumatoid arthritis. Med Sci Monit. 2018;24:5660–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiao Q, Qian Q, Zhao Z, Fang F, Hu X, An J, et al. Expression of human T cell immunoglobulin domain and mucin-3 (TIM-3) and TIM-3 ligands in peripheral blood from patients with systemic lupus erythematosus. Arch Dermatol Res. 2016;308:553–61.

    Article  CAS  PubMed  Google Scholar 

  83. Guo L, Yang X, Xia Q, Zhen J, Zhuang X, Peng T. Expression of human T cell immunoglobulin domain and mucin-3 (TIM-3) on kidney tissue from systemic lupus erythematosus (SLE) patients. Clin Exp Med. 2013;14:383–8.

    Article  PubMed  CAS  Google Scholar 

  84. Jin L, Bai R, Zhou J, Shi W, Xu L, Sheng J, et al. Association of serum T cell immunoglobulin domain and mucin-3 and interleukin-17 with systemic lupus erythematosus. Med Sci Monit Basic Res. 2018;24:168–76.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol. 2015;15:243–54.

    Article  CAS  PubMed  Google Scholar 

  86. Rotte A, Jin JY, Lemaire V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann Oncol. 2018;29:71–83.

    Article  CAS  PubMed  Google Scholar 

  87. Lupo KB, Matosevic S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J Hematol Oncol. 2020;13:76 1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhao W, Dong Y, Wu C, Ma Y, Jin Y, Ji Y. TIGIT overexpression diminishes the function of CD4 T cells and ameliorates the severity of rheumatoid arthritis in mouse models. Exp Cell Res. 2016;340:132–8.

    Article  CAS  PubMed  Google Scholar 

  89. Luo Q, Deng Z, Xu C, Zeng L, Ye J, Li X, et al. Elevated Expression of immunoreceptor tyrosine-based inhibitory motif (TIGIT) on T lymphocytes is correlated with disease activity in rheumatoid arthritis. Med Sci Monit. 2017;23:1232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Luo Q, Li X, Fu B, et al. Decreased expression of TIGIT in NK cells correlates negatively with disease activity in systemic lupus erythematosus. Int J Clin Exp Pathol. 2018;11:2408–18.

    PubMed  PubMed Central  Google Scholar 

  91. Mao L, Hou H, Wu S, Zhou Y, Wang J, Yu J, et al. TIGIT signalling pathway negatively regulates CD4 + T cell responses in systemic lupus erythematosus. Immunology. 2017;151:280–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu S, Sun L, Wang C, et al. Treatment of murine lupus with TIGIT-Ig. Clin Immunol. 2019;203:72–80 This paper shows the effects of TIGIT in an animal model for Lupus.

    Article  CAS  PubMed  Google Scholar 

  93. Schorer M, Rakebrandt N, Lambert K, Hunziker A, Pallmer K, Oxenius A, et al. TIGIT limits immune pathology during viral infections. Nat Commun. 2020;11:1288 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cai G, Freeman GJ. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T cell activation. Immunol Rev. 2009;229:244–58.

    Article  CAS  PubMed  Google Scholar 

  95. Yang B, Huang Z, Feng W, Wei W, Zhang J, Liao Y, et al. The expression of BTLA was increased and the expression of HVEM and LIGHT were decreased in the T cells of patients with rheumatoid arthritis [corrected]. PLoS One. 2016;11:e0155345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Shang Y-J, Cui Q-F, Li J-L, Guo G-N, Zhu W-Y. Expression of the costimulatory molecule BTLA in synovial tissues from rheumatoid arthritis patients. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2012;28:643–6.

    CAS  PubMed  Google Scholar 

  97. Shang Y, Guo G, Cui Q, Li J, Ruan Z, Chen Y. The expression and anatomical distribution of BTLA and its ligand HVEM in rheumatoid synovium. Inflammation. 2012;35:1102–12.

    Article  CAS  PubMed  Google Scholar 

  98. Oster C, Wilde B, Specker C, Sun M, Kribben A, Witzke O, et al. BTLA Expression on Th1, Th2 and Th17 effector T-cells of patients with systemic lupus erythematosus is associated with active disease. IJMS. 2019;20:4505.

    Article  CAS  PubMed Central  Google Scholar 

  99. Sawaf M, Fauny J-D, Felten R, Sagez F, Gottenberg J-E, Dumortier H, et al. Defective BTLA functionality is rescued by restoring lipid metabolism in lupus CD4+ T cells. JCI Insight. 2018;3:413.

    Article  Google Scholar 

  100. Werner K, Dolff S, Dai Y, Ma X, Brinkhoff A, Korth J, et al. The co-inhibitor BTLA is functional in ANCA-associated vasculitis and suppresses Th17 cells. Front Immunol. 2019;10:2843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang J, Wu G, Manick B, Hernandez V, Renelt M, Erickson C, et al. VSIG-3 as a ligand of VISTA inhibits human T cell function. Immunology. 2019;156:74–85.

    Article  CAS  PubMed  Google Scholar 

  102. Ceeraz S, Eszterhas SK, Sergent PA, Armstrong DA, Ashare A, Broughton T, et al. VISTA deficiency attenuates antibody-induced arthritis and alters macrophage gene expression in response to simulated immune complexes. Arthritis Res Ther. 2017;19:270–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Han X, Vesely MD, Yang W, et al. PD-1H (VISTA)-mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus. Sci Transl Med. 2019;11:eaax1159.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stinne Ravn Greisen.

Ethics declarations

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Article is part of the Topical Collection on Pediatric Rheumatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greisen, S.R., Deleuran, B. Checkpoint Molecules in Rheumatology—or the Benefits of Being Exhausted. Curr Rheumatol Rep 23, 22 (2021). https://doi.org/10.1007/s11926-021-00991-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-021-00991-2

Keywords

Navigation