Skip to main content

Advertisement

Log in

DHEA in bone: the role in osteoporosis and fracture healing

  • Review
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Dehydroepiandrosterone (DHEA) is a metabolic intermediate in the biosynthesis of estrogens and androgens with a past clouded in controversy and bold claims. It was once touted as a wonder drug, a fountain of youth that could cure all ailments. However, in the 1980s DHEA was banned by the FDA given a lack of documented health benefits and long-term use data. DHEA had a revival in 1994 when it was released for open market sale as a nutritional supplement under the Dietary Supplement Health and Safety Act. Since that time, there has been encouraging research on the hormone, including randomized controlled trials and subsequent meta-analyses on various conditions that DHEA may benefit. Bone health has been of particular interest, as many of the metabolites of DHEA are known to be involved in bone homeostasis, specifically estrogen and testosterone. Studies demonstrate a significant association between DHEA and increased bone mineral density, likely due to DHEA’s ability to increase osteoblast activity and insulin like growth factor 1 (IGF-1) expression. Interestingly, IGF-1 is also known to improve fracture healing, though DHEA, a potent stimulator of IGF-1, has never been tested in this scenario. The aim of this review is to discuss the history and mechanisms of DHEA as they relate to the skeletal system, and to evaluate if DHEA has any role in treating fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable

References

  1. Baulieu EE (1996) Dehydroepiandrosterone (DHEA): a fountain of youth? J Clin Endocrinol Metab 81:3147–3151

    CAS  PubMed  Google Scholar 

  2. Gaby A (1996) Dehydroepiandrosterone: biological effects and clinical significance. Altern Med Rev 1:60–69

    Google Scholar 

  3. Nestler J (1995) DHEA: a coming of age. Ann N Y Acad Sci 774:ix–xi

    Google Scholar 

  4. Gurnell EM, Hunt PJ, Curran SE, Conway CL, Pullenayegum EM, Huppert FA, Compston JE, Herbert J, Chatterjee VK (2008) Long-term DHEA replacement in primary adrenal insufficiency: a randomized, controlled trial. J Clin Endocrinol Metab 93:400–409

    CAS  PubMed  Google Scholar 

  5. Jankowski CM, Gozansky WS, Schwartz RS, Dahl DJ, Kittelson JM, Scott SM, Van Pelt RE, Kohrt WM (2006) Effects of dehydroepiandrosterone replacement therapy on bone mineral density in older adults: a randomized, controlled trial. J Clin Endocrinol Metab 91:2986–2993

    CAS  PubMed  Google Scholar 

  6. Villareal DT, Holloszy JO, Kohrt WM (2000) Effects of DHEA replacement on bone mineral density and body composition in elderly women and men. Clin Endocrinol 53:561–568

    CAS  Google Scholar 

  7. von Muhlen D, Laughlin GA, Kritz-Silverstein D, Bergstrom J, Bettencourt R (2008) Effect of dehydroepiandrosterone supplementation on bone mineral density, bone markers, and body composition in older adults: the DAWN trial. Osteoporos Int 19:699–707

    Google Scholar 

  8. Kaivosoja E, Sariola V, Chen Y, Konttinen YT (2015) The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells. J Tissue Eng Regen Med 9:31–40

    CAS  PubMed  Google Scholar 

  9. Butenandt A, Dannenbaum H (1934) Isolierung eines neuen, physiologisch unwirksamen Sterinderivates aus Mannerharn, seine Verknupfung mit Dehydro-androsteron und Androsteron. Z Physiol Chem 229:192–195

    CAS  Google Scholar 

  10. Munson P, Gallagher T, Koch F (1944) Isolation of dehydroisoandrosterone sulfate from normal male urine. J Biol Chem 152:67–77

    CAS  Google Scholar 

  11. Lieberman S (1995) An abbreviated account of some aspects of the biochemistry of DHEA, 1934-1995. Ann N Y Acad Sci 774:1–15

    CAS  PubMed  Google Scholar 

  12. Fieser L, Fieser M (1959) Steroids. New York, Reinhold Publishing Corporation

    Google Scholar 

  13. Migeon CJ, Plager JE (1954) Identification and isolation of dehydroisoandrosterone from peripheral human plasma. J Biol Chem 209:767–772

    CAS  PubMed  Google Scholar 

  14. Deneve L, Vermeulen A (1965) The determination of 17-oxosteroid sulphates in human plasma. J Endocrinol 32:295–302

    CAS  PubMed  Google Scholar 

  15. Cupp, Melanie Johns, and Timothy S Tracy. 2002. Dietary supplements: toxicology and clinical pharmacology (Springer Science & Business Media).

  16. Rutkowski K, Sowa P, Rutkowska-Talipska J, Kuryliszyn-Moskal A, Rutkowski R (2014) Dehydroepiandrosterone (DHEA): hypes and hopes. Drugs 74:1195–1207

    CAS  PubMed  Google Scholar 

  17. The Dietary Supplement Health and Education Act of 1994." (n.d.)In. 1994. United States of America.

  18. Barrett-Connor E, Khaw KT, Yen SS (1986) A prospective study of dehydroepiandrosterone sulfate, mortality, and cardiovascular disease. N Engl J Med 315:1519–1524

    CAS  PubMed  Google Scholar 

  19. Bulbrook RD, Hayward JL, Spicer CC (1971) Relation between urinary androgen and corticoid excretion and subsequent breast cancer. Lancet 2:395–398

    CAS  PubMed  Google Scholar 

  20. Stahl F, Schnorr D, Pilz C, Dorner G (1992) Dehydroepiandrosterone (DHEA) levels in patients with prostatic cancer, heart diseases and under surgery stress. Exp Clin Endocrinol 99:68–70

    CAS  PubMed  Google Scholar 

  21. Coleman DL, Leiter EH, Schwizer RW (1982) Therapeutic effects of dehydroepiandrosterone (DHEA) in diabetic mice. Diabetes 31:830–833

    CAS  PubMed  Google Scholar 

  22. Gordon GB, Bush DE, Weisman HF (1988) Reduction of atherosclerosis by administration of dehydroepiandrosterone. A study in the hypercholesterolemic New Zealand white rabbit with aortic intimal injury. J Clin Invest 82:712–720

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Araneo BA, Ryu SY, Barton S, Daynes RA (1995) Dehydroepiandrosterone reduces progressive dermal ischemia caused by thermal injury. J Surg Res 59:250–262

    CAS  PubMed  Google Scholar 

  24. Mills SJ, Ashworth JJ, Gilliver SC, Hardman MJ, Ashcroft GS (2005) The sex steroid precursor DHEA accelerates cutaneous wound healing via the estrogen receptors. J Invest Dermatol 125:1053–1062

    CAS  PubMed  Google Scholar 

  25. Yen SS, Morales AJ, Khorram O (1995) Replacement of DHEA in aging men and women. Potential remedial effects. Ann N Y Acad Sci 774:128–142

    CAS  PubMed  Google Scholar 

  26. Dhatariya K, Bigelow ML, Nair KS (2005) Effect of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women. Diabetes 54:765–769

    CAS  PubMed  Google Scholar 

  27. Weiss EP, Villareal DT, Fontana L, Han DH, Holloszy JO (2011) Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans. Aging (Albany NY) 3:533–542

    CAS  Google Scholar 

  28. Andus T, Klebl F, Rogler G, Bregenzer N, Scholmerich J, Straub RH (2003) Patients with refractory Crohn’s disease or ulcerative colitis respond to dehydroepiandrosterone: a pilot study. Aliment Pharmacol Ther 17:409–414

    CAS  PubMed  Google Scholar 

  29. Chang DM, Lan JL, Lin HY, Luo SF (2002) Dehydroepiandrosterone treatment of women with mild-to-moderate systemic lupus erythematosus: a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46:2924–2927

    CAS  PubMed  Google Scholar 

  30. Altman R, Motton DD, Kota RS, Rutledge JC (2008) Inhibition of vascular inflammation by dehydroepiandrosterone sulfate in human aortic endothelial cells: roles of PPARalpha and NF-kappaB. Vasc Pharmacol 48:76–84

    CAS  Google Scholar 

  31. Fusi FM, Ferrario M, Bosisio C, Arnoldi M, Zanga L (2013) DHEA supplementation positively affects spontaneous pregnancies in women with diminished ovarian function. Gynecol Endocrinol 29:940–943

    CAS  PubMed  Google Scholar 

  32. Labrie F, Archer D, Bouchard C, Fortier M, Cusan L, Gomez JL, Girard G, Baron M, Ayotte N, Moreau M, Dube R, Cote I, Labrie C, Lavoie L, Berger L, Gilbert L, Martel C, Balser J (2009a) Effect of intravaginal dehydroepiandrosterone (prasterone) on libido and sexual dysfunction in postmenopausal women. Menopause 16:923–931

    PubMed  Google Scholar 

  33. Labrie F, Archer D, Bouchard C, Fortier M, Cusan L, Gomez JL, Girard G, Baron M, Ayotte N, Moreau M, Dube R, Cote I, Labrie C, Lavoie L, Berger L, Gilbert L, Martel C, Balser J (2009b) Intravaginal dehydroepiandrosterone (prasterone), a physiological and highly efficient treatment of vaginal atrophy. Menopause 16:907–922

    PubMed  Google Scholar 

  34. do Vale S, Selinger L, Martins JM, Bicho M, do Carmo I, Escera C (2015) Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) and emotional processing - a behavioral and electrophysiological approach. Horm Behav 73:94–103

    PubMed  Google Scholar 

  35. Wolkowitz OM, Reus VI, Roberts E, Manfredi F, Chan T, Raum WJ, Ormiston S, Johnson R, Canick J, Brizendine L, Weingartner H (1997) Dehydroepiandrosterone (DHEA) treatment of depression. Biol Psychiatry 41:311–318

    CAS  PubMed  Google Scholar 

  36. Joshi K, Hassan SS, Ramaraj P (2017) Differential biological effects of dehydroepiandrosterone (DHEA) between mouse (B16F10) and human melanoma (BLM) cell lines. Dermatoendocrinol 9:e1389360

    PubMed  PubMed Central  Google Scholar 

  37. Lin H, Li L, Wang Q, Wang Y, Wang J, Long X (2019a) A systematic review and meta-analysis of randomized placebo-controlled trials of DHEA supplementation of bone mineral density in healthy adults. Gynecol Endocrinol 35:924–931

    CAS  PubMed  Google Scholar 

  38. Papierska L, Rabijewski M, Kasperlik-Zaluska A, Zgliczynski W (2012) Effect of DHEA supplementation on serum IGF-1, osteocalcin, and bone mineral density in postmenopausal, glucocorticoid-treated women. Adv Med Sci 57:51–57

    CAS  PubMed  Google Scholar 

  39. Weiss EP, Shah K, Fontana L, Lambert CP, Holloszy JO, Villareal DT (2009) Dehydroepiandrosterone replacement therapy in older adults: 1- and 2-y effects on bone. Am J Clin Nutr 89:1459–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nair KS, Rizza RA, O’Brien P, Dhatariya K, Short KR, Nehra A, Vittone JL, Klee GG, Basu A, Basu R, Cobelli C, Toffolo G, Dalla Man C, Tindall DJ, Melton LJ 3rd, Smith GE, Khosla S, Jensen MD (2006) DHEA in elderly women and DHEA or testosterone in elderly men. N Engl J Med 355:1647–1659

    CAS  PubMed  Google Scholar 

  41. Sun Y, Mao M, Sun L, Feng Y, Yang J, Shen P (2002) Treatment of osteoporosis in men using dehydroepiandrosterone sulfate. Chin Med J 115:402–404

    CAS  PubMed  Google Scholar 

  42. Baulieu EE, Thomas G, Legrain S, Lahlou N, Roger M, Debuire B, Faucounau V, Girard L, Hervy MP, Latour F, Leaud MC, Mokrane A, Pitti-Ferrandi H, Trivalle C, de Lacharriere O, Nouveau S, Rakoto-Arison B, Souberbielle JC, Raison J, Le Bouc Y, Raynaud A, Girerd X, Forette F (2000) Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. Proc Natl Acad Sci U S A 97:4279–4284

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Adams J, Garcia M, Rochefort H (1981) Estrogenic effects of physiological concentrations of 5-androstene-3 beta, 17 beta-diol and its metabolism in MCF7 human breast cancer cells. Cancer Res 41:4720–4726

    CAS  PubMed  Google Scholar 

  44. Labrie F, Belanger A, Cusan L, Candas B (1997) Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. J Clin Endocrinol Metab 82:2403–2409

    CAS  PubMed  Google Scholar 

  45. Panjari M, Bell RJ, Jane F, Adams J, Morrow C, Davis SR (2009) The safety of 52 weeks of oral DHEA therapy for postmenopausal women. Maturitas 63:240–245

    CAS  PubMed  Google Scholar 

  46. Scheffers CS, Armstrong S, Cantineau AE, Farquhar C, Jordan V (2015) Dehydroepiandrosterone for women in the peri- or postmenopausal phase. Cochrane Database Syst Rev 1:CD011066

    PubMed  Google Scholar 

  47. Kushnir MM, Blamires T, Rockwood AL, Roberts WL, Yue B, Erdogan E, Bunker AM, Meikle AW (2010) Liquid chromatography-tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and testosterone with pediatric and adult reference intervals. Clin Chem 56:1138–1147

    CAS  PubMed  Google Scholar 

  48. Dhatariya KK, Nair KS (2003) Dehydroepiandrosterone: is there a role for replacement? Mayo Clin Proc 78:1257–1273

    CAS  PubMed  Google Scholar 

  49. Leowattana W (2004) DHEAS as a new diagnostic tool. Clin Chim Acta 341:1–15

    CAS  PubMed  Google Scholar 

  50. Dumas de la Roque E, Quignard JF, Ducret T, Dahan D, Courtois A, Begueret H, Marthan R, Savineau JP (2013) Beneficial effect of dehydroepiandrosterone on pulmonary hypertension in a rodent model of pulmonary hypertension in infants. Pediatr Res 74:163–169

    CAS  PubMed  Google Scholar 

  51. Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH (2009) Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 30:65–91

    CAS  PubMed  Google Scholar 

  52. Savineau JP, Marthan R, Dumas de la Roque E (2013) Role of DHEA in cardiovascular diseases. Biochem Pharmacol 85:718–726

    CAS  PubMed  Google Scholar 

  53. Webb SJ, Geoghegan TE, Prough RA, Michael Miller KK (2006) The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab Rev 38:89–116

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Binello E, Gordon CM (2003) Clinical uses and misuses of dehydroepiandrosterone. Curr Opin Pharmacol 3:635–641

    CAS  PubMed  Google Scholar 

  55. Yue J, Wang L, Huang R, Li S, Ma J, Teng X, Liu W (2013) Dehydroepiandrosterone-sulfate (DHEAS) promotes MIN6 cells insulin secretion via inhibition of AMP-activated protein kinase. Biochem Biophys Res Commun 440:756–761

    CAS  PubMed  Google Scholar 

  56. Aoki K, Terauchi Y (2018) Effect of dehydroepiandrosterone (DHEA) on diabetes mellitus and obesity. Vitam Horm 108:355–365

    CAS  PubMed  Google Scholar 

  57. Kasperk CH, Wakley GK, Hierl T, Ziegler R (1997) Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res 12:464–471

    CAS  PubMed  Google Scholar 

  58. Lemmen JG, van den Brink CE, Legler J, van der Saag PT, van der Burg B (2002) Detection of oestrogenic activity of steroids present during mammalian gestation using oestrogen receptor alpha- and oestrogen receptor beta-specific in vitro assays. J Endocrinol 174:435–446

    CAS  PubMed  Google Scholar 

  59. Wang L, Wang YD, Wang WJ, Zhu Y, Li DJ (2007) Dehydroepiandrosterone improves murine osteoblast growth and bone tissue morphometry via mitogen-activated protein kinase signaling pathway independent of either androgen receptor or estrogen receptor. J Mol Endocrinol 38:467–479

    PubMed  Google Scholar 

  60. Liu D, Dillon JS (2002) Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Galpha(i2,3). J Biol Chem 277:21379–21388

    CAS  PubMed  Google Scholar 

  61. Liang X, Glowacki J, Hahne J, Xie L, LeBoff MS, Zhou S (2016) Dehydroepiandrosterone stimulation of osteoblastogenesis in human MSCs requires IGF-I signaling. J Cell Biochem 117:1769–1774

    CAS  PubMed  Google Scholar 

  62. Blume SW, Curtis JR (2011) Medical costs of osteoporosis in the elderly Medicare population. Osteoporos Int 22:1835–1844

    CAS  PubMed  Google Scholar 

  63. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526

    PubMed  PubMed Central  Google Scholar 

  64. Clarke BL, Ebeling PR, Jones JD, Wahner HW, O’Fallon WM, Riggs BL, Fitzpatrick LA (2002) Predictors of bone mineral density in aging healthy men varies by skeletal site. Calcif Tissue Int 70:137–145

    CAS  PubMed  Google Scholar 

  65. Gordon CM, Glowacki J, LeBoff MS (1999) DHEA and the skeleton (through the ages). Endocrine 11:1–11

    CAS  PubMed  Google Scholar 

  66. Davison SL, Bell R, Donath S, Montalto JG, Davis SR (2005) Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab 90:3847–3853

    CAS  PubMed  Google Scholar 

  67. Orentreich, N., J. L. Brind, R. L. Rizer, and J. H. Vogelman. 1984. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood, J Clin Endocrinol Metab, 59: 551-5, 555.

  68. Ohlsson C, Nethander M, Kindmark A, Ljunggren O, Lorentzon M, Rosengren BE, Karlsson MK, Mellstrom D, Vandenput L (2017) Low serum DHEAS predicts increased fracture risk in older men: the MrOS Sweden Study. J Bone Miner Res 32:1607–1614

    CAS  PubMed  Google Scholar 

  69. Ohlsson C, Nethander M, Karlsson MK, Rosengren BE, Ribom E, Mellstrom D, Vandenput L (2018) Serum DHEA and its sulfate are associated with incident fall risk in older men: the MrOS Sweden Study. J Bone Miner Res 33:1227–1232

    CAS  PubMed  Google Scholar 

  70. Luo S, Labrie C, Belanger A, Labrie F (1997) Effect of dehydroepiandrosterone on bone mass, serum lipids, and dimethylbenz(a)anthracene-induced mammary carcinoma in the rat. Endocrinology 138:3387–3394

    CAS  PubMed  Google Scholar 

  71. Martel C, Sourla A, Pelletier G, Labrie C, Fournier M, Picard S, Li S, Stojanovic M, Labrie F (1998) Predominant androgenic component in the stimulatory effect of dehydroepiandrosterone on bone mineral density in the rat. J Endocrinol 157:433–442

    CAS  PubMed  Google Scholar 

  72. Turner RT, Lifrak ET, Beckner M, Wakley GK, Hannon KS, Parker LN (1990) Dehydroepiandrosterone reduces cancellous bone osteopenia in ovariectomized rats. Am J Phys 258:E673–E677

    CAS  Google Scholar 

  73. Zhang N, Gui Y, Qiu X, Tang W, Li L, Gober HJ, Li D, Wang L (2016) DHEA prevents bone loss by suppressing the expansion of CD4(+) T cells and TNFa production in the OVX-mouse model for postmenopausal osteoporosis. Biosci Trends 10:277–287

    CAS  PubMed  Google Scholar 

  74. Jankowski CM, Wolfe P, Schmiege SJ, Nair KS, Khosla S, Jensen M, von Muhlen D, Laughlin GA, Kritz-Silverstein D, Bergstrom J, Bettencourt R, Weiss EP, Villareal DT, Kohrt WM (2019) Sex-specific effects of dehydroepiandrosterone (DHEA) on bone mineral density and body composition: a pooled analysis of four clinical trials. Clin Endocrinol 90:293–300

    CAS  Google Scholar 

  75. Zuo C, Huang Y, Bajis R, Sahih M, Li YP, Dai K, Zhang X (2012) Osteoblastogenesis regulation signals in bone remodeling. Osteoporos Int 23:1653–1663

    CAS  PubMed  Google Scholar 

  76. Qiu X, Gui Y, Xu Y, Li D, Wang L (2015) DHEA promotes osteoblast differentiation by regulating the expression of osteoblast-related genes and Foxp3(+) regulatory T cells. Biosci Trends 9:307–314

    CAS  PubMed  Google Scholar 

  77. Langley, E., R. Velazquez-Cruz, A. Parra-Torres, and J. Enriquez. 2018. The non-aromatic Delta5-androstenediol derivative of dehydroepiandrosterone acts as an estrogen agonist in neonatal rat osteoblasts through an estrogen receptor alpha-related mechanism, Endocr Res: 1-16.

  78. Lin, H., L. Li, Q. Wang, Y. Wang, J. Wang, and X. Long. 2019b. A systematic review and meta-analysis of randomized placebo-controlled trials of DHEA supplementation of bone mineral density in healthy adults, Gynecol Endocrinol: 1-8

  79. Wang YD, Tao MF, Cheng WW, Liu XH, Wan XP, Cui K (2012) Dehydroepiandrosterone indirectly inhibits human osteoclastic resorption via activating osteoblastic viability by the MAPK pathway. Chin Med J 125:1230–1235

    CAS  PubMed  Google Scholar 

  80. Harding G, Mak YT, Evans B, Cheung J, MacDonald D, Hampson G (2006) The effects of dexamethasone and dehydroepiandrosterone (DHEA) on cytokines and receptor expression in a human osteoblastic cell line: potential steroid-sparing role for DHEA. Cytokine 36:57–68

    CAS  PubMed  Google Scholar 

  81. Takayanagi R, Goto K, Suzuki S, Tanaka S, Shimoda S, Nawata H (2002) Dehydroepiandrosterone (DHEA) as a possible source for estrogen formation in bone cells: correlation between bone mineral density and serum DHEA-sulfate concentration in postmenopausal women, and the presence of aromatase to be enhanced by 1,25-dihydroxyvitamin D3 in human osteoblasts. Mech Ageing Dev 123:1107–1114

    CAS  PubMed  Google Scholar 

  82. Gordon CM, LeBoff MS, Glowacki J (2001) Adrenal and gonadal steroids inhibit IL-6 secretion by human marrow cells. Cytokine 16:178–186

    CAS  PubMed  Google Scholar 

  83. Hofbauer LC, Ten RM, Khosla S (1999) The anti-androgen hydroxyflutamide and androgens inhibit interleukin-6 production by an androgen-responsive human osteoblastic cell line. J Bone Miner Res 14:1330–1337

    CAS  PubMed  Google Scholar 

  84. Scheven BA, Milne JS (1998) Dehydroepiandrosterone (DHEA) and DHEA-S interact with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to stimulate human osteoblastic cell differentiation. Life Sci 62:59–68

    CAS  PubMed  Google Scholar 

  85. Hierl T, Borcsok I, Sommer U, Ziegler R, Kasperk C (1998) Regulation of interleukin-6 expression in human osteoblastic cells in vitro. Exp Clin Endocrinol Diabetes 106:324–333

    CAS  PubMed  Google Scholar 

  86. Tanaka S, Haji M, Takayanagi R, Tanaka S, Sugioka Y, Nawata H (1996) 1,25-Dihydroxyvitamin D3 enhances the enzymatic activity and expression of the messenger ribonucleic acid for aromatase cytochrome P450 synergistically with dexamethasone depending on the vitamin D receptor level in cultured human osteoblasts. Endocrinology 137:1860–1869

    CAS  PubMed  Google Scholar 

  87. Bodine PV, Riggs BL, Spelsberg TC (1995) Regulation of c-fos expression and TGF-beta production by gonadal and adrenal androgens in normal human osteoblastic cells. J Steroid Biochem Mol Biol 52:149–158

    CAS  PubMed  Google Scholar 

  88. Sun H, Zang W, Zhou B, Xu L, Wu S (2011) DHEA suppresses longitudinal bone growth by acting directly at growth plate through estrogen receptors. Endocrinology 152:1423–1433

    CAS  PubMed  Google Scholar 

  89. Wang YD, Wang L, Li DJ, Wang WJ (2006) Dehydroepiandrosterone inhibited the bone resorption through the upregulation of OPG/RANKL. Cell Mol Immunol 3:41–45

    PubMed  Google Scholar 

  90. Takeuchi S, Mukai N, Tateishi T, Miyakawa S (2007) Production of sex steroid hormones from DHEA in articular chondrocyte of rats. Am J Physiol Endocrinol Metab 293:E410–E415

    CAS  PubMed  Google Scholar 

  91. Sun JS, Wu CX, Tsuang YH, Chen LT, Sheu SY (2006) The in vitro effects of dehydroepiandrosterone on chondrocyte metabolism. Osteoarthr Cartil 14:238–249

    Google Scholar 

  92. Jo H, Park JS, Kim EM, Jung MY, Lee SH, Seong SC, Park SC, Kim HJ, Lee MC (2003) The in vitro effects of dehydroepiandrosterone on human osteoarthritic chondrocytes. Osteoarthr Cartil 11:585–594

    CAS  Google Scholar 

  93. Li W, Tang L, Xiong Y, Zhou X, Wu L (2013) The chondroprotective effects of dehydroepiandrosterone probably exerted by its conversion to estradiol. J Steroid Biochem Mol Biol 134:15–22

    CAS  PubMed  Google Scholar 

  94. Boker J, Volzke H, Nauck M, Hannemann A, Friedrich N (2018) Associations of insulin-like growth factor-I and insulin-like growth factor binding protein-3 with bone quality in the general adult population. Clin Endocrinol 88:830–837

    CAS  Google Scholar 

  95. Janssen JA, Burger H, Stolk RP, Grobbee DE, de Jong FH, Lamberts SW, Pols HA (1998) Gender-specific relationship between serum free and total IGF-I and bone mineral density in elderly men and women. Eur J Endocrinol 138:627–632

    CAS  PubMed  Google Scholar 

  96. Seck T, Scheidt-Nave C, Leidig-Bruckner G, Ziegler R, Pfeilschifter J (2001) Low serum concentrations of insulin-like growth factor I are associated with femoral bone loss in a population-based sample of postmenopausal women. Clin Endocrinol 55:101–106

    CAS  Google Scholar 

  97. Hock JM, Centrella M, Canalis E (1988) Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology 122:254–260

    CAS  PubMed  Google Scholar 

  98. Locatelli V, Bianchi VE (2014) Effect of GH/IGF-1 on bone metabolism and osteoporsosis. Int J Endocrinol 2014:235060

    PubMed  PubMed Central  Google Scholar 

  99. Weiss S, Henle P, Bidlingmaier M, Moghaddam A, Kasten P, Zimmermann G (2008) Systemic response of the GH/IGF-I axis in timely versus delayed fracture healing. Growth Hormon IGF Res 18:205–212

    Google Scholar 

  100. Morales AJ, Haubrich RH, Hwang JY, Asakura H, Yen SS (1998) The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin Endocrinol 49:421–432

    CAS  Google Scholar 

  101. Xie, M., Y. Zhong, Q. Xue, M. Wu, X. Deng, O. Santos H, S. C. Tan, H. Kord-Varkaneh, and P. Jiao. 2020. Impact of dehydroepianrosterone (DHEA) supplementation on serum levels of insulin-like growth factor 1 (IGF-1): a dose-response meta-analysis of randomized controlled trials, Exp Gerontol, 136: 110949.

  102. Schmidmaier G, Wildemann B, Heeger J, Gabelein T, Flyvbjerg A, Bail HJ, Raschke M (2002) Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-beta1. Bone 31:165–172

    CAS  PubMed  Google Scholar 

  103. Andreassen TT, Oxlund H (2003) Local anabolic effects of growth hormone on intact bone and healing fractures in rats. Calcif Tissue Int 73:258–264

    CAS  PubMed  Google Scholar 

  104. Bail HJ, Kolbeck S, Krummrey G, Schmidmaier G, Haas NP, Raschke MJ (2002) Systemic application of growth hormone for enhancement of secondary and intramembranous fracture healing. Horm Res 58(Suppl 3):39–42

    CAS  PubMed  Google Scholar 

  105. Nielsen HM, Bak B, Jorgensen PH, Andreassen TT (1991) Growth hormone promotes healing of tibial fractures in the rat. Acta Orthop Scand 62:244–247

    CAS  PubMed  Google Scholar 

  106. Boonen S, Rosen C, Bouillon R, Sommer A, McKay M, Rosen D, Adams S, Broos P, Lenaerts J, Raus J, Vanderschueren D, Geusens P (2002) Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab 87:1593–1599

    CAS  PubMed  Google Scholar 

  107. Van der Lely AJ, Lamberts SW, Jauch KW, Swierstra BA, Hertlein H, Danielle De Vries D, Birkett MA, Bates PC, Blum WF, Attanasio AF (2000) Use of human GH in elderly patients with accidental hip fracture. Eur J Endocrinol 143:585–592

    PubMed  Google Scholar 

  108. Hintz RL (2004) Growth hormone: uses and abuses. BMJ 328:907–908

    PubMed  PubMed Central  Google Scholar 

Download references

Code availability

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Kirby.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirby, D.J., Buchalter, D.B., Anil, U. et al. DHEA in bone: the role in osteoporosis and fracture healing. Arch Osteoporos 15, 84 (2020). https://doi.org/10.1007/s11657-020-00755-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-020-00755-y

Keywords

Navigation