Skip to main content

Bone Modulation

  • Chapter
  • First Online:
New Horizons in Osteoporosis Management
  • 1451 Accesses

Abstract

The human skeleton undergoes constant remodeling throughout the lifetime. Bone remodeling, the fundamental process for bone renewal, is targeted by treatments of osteoporosis to correct the imbalance between bone resorption and bone formation and reduce the risk of fractures with its associated clinical consequences. Currently available osteoporosis therapies affect bone resorption and bone formation in the same direction and either decrease (inhibitors of bone resorption) or increase (parathyroid hormone [PTH] peptides) bone remodeling. However, stopping bone resorption alone approach cannot replace already lost bone, which is required for better fracture protection in women with severe disease. This raised the hypothesis that for optimal therapeutic outcome, bone formation and bone resorption should be modulated in different directions. This chapter will discuss the concept of dynamic skeleton, coupling of bone remodeling, as well as principles of bone modulation. It will then discuss implications from research studies and clinical practice on bone modulation, as well as new aspects of the bone-protecting effects of vitamin D. It will conclude by elaborating some nontraditional molecules with anti-osteoporotic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown C. Osteoporosis: staying strong. Nature. 2017;550:S15–s17.

    CAS  PubMed  Google Scholar 

  2. Sozen T, Ozisik L, Basaran NC. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4:46–56.

    PubMed  Google Scholar 

  3. Cooper C, Campion G, Melton LJ 3rd. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2:285–9.

    CAS  PubMed  Google Scholar 

  4. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33.

    CAS  PubMed  Google Scholar 

  5. Yaacobi E, Sanchez D, Maniar H, Horwitz DS. Surgical treatment of osteoporotic fractures: an update on the principles of management. Injury. 2017;48(Suppl. 7):S34–s40.

    PubMed  Google Scholar 

  6. Feron JM, Mauprivez R. Fracture repair: general aspects and influence of osteoporosis and anti-osteoporosis treatment. Injury. 2016;47(Suppl. 1):S10–4.

    PubMed  Google Scholar 

  7. von Ruden C, Augat P. Failure of fracture fixation in osteoporotic bone. Injury. 2016;47(Suppl. 2):S3–S10.

    Google Scholar 

  8. Smith DM, Khairi MR, Johnston CC Jr. The loss of bone mineral with aging and its relationship to risk of fracture. J Clin Investig. 1975;56:311–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernatz JT, et al. Osteoporosis is common and undertreated prior to total joint arthroplasty. J Arthroplast. 2019;34:1347–53.

    Google Scholar 

  10. Singer A, et al. Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the United States. Mayo Clin Proc. 2015;90:53–62.

    PubMed  Google Scholar 

  11. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, HORIZON Pivotal Fracture Trial. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    CAS  PubMed  Google Scholar 

  12. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    CAS  PubMed  Google Scholar 

  13. Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2016;8(6):225–35. https://doi.org/10.1177/1759720X16670154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark D, Nakamura M, Miclau T, Marcucio R. Effects of aging on fracture healing. Curr Osteoporos Rep. 2017;15:601–8.

    PubMed  PubMed Central  Google Scholar 

  15. Baxter MA, et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 2004;22:675–82.

    CAS  PubMed  Google Scholar 

  16. Foulke BA, Kendal AR, Murray DW, Pandit H. Fracture healing in the elderly: a review. Maturitas. 2016;92:49–55.

    PubMed  Google Scholar 

  17. Appelman-Dijkstra NM, Papapoulos SE. Novel approaches to the treatment of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2014;28(6):843–57.

    CAS  PubMed  Google Scholar 

  18. Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002;13:97–104.

    CAS  PubMed  Google Scholar 

  19. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015:421746.

    Google Scholar 

  20. Iwaniec UT, Turner RT. Influence of body weight on bone mass, architecture and turnover. J Endocrinol. 2016;230:R115–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. van der Linden JC, Weinans H. Effects of microarchitecture on bone strength. Curr Osteoporos Rep. 2007;5:56–61.

    PubMed  Google Scholar 

  22. Stock SR. The mineral–collagen interface in bone. Calcif Tissue Int. 2015;97:262–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tzaphlidou M. Bone architecture: collagen structure and calcium/phosphorus maps. J Biol Phys. 2008;34:39–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Guerado E, et al. Bone mineral density aspects in the femoral neck of hip fracture patients. Injury. 2016;47(Suppl. 1):S21–4.

    PubMed  Google Scholar 

  25. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2:389–406.

    CAS  PubMed  Google Scholar 

  26. Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20:345–57.

    CAS  PubMed  Google Scholar 

  27. Boyce BF, Xing L, Shakespeare W, Wang Y, Dalgarno D, Iuliucci J, Sawyer T. Regulation of bone remodeling and emerging breakthrough drugs for osteoporosis and osteolytic bone metastases. Kidney Int. 2003;63(Supplement 85):S2–5.

    Google Scholar 

  28. Arias CF, Herrero MA, Echeverri LF, Oleaga GE, LoÂpez JM. Bone remodeling: a tissue-level process emerging from cell-level molecular algorithms. PLoS ONE. 2018;13(9):e0204171. https://doi.org/10.1371/journal.pone.0204171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eriksen EF. Normal and pathological remodeling of human trabecular bone: three-dimensional reconstruction of the remodeling sequence in normal and in metabolic bone disease. Endocr Rev. 1986;7:379–408.

    CAS  PubMed  Google Scholar 

  30. Everts V, Delaisee JM, Korper W, et al. The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation. J Bone Miner Res. 2002;17:77–90.

    CAS  PubMed  Google Scholar 

  31. le Duong T. Therapeutic inhibition of cathepsin K-reducing bone resorption while maintaining bone formation. Bonekey Rep. 2012;1:67.

    PubMed  PubMed Central  Google Scholar 

  32. Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K. Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res. 2007;22(4):487–94.

    CAS  PubMed  Google Scholar 

  33. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005;11(2):76–81.

    CAS  PubMed  Google Scholar 

  34. Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94(1):5–24.

    CAS  PubMed  Google Scholar 

  35. Parfitt A. Age related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int. 1984;36(Suppl I):S123–8.

    PubMed  Google Scholar 

  36. Seeman E, Delmas PD. Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61.

    CAS  PubMed  Google Scholar 

  37. Seeman E, Martin T. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat Rev Rheumatol. 2019;15:225–36.

    PubMed  Google Scholar 

  38. Appelman-Dijkstra N, Papapoulos S. Modulating bone resorption and bone formation in opposite directions in the treatment of postmenopausal osteoporosis. Drugs. 2015;75:1049–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai JN, Uihlein AV, Lee H, Kumbhani R, Siwila-Sackman E, McKay EA, Burnett-Bowie SA, Neer RM, Leder BZ. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet. 2013;382(9886):50–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Leder BZ, Tsai JN, Uihlein AV, Burnett-Bowie SA, Zhu Y, Foley K, Lee H, Neer RM. Two years of Denosumab and teriparatide administration in postmenopausal women with osteoporosis (The DATA Extension Study): a randomized controlled trial. J Clin Endocrinol Metab. 2014;99(5):1694–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Papapoulos SE. Targeting sclerostin as potential treatment of osteoporosis. Ann Rheum Dis. 2011;70(Suppl 1):i119–22.

    CAS  PubMed  Google Scholar 

  42. Papapoulos SE. Anabolic bone therapies in 2014: new bone forming treatments for osteoporosis. Nat Rev Endocrinol. 2015;11:69–70.

    CAS  PubMed  Google Scholar 

  43. van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lo¨wik CW. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199(6):805–14.

    PubMed  PubMed Central  Google Scholar 

  44. van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N, Papapoulos SE. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res. 2011;26(12):2804–11.

    PubMed  Google Scholar 

  45. Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H, Beighton P, Papapoulos SE. Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab. 2005;90(12):6392–5.

    CAS  PubMed  Google Scholar 

  46. Casanova M, Herelle J, Thomas M, Softley R, Schindeler A, Little D, Schneider P, Müller R. Effect of combined treatment with zoledronic acid and parathyroid hormone on mouse bone callus structure and composition. Bone. 2016;92:70–8.

    CAS  PubMed  Google Scholar 

  47. Leder BZ, Tsai JN, Neer RM, Uihlein AV, Wallace PM, Burnett-Bowie SA. Response to therapy with teriparatide, denosumab, or both in postmenopausal women in the DATA (Denosumab and Teriparatide Administration) study randomized controlled trial. J Clin Densitom. 2016;19:346–51.

    PubMed  Google Scholar 

  48. Tella SH, Gallagher JC. Biological agents in management of osteoporosis. Eur J Clin Pharmacol. 2014;70:1291–301.

    CAS  PubMed  Google Scholar 

  49. Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, Christiansen C, Bollerslev J, Karsdal MA, Henriksen K. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet. 2009;124(6):561–77.

    CAS  PubMed  Google Scholar 

  50. Henriksen K, Karsdal MA, Martin TJ. Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int. 2014;94(1):88–97.

    CAS  PubMed  Google Scholar 

  51. Thudium CS, Moscatelli I, Flores C, Thomsen JS, Brüel A, Gudmann NS, Hauge E-M, Karsdal MA, Richter J, Henriksen K. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation. Calcif Tissue Int. 2014;95(1):83–93.

    CAS  PubMed  Google Scholar 

  52. Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, Foged NT, Delmas PD, Delaisse´ JM. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem. 1998;273(48):32347–52.

    CAS  PubMed  Google Scholar 

  53. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    CAS  PubMed  Google Scholar 

  54. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res. 1999;14(10):1654–63.

    CAS  PubMed  Google Scholar 

  55. Kiviranta R, Morko J, Uusitalo H, Aro HT, Vuorio E, Rantakokko J. Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K. J Bone Miner Res. 2001;16(8):1444–52.

    CAS  PubMed  Google Scholar 

  56. Boonen S, Rosenberg E, Claessens F, Vanderschueren D, Papapoulos S. Inhibition of cathepsin K for treatment of osteoporosis. Curr Osteoporos Rep. 2012;10(1):73–9.

    PubMed  Google Scholar 

  57. Yasuda Y, Kaleta J, Bro¨mme D. The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev. 2005;57(7):973–93.

    CAS  PubMed  Google Scholar 

  58. Fuller K, Lawrence KM, Ross JL, Grabowska UB, Shiroo M, Samuelsson B, Chambers TJ. Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone. 2008;42(1):200–11.

    CAS  PubMed  Google Scholar 

  59. Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Luth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, Horne WC, Baron R. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest. 2013;123(2):666–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong LT, Falgueyret J-P, Kimmel DB, Lamontagne S, Léger S, LeRiche T, Li CS, Massé F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Thérien M, Truong V-L, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC. The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett. 2008;18(3):923–8.

    CAS  PubMed  Google Scholar 

  61. Pennypacker BL, le Duong T, Cusick TE, Masarachia PJ, Gentile MA, Gauthier JY, Black WC, Scott BB, Samadfam R, Smith SY, Kimmel DB. Cathepsin K inhibitors prevent bone loss in estrogen-deficient rabbits. J Bone Miner Res. 2011;26(2):252–62.

    CAS  PubMed  Google Scholar 

  62. Pennypacker BL, Oballa RM, Levesque S, Kimmel DB, le Duong T. Cathepsin K inhibitors increase distal femoral bone mineral density in rapidly growing rabbits. BMC Musculoskelet Disord. 2013;14:344.

    PubMed  PubMed Central  Google Scholar 

  63. Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, le Duong T. Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res. 2012;27(3):524–37.

    CAS  PubMed  Google Scholar 

  64. Pennypacker BL, Chen CM, Zheng H, Shih MS, Belfast M, Samadfam R, le Duong T. Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys. J Bone Miner Res. 2014;29(8):1847–58.

    CAS  PubMed  Google Scholar 

  65. Cabal A, Jayakar RY, Sardesai S, Phillips EA, Szumiloski J, Posavec DJ, Mathers PD, Savitz AT, Scott BB, Winkelmann CT, Motzel S, Cook L, Hargreaves R, Evelhoch JL, Dardzinski BJ, Hangartner TN, McCracken PJ, le Duong T, Williams DS. High resolution peripheral quantitative computed tomography and finite element analysis of bone strength at the distal radius in ovariectomized adult rhesus monkey demonstrate efficacy of odanacatib and differentiation from alendronate. Bone. 2013;56(2):497–505.

    CAS  PubMed  Google Scholar 

  66. Jerome C, Missbach M, Gamse R. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int. 2012;23(1):339–49.

    CAS  PubMed  Google Scholar 

  67. Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X, Dedic C, Maeda A, Lotinun S, Baron R, Pajevic PD. Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signalling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem. 2013;288(28):20122–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Compston JE. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone. 2007;40(6):1447–52.

    CAS  PubMed  Google Scholar 

  69. Horwitz MJ, Augustine M, Kahn L, Martin E, Oakley CC, et al. A comparison of parathyroid hormone-related protein (1-36) and parathyroid hormone (1-34) on markers of bone turnover and bone density in postmenopausal women: the PrOP study. J Bone Miner Res. 2013;28:2266–76.

    CAS  PubMed  Google Scholar 

  70. Leder BZ, O’Dea LSL, Zanchetta JR, Kumar P, Banks K, McKay K, Lyttle CR, Hattersley G. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2015;100(2):697–706.

    CAS  PubMed  Google Scholar 

  71. Van Der Meijden K, Lips P, Van Driel M, Heijboer AC, Schulten EA, Den Heijer M, Bravenboer N. Primary human osteoblasts in response to 25-hydroxyvitamn D3, 1,25-dihydroxyvitamin D3 and 24R,25-dihyroxyvitamin D3. PLoS One. 2014;9:e110283.

    PubMed  PubMed Central  Google Scholar 

  72. Oelzner P, Petrow PK, Wolf G, Bräuer R. 1,25-dihydroxyvitamin D3 prevents bone loss of the secondary spongiosa in arthritic rats by an increase of bone formation and mineralization and inhibition of bone resorption. BMC Musculoskelet Disord. 2014;15:345.

    PubMed  PubMed Central  Google Scholar 

  73. Takeda S, Smith SY, Tamura T, Saito H, Takahashi F, Samadfam R, Haile S, Doyle N, Endo K. Long-term treatment with eldecalcitol (1α, 25-dihydroxy-2β-(3-hydroxypropyloxy) vitamin D3) suppresses bone turnover and leads to prevention of bone loss and bone fragility in ovariectomized rats. Calcif Tissue Int. 2015;96:45–55.

    CAS  PubMed  Google Scholar 

  74. Yamasaki Y, Nagira K, Osaki M, Nagashima H, Hagino H. Effects of eldecalcitol on cortical bone response to mechanical loading in rats. BMC Musculoskelet Disord. 2015;16:158.

    PubMed  PubMed Central  Google Scholar 

  75. Zofkova I, Hill M. Long-term 1,25(OH)2 vitamin D therapy increases bone mineral density in osteopenic women. Comparison with the effect of plain vitamin D. Aging Clin Exp Res. 2007;19:472–7.

    CAS  PubMed  Google Scholar 

  76. Yonezawa T, Lee JW, Hibino A, Asai M, Hojo H, Cha BY, Teruya T, Nagai K, Chung UI, Yagasaki K, Woo JT. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling. Biochem Biophys Res Commun. 2011;409:260–5.

    CAS  PubMed  Google Scholar 

  77. Kumar P, Kushwaha P, Khedgikar V, Gautam J, Choudhary D, Singh D, Trivedi R, Maurya R. Neoflavonoids as potential osteogenic agents from Dalbergia sissoo heartwood. Bioorg Med Chem Lett. 2014;24:2664–8.

    CAS  PubMed  Google Scholar 

  78. Kushwaha P, Khedgikar V, Gautam J, Dixit P, Chillara R, Verma A, Thakur R, Mishra DP, Singh D, Maurya R, Chattopadhyay N, Mishra PR, Trivedi R. A novel therapeutic approach with Caviunin-based isoflavonoid that en routes bone marrow cells to bone formation via BMP2/Wnt-βcatenin signaling. Cell Death Dis. 2014;5:e1422.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen G, Wang C, Wang J, Yin S, Gao H, Xiang LU, Liu H, Xiong Y, Wang P, Zhu X, Yang LI, Zhang R. Antiosteoporotic effect of icariin in ovariectomized rats is mediated via Wnt/β-catenin pathway. Exp Ther Med. 2016;12:279–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shi FN, Almeida JC, Helguero LA, Fernandes MH, Knowles JC, Rocha J. Calcium phosphonate frameworks for treating bone tissue disorders. Inorg Chem. 2015;54:9929–35.

    CAS  PubMed  Google Scholar 

  81. DOH KE, KANG JH, Ting Z, Yim M, Choo HY. Novel diether compounds inhibiting differentiation of osteoclasts. Arch Pharm Res. 2016;39:178–90.

    CAS  PubMed  Google Scholar 

  82. Suzuki O, Imaizumi H, Kamakura S, Katagiri T. Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr Med Chem. 2008;15:305–13.

    CAS  PubMed  Google Scholar 

  83. Thaler R, Maurizi A, Roschger P, Sturmlechner I, Khani F, Spitzer S, Rumpler M, Zwerina J, Karlic H, Dudakovic A, Klaushofer K, Teti A, Rucci N, Varga F, Van Wijnen AJ. Anabolic and antiresorptive modulation of bone homeostasis by the epigenetic modulator sulforaphane, a naturally occurring isothiocyanate. J Biol Chem. 2016;291:6754–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li H, Zhai Z, Qu X, Xu J, Qin A, Dai K. MicroRNAs as potential targets for treatment of osteoclast-related diseases. Curr Drug Targets. 2018;19(5):422–31.

    Google Scholar 

  85. Jin C, Zhang P, Zhang M, Zhang X, Lv L, Liu H, Liu Y, Zhou Y. Inhibition of SLC7A11 by sulfasalazine enhances osteogenic differentiation of mesenchymal stem cells by modulating BMP2/4 expression and suppresses bone loss in ovariectomized mice. J Bone Miner Res. 2016;32:508–21.

    PubMed  Google Scholar 

  86. Lee ZH, Kim HJ, Ryoo HM. A novel oesteogenic activity of suberoylanilide hydroxamic acid is synergized by BMP-2. J Bone Metab. 2015;22:51–6.

    PubMed  PubMed Central  Google Scholar 

  87. Klontzas ME, Kenanidiz EI, Macfarlane RJ, Michail T, Potoupnis ME, Heliotis M, Mantalaris A, Tsiridis E. Investigational drugs for fracture healing: preclinical and clinical data. Expert Opin Investig Drugs. 2016;25:585–96.

    CAS  PubMed  Google Scholar 

  88. Zysset P, Dall’ara E, Varga P, Pahr D. Finite element analysis for prediction of bone strength. Bonekey Rep. 2013;2:386.

    PubMed  PubMed Central  Google Scholar 

  89. Cosman F, Cauley J, Eastell R, Boonen S, Palermo L, Reid I, et al. Reassessment of fracture risk in women after 3 years of treatment with zoledronic acid: when is it reasonable to discontinue treatment? J Clin Endocrinol Metab. 2014;99:4546–54.

    CAS  PubMed  Google Scholar 

  90. Schwartz A, Bauer D, Cummings S, Cauley J, Ensrud K, Palermo L, et al. Efficacy of continued alendronate for fractures in women with and without prevalent vertebral fracture: the FLEX trial. J Bone Miner Res. 2010;25:976–82.

    CAS  PubMed  Google Scholar 

  91. Silverman S, Chines A, Kendler D, Kung A, Teglbjaerg C, Felsenberg D, et al. Sustained efficacy and safety of bazedoxifene in preventing fractures in postmenopausal women with osteoporosis: results of a 5-year, randomized, placebo-controlled study. Osteoporos Int. 2012;23:351–63.

    CAS  PubMed  Google Scholar 

  92. Black D, Schwartz A, Ensrud K, Cauley J, Levis S, Quandt S, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA. 2006;296:2927–38.

    CAS  PubMed  Google Scholar 

  93. Miller P, Recker R, Reginster J, Riis B, Czerwinski E, Masanauskaite D, et al. Efficacy of monthly oral ibandronate is sustained over 5 years: the MOBILE long-term extension study. Osteoporos Int. 2012;23:1747–56.

    CAS  PubMed  Google Scholar 

  94. Gasser J, Kneissel M, Thomsen J, Mosekilde L. PTH and interactions with bisphosphonates. J Musculoskelet Neuronal Interact. 2000;1:53–6.

    CAS  PubMed  Google Scholar 

  95. Ominsky M, Libanati C, Niu Q, Boyce R, Kostenuik P, Wagman R, et al. Sustained modeling-based bone formation during adulthood in cynomolgus monkeys may contribute to continuous BMD gains with denosumab. J Bone Miner Res. 2015;30:1280–9.

    CAS  PubMed  Google Scholar 

  96. Papapoulos S, Lippuner K, Roux C, Lin C, Kendler D, Lewiecki E, et al. The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM extension study. Osteoporos Int. 2015;26:2773–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Black D, Reid I, Cauley J, Cosman F, Leung P, Lakatos P, et al. The effect of 6 versus 9 years of zoledronic acid treatment in osteoporosis: a randomized second extension to the HORIZON Pivotal Fracture Trial (PFT). J Bone Miner Res. 2015;30:934–44.

    CAS  PubMed  Google Scholar 

  98. Bone H, Chapurlat R, Brandi M, Brown J, Czerwinski E, Krieg M, et al. The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab. 2013;98:4483–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. McClung M, Chines A, Brown J, Diez-Perez A, Resch H, Caminis J, et al. Effects of 2 years of treatment with Romosozumab followed by 1 year of Denosumab or placebo in postmenopausal women with low bone mineral density. J Bone Miner Res. 2014;Suppl. 1:1152.

    Google Scholar 

  100. McClung M, Grauer A, Boonen S, Bolognese M, Brown J, Diez-Perez A, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370:412–20.

    CAS  PubMed  Google Scholar 

  101. Neer R, Arnaud C, Zanchetta J, Prince R, Gaich G, Reginster J, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Miedany, Y. (2022). Bone Modulation. In: El Miedany, Y. (eds) New Horizons in Osteoporosis Management. Springer, Cham. https://doi.org/10.1007/978-3-030-87950-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87950-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87949-5

  • Online ISBN: 978-3-030-87950-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics