Skip to main content

Advertisement

Log in

How to grow bone to treat osteoporosis and mend fractures

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

There is a need for “anabolic” drugs that can directly stimulate bone growth, improve bone microarchitecture, accelerate fracture healing, and, thus, restore bone strength to osteoporosis patients and, hopefully, regenerate eroded bone in arthritis patients. The anabolic agents currently leading the way to the clinic are the parathyroid hormone (PTH) and some of its adenylyl cyclase-stimulating fragments. This article is a summary of what is known about how PTHs stimulate bone growth. The controversial bone anabolic activities of the cholesterol-lowering lipophilic statins are also described, and mechanisms by which they may stimulate bone growth are presented. Finally, evidence is presented for the body’s “fat-ostat” cytokine —leptin— indirectly restraining bone growth via a hypothalamic factor, while at the same time serving as a local PTH-like autocrine/paracrine stimulator of osteoblast activity, as well as an inhibitor of osteoclast generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Seeman E, Delmas PD: Reconstructing the skeleton with intermittent parathyroid hormone. Trends Endocrinol Metab 2001, 12:281–283. An exceptionally clear discussion of the difference between antiresorptives and bone anabolics.

    Article  PubMed  CAS  Google Scholar 

  2. Boivin GY, Chavassieux PM, Santora AC, et al.: Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 2000, 27:687–694.

    Article  PubMed  CAS  Google Scholar 

  3. Martin RB: Is all cortical bone remodeling initiated by microdamage? Bone 2002, 30:8–13. This article presents the case for the activation of bone-remodeling BMUs being the response to microcracking.

    Article  PubMed  CAS  Google Scholar 

  4. Bilezikian JP, Raisz LG, Rodan GA: Bone Biology, vol 1 and 2, edn 2. San Diego: Academic Press; 2002. The latest authoritative multiauthored compendium of information on bone biology.

    Google Scholar 

  5. Whitfield JF: The parathyroid hormones: anabolic tools for mending fractures and treating osteoporosis. Medscape Women’s Health Clinical Updates 2001. Available at: http:// www.medscape.com/Medscape/WomensHealth/ClincalUpdate/ 2001/v06.no5/wh01004.whit/wh01004. The most recent comprehensive and extensively referenced review of the PTHs and their osteogenicity.

  6. Marotti G: The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embyol 2003, 101:25–79. An explanation of how osteocytes and bone-lining cells interact to control bone remodeling and repair.

    Google Scholar 

  7. Hofbauer LC, Heufelder AE: Role of receptor activator of nuclear factor-kB ligand and osteoprotegerin in bone cell biology. J Mol Med 2001, 79:243–253.

    Article  PubMed  CAS  Google Scholar 

  8. Parikka V, Lehenkari P, Sassi ML, et al.: Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts. Endocrinology 2001, 142:5371–5378.

    Article  PubMed  CAS  Google Scholar 

  9. Manolagas SC: Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Revs 2000, 21:115–137.

    Article  CAS  Google Scholar 

  10. Bilezekian JP, Marcus MA, Levine MA: The Parathyroid Hormone, edn 2. San Diego: Academic Press; 2001. The most recent multiauthored compendium of information and references on all aspects of PTH, its fragments, and receptors.

    Google Scholar 

  11. Whitfield JF, Morley P, Willick GE: The Parathyroid Hormone: An Unexpected Bone Builder for Treating Osteoporosis. Austin: Landes Bioscience; 1998. Published in late 1998, this is, so far, the only monograph dealing specifically with the events leading to the discovery and use of PTHs as anabolic agents for treating opsteoporosis. It is a source of references for reports published between 1929 and mid-1998.

    Google Scholar 

  12. Jouishomme H, Whitfield JF, Chakravarthy B, et al.: The protein kinase-C activation domain of the parathyroid hormone. Endocrinology 1992, 130:53–60. Although from 1992, this is the first article that located PTH’s PLC/ PKCs-activation domains.

    Article  PubMed  CAS  Google Scholar 

  13. Rixon RH, Whitfield JF, Gognon L, et al.: Parathyroid hormone may stimulate bone growth in ovariectomized rats by activating adenyly cyclase. J Bone Miner Res 1994, 9:1179–1189. The first demonstration using OVX rats that PTH needs only to stimulate AC to trigger osteogenesis.

    Article  PubMed  CAS  Google Scholar 

  14. Jerome CP, Burr DB, Van Bibber T, et al.: Treatment with human parathyroid hormone (1-34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 2001, 28:150–159.

    Article  PubMed  CAS  Google Scholar 

  15. Hodsman AB, Steer BM: Early histomorhometric changes in response to parathyroid hormone therapy in osteoporosis: evidence for de novo bone formation on quiescent cancellous surfaces. Bone 1993, 14:523–527.

    Article  PubMed  CAS  Google Scholar 

  16. Aubin JE, Triffitt JT: Mesenchymal stem cells and osteoblast differententiation. In Bone Biology, vol 1, edn 2. Edited by Bilezikian JP, Raisz LG, Rodan GA. San Diego: Academic Press; 2002:59–91. The most up-to-date discussion of osteoblastic cell differentiation and somatic mosaicism of bone cells.

    Google Scholar 

  17. Burr DB, Hirano T, Turner CH, et al.: Intermittently administered human parathyroid hormone (1-34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res 2001, 16:157–165.

    Article  PubMed  CAS  Google Scholar 

  18. Andreassen TT, Ejersted C, Oxlund H: Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing fractures. J Bone Miner Res 1999, 14:960–968.

    Article  PubMed  CAS  Google Scholar 

  19. Kim HW, Jahng JS: Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Iowa Orthop J 1999, 19:71–77.

    PubMed  CAS  Google Scholar 

  20. Bonadio J: Tissue engineering via local gene delivery; update and future prospects for enhancing the technology. Adv Drug Del Rev 2000, 44:185–194.

    Article  CAS  Google Scholar 

  21. Mosekilde L, Reeve J: Treatment with PTH peptides. In Osteoporosis, vol 2, edn 2. Edited by Marcus R, Feldman D, Kelsey J. San Diego: Academic Press; 2001:725–746.

    Google Scholar 

  22. Fujita T, Inoue T, Morii H, et al.: Effect of intermittent weekly dose of human parathyroid hormone (1-34) on osteoporosis: a randomized double-masked prospective study using three dose levels. Osteoporos Int 1999, 9:296–306.

    Article  PubMed  CAS  Google Scholar 

  23. Roe EB, Sanchez SD, del Puerto GA, et al.: Parathyroid hormona 1-34 (hPTH 1-34) and estrogen produce dramatic bone density increases in post-menopausal osteoporosis: results from a placebo-controlled randomized trial. J Bone Miner Res 1999, 14:S137.

    Google Scholar 

  24. Rittmaster RS, Bolognese M, Ettinger MP, et al.: Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J Clin Endocrinol Metab 2000, 85:2129–2134.

    Article  PubMed  CAS  Google Scholar 

  25. Kurland EH, Cosman F, McMahon DJ: Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects of bone mineral density and bone markers. J Clin Endocrinol Metab 2000, 85:3069–3076.

    Article  PubMed  CAS  Google Scholar 

  26. Cann CE, Roe EB, Sanchez SD, et al.: PTH effects in the femur: envelope-specific responses by 3DQCT in postmenopausal women [abstract]. J Bone Miner Res 1999, 14:S137. Although it is only an abstract, this piece shows that the BMD drop in cortical bone during the 1st year of hPTH-(1-34) injections that has caused some concern is followed by dramatic increases in femoral endocortical and trabecular masses.

    Google Scholar 

  27. Neer RM, Arnaud CD, Zanchetta JR, et al.: Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001, 344:1434–1441. This report contains the phase III trial data for Eli Lilly’s recombinant hPTH-(1-34) that were presented in July 2001 to the US Food and Drug Administration’s Center for Drug Evaluation and Research (Endocrinology and Metabolic Drugs Advisoiry Committee). On the recommendation of this panel, the US Food and Drug Administration approved the PTH fragment for treating men and women osteoporotics.

    Article  PubMed  CAS  Google Scholar 

  28. Food and Drug Administration, Center for Drug Evaluation and Research: Endocrinologic and Metabolic Drugs Advisory Committee Meeting, July 27, 2001. Neal R Gross Court Reporters and Transcribers, 1323 Rhode Island Ave., NW, Washington DC 20005-3701. This transcript contains the full disclosure of the results of the human, monkey, and rat trials of Eli Lilly’s recombinant hPTH-(1-34) as a possible therapeutic for treating osteoporosis.

  29. Raouf A, Seth A: Discovery of osteoblast-associated genes using cDNA microarrays. Bone 2002, 30:463–441.

    Article  PubMed  CAS  Google Scholar 

  30. Whitfield JF, Morley P, Willick GE: The control of bone growth by parathyroid hormone (PTH), leptin and statins. Crit Rev Euk Gene Expr 2002, 12:23–51.

    Article  CAS  Google Scholar 

  31. Nakashima K, Zhou X, Kunkel G, et al.: The novel zinc-fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108:17–29.

    Article  PubMed  CAS  Google Scholar 

  32. Thomas D, Cart SA, Piscopo DM, et al.: The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 2001, 8:303–316.

    Article  PubMed  CAS  Google Scholar 

  33. Lu SS, Ducayen-Knowles M, Dempster DW, et al.: Effects of parathyroid hormone on gene expression of RANK ligand (RANKL), osteoprotegerin (OPG) and the cognate receptor for PTH in mice. J Bone Miner Res 2001, 16:S426.

    Article  Google Scholar 

  34. Onyia JE, Gelbert I, Zhang M, et al.: Analysis of gene expression by actions of PTH in bone. J Bone Miner Res 2001, 16:S227.

    Google Scholar 

  35. Mehta N, Stern W, Sturmer A, et al.: Oral delivery of PTH analogs by a solid dosage formulation. J Bone Miner Res 2001, 16:S540. This is the first indication of how a PTH “pill” may be produced.

    Google Scholar 

  36. Mundy GR: Directions of drug discovery in osteoporosis. Ann Rev Med 2002, 53:337–354.

    Article  PubMed  CAS  Google Scholar 

  37. Whitfield JF: Statins and the stimulation of bone growth: do they or don’t they? Geriatr Times 2002, 3:23–28.

    Google Scholar 

  38. Wang GJ, Chung KC, Shen WJ: Lipid-clearing agents in steroidinduced osteoporosis. J Formos Med Assoc 1995, 94:588–592.

    Google Scholar 

  39. Garrett IR, Gutierrez G, Mundy GR: Statins and bone formation. Curr Pharma Design 2001, 7:715–736. This is a review of the discovery of the statins’ osteogenicity from the view of the discoverers.

    Article  CAS  Google Scholar 

  40. Crawford DT, Qi H, Chisey-Frink KL, et al.: Statin increases cortical bone in young male rats by single, local administration but fails to restore bone to ovariectomized (OVX) rats by daily systemic administration. J Bone Miner Res 2001, 16:S295.

    Google Scholar 

  41. Gasser J: Fluvastatin and cerivastatin are not anabolic for bone after local or systemic administration of non-toxic doses in mice and rats. J Bone Miner Res 2001, 16:S295.

    Google Scholar 

  42. Sato M, Schmidt A, Cole H, et al.: The skeletal efficacy of statins do not compare with low-dose parathyroid hormone. Bone 2001, 28:S80.

    Article  Google Scholar 

  43. Yao W, Li CY, Farmer RW, et al.: Simvastatin did not prevent bone loss in ovariectomized rats. J Bone Miner Res 2001, 16:S138.

    Google Scholar 

  44. LaCroix AZ, Cauley JA, Jackson R, et al.: Does statin use reduce the risk of fracture in postmenopausal women? Results from the Women’s Health Initiative Observational Study (WHIOS). J Bone Miner Res 2000, 15:S155.

    Article  Google Scholar 

  45. Sirola J, Honkanen R, Kruger H, et al.: Effects of HMG-CoA reductase inhibitors, statins, on bone loss: a prospective population-based cohort study in early post-menopausal women. Bone 2001, 28:S220.

    Article  Google Scholar 

  46. Cosman F, Nieves J, Zion M, et al.: Effects of short-term cerivastatin on bone turnover. J Bone Miner Res 2001, 16:S29.

    Article  Google Scholar 

  47. Feron O, Dessy C, Desager J-P, et al.: Hydroxy-methylglutarylcoenzyme Areductase inhibition promotes endothelial nitric oxide synthase activation through a decrease in caveolin abundance. Circulation 2001, 103:113–118.

    PubMed  CAS  Google Scholar 

  48. Garrett IR, Gutierrez G, Chen D, et al.: Statins stimulate bone formation by enhancing eNOS expression. J Bone Miner Res 16:S75.

  49. van’t Hof RJ, Ralston SH: Nitric oxide and bone. Immunology 2001, 103:255–261.

    Article  Google Scholar 

  50. Ohnaka K, Shimoda S, Nawata H, et al.: Pitavastatin-enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem Biophys Res Commun 2001, 287:337–342.

    Article  PubMed  CAS  Google Scholar 

  51. Su LF, Knoblauch R, Garabedian MJ: Rho GTPases as modulators of the estrogen receptor transcriptional response. J Biol Chem 2001, 276:3231–3237.

    Article  PubMed  CAS  Google Scholar 

  52. Zhou S, Zilberman Y, Wassermann K, et al.: Estrogen modulates estrogen receptor a and b expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem 2001, 36(suppl):144–155.

    Article  Google Scholar 

  53. Ahima RS, Flier JS: Leptin. Ann Rev Physiol 2000, 62:413–437.

    Article  CAS  Google Scholar 

  54. Chu SC, Chou YC, Liu JY, et al.: Fluctuations of serum leptin levels in rats after ovariectomey and the influence of estrogen supplementation. Life Sci 1999, 64:2299–22306.

    Article  PubMed  CAS  Google Scholar 

  55. Ducy P, Amling M, Takeda S, et al.: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000, 100:197–207. The discovery of an osteoblast-restraining control mechanism in the brains of mice and rats.

    Article  PubMed  CAS  Google Scholar 

  56. Whitfield JF: Leptin brains and bones. Exp Opin Invest Drugs 2001, 10:1617–1622.

    Article  CAS  Google Scholar 

  57. Steppan CM, Crawford DT, Chidsey-Frink KI, et al.: Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 2000, 92:73–78. This report appears to flatly contradict the Ducy et al. [55••] demonstration of leptin’s anti-osteogenic action.

    Article  PubMed  CAS  Google Scholar 

  58. Liu C, Grossman A, Bain S: Leptin stimulates cortical bone formation in obese mice. J Bone Miner Res 1997, 12:S115.

    Article  Google Scholar 

  59. Maor GA, Rochwerger M, Segev Y, et al.: Leptin acts as a skeletal growth factor on chondrocytes of skeletal growth centers. J Bone Miner Res 2002, 17:1034–1043.

    Article  PubMed  CAS  Google Scholar 

  60. Cornish J, Callon KE, Bava U, et al.: The direct action of leptin on bone cells increase bone strength in vivo: an explanation of low fracture rates in obesity. Bone 2001, 28:S88.

    Google Scholar 

  61. Kume K, Satomura K, Nishisho S, et al.: Potential role of leptin in endochondral ossification. J Histochem Cytochem 2002, 50:159–169.

    PubMed  CAS  Google Scholar 

  62. Evans BAJ, Elford C, Gregory JW: Leptin control of bone metabolism. Bone 2001, 28:S149.

    Google Scholar 

  63. Lee YJ, Park JH, Ko JS, et al.: Expression of signal transducing leptin receptors on rat osteoblasts indicates a direct involvement of leptin in the regulation of bone formation. J Bone Miner Res 2001, 16:S495.

    Google Scholar 

  64. Thomas T, De Vittoris R, David VN, et al.: Leptin prevents disuse- induced bone loss in tail-suspended female rats. J Bone Miner Res 2001, 16:S143.

    Google Scholar 

  65. Burguera B, Hofbauer LC, Thomas T, et al.: Leptin reduces ovariectomy- induced bone loss in rats. Endocrinology 2001, 142:3546–3553.

    Article  PubMed  CAS  Google Scholar 

  66. Bassilana F, Susa M, Keller HJ, et al.: Human mesechymal cells undergoing osteogenic differentiation express leptin and functional leptin receptors. J Bone Miner Res 2000, 15:S378.

    Google Scholar 

  67. Enjuanes A, Supervia A, Nogus X, et al.: Leptin receptor (OB-R) gene expression in human primary osteoblasts: confirmation [letter]. J Bone Miner Res 2002, 17:1135.

    Article  PubMed  CAS  Google Scholar 

  68. Gordeladze JO, Drevon CA, Syversen U, et al.: Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineraliztion: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 2002, 85:825–836.

    Article  PubMed  CAS  Google Scholar 

  69. Thomas T, Gori F, Khosla S, et al.: Leptin acts on human marrow stromal cells to enhance differentiation and to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999, 140:1630–1638.

    Article  PubMed  CAS  Google Scholar 

  70. Holloway WR, Collier FM, Aitken CJ, et al.: Leptin inhibits osteoclast generation. J Bone Miner Res 2002, 17:200–209.

    Article  PubMed  CAS  Google Scholar 

  71. Baldock PA, Sainsbury A, Couzens M, et al.: Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 2002, 109:915–921.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitfield, J.F. How to grow bone to treat osteoporosis and mend fractures. Curr Rheumatol Rep 5, 45–56 (2003). https://doi.org/10.1007/s11926-003-0083-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-003-0083-8

Keywords

Navigation