Skip to main content
Log in

Neuroimaging Schizophrenia: A Picture Is Worth a Thousand Words, but Is It Saying Anything Important?

  • Schizophrenia and Other Psychotic Disorders (SJ Siegel, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Schizophrenia is characterized by neurostructural and neurofunctional aberrations that have now been demonstrated through neuroimaging research. The article reviews recent studies that have attempted to use neuroimaging to understand the relation between neurological abnormalities and aspects of the phenomenology of schizophrenia. Neuroimaging studies show that neurostructural and neurofunctional abnormalities are present in people with schizophrenia and their close relatives and may represent putative endophenotypes. Neuroimaging phenotypes predict the emergence of psychosis in individuals classified as high-risk. Neuroimaging studies have linked structural and functional abnormalities to symptoms; and progressive structural changes to clinical course and functional outcome. Neuroimaging has successfully indexed the neurotoxic and neuroprotective effects of schizophrenia treatments. Pictures can inform about aspects of the phenomenology of schizophrenia including etiology, onset, symptoms, clinical course, and treatment effects but this assertion is tempered by the scientific and practical limitations of neuroimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance

  1. Johnstone E, Frith CD, Crow TJ, et al. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet. 1976;308(7992):924–6.

    Article  Google Scholar 

  2. Olabi B, Ellison-Wright I, Bullmore E, Lawrie SM. Structural brain changes in first episode Schizophrenia compared with Fronto-Temporal Lobar Degeneration: a meta-analysis. BMC Psychiatry. 2012;12(1):104.

    Article  PubMed  Google Scholar 

  3. Tang J, Liao Y, Zhou B, et al. Decrease in temporal gyrus gray matter volume in first-episode, early onset schizophrenia: an MRI study. PLoS One. 2012;7(7):e40247.

    Article  PubMed  CAS  Google Scholar 

  4. Simper R, Walker MA, Black G, et al. The relationship between callosal axons and cortical neurons in the planum temporale: alterations in schizophrenia. Neurosci Res. 2011;71(4):405–10.

    Article  PubMed  CAS  Google Scholar 

  5. • Smiley JF, Rosoklija G, Mancevski B, et al. Hemispheric comparisons of neuron density in the planum temporale of schizophrenia and nonpsychiatric brains. Psychiatry Res. 2011;192(1):1–11. A study that demonstrated a reversal of hemispheric dominance in the planum temporal neuron density in people with schizophrenia.

    Article  PubMed  Google Scholar 

  6. Shen Y-C, Tsai H-M, Ruan J-W, et al. Genetic and functional analyses of the gene encoding synaptophysin in schizophrenia. Schizophr Res. 2012;137(1–3):14–9.

    Article  PubMed  Google Scholar 

  7. Glausier JR, Lewis DA.: Dendritic spine pathology in schizophrenia. Neuroscience 2012, In Press.

  8. Garey L. When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Ant. 2010;217(4):324–33.

    Google Scholar 

  9. Achim AM, Lepage M. Episodic memory-related activation in schizophrenia: meta-analysis. Br J Psychiatry. 2005;187:500–9.

    Article  PubMed  Google Scholar 

  10. Li H, Chan RCK, McAlonan GM, Gong Q. Facial emotion processing in schizophrenia: a meta-analysis of functional neuroimaging data. Schizophr Bull. 2010;36(5):1029–39.

    Article  PubMed  Google Scholar 

  11. • Volpe U, Mucci A, Quarantelli M, et al. Dorsolateral prefrontal cortex volume in patients with deficit or nondeficit schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(2):264–9. A study that extensively compared deficit and non-deficit schizophrenia patients with health controls in their neuropathological patterns.

    Article  PubMed  Google Scholar 

  12. Galderisi S, Quarantelli M, Volpe U, et al. Patterns of structural MRI abnormalities in deficit and nondeficit schizophrenia. Schizophr Bull. 2008;34(2):393–401.

    Article  PubMed  Google Scholar 

  13. Bora E, Fornito A, Radua J, et al. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res. 2011;127(1–3):46–57.

    Article  PubMed  Google Scholar 

  14. Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 2005;162(12):2233–45.

    Article  PubMed  Google Scholar 

  15. Hao Y, Yan Q, Liu H, et al. Schizophrenia patients and their healthy siblings share disruption of white matter integrity in the left prefrontal cortex and the hippocampus but not the anterior cingulate cortex. Schizophr Res. 2009;114(1–3):128–35.

    Article  PubMed  Google Scholar 

  16. Yang Y, Fung SJ, Rothwell A, et al. Increased interstitial white matter neuron density in the dorsolateral prefrontal cortex of people with schizophrenia. Biol Psychiatry. 2011;69(1):63–70.

    Article  PubMed  Google Scholar 

  17. Joshi D, Fung SJ, Rothwell A, Weickert CS. Higher gamma-aminobutyric Acid neuron density in the white matter of orbital frontal cortex in schizophrenia. Biol Psychiatry. 2012;72(9):725–33.

    Article  PubMed  CAS  Google Scholar 

  18. Minzenberg MJ, Laird AR, Thelen S, et al. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry. 2009;66(8):811–22.

    Article  PubMed  Google Scholar 

  19. Ragland JD, Laird AR, Ranganath C, et al. Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry. 2009;166(8):863–74.

    Article  PubMed  Google Scholar 

  20. Kumra S, Robinson P, Tambyraja R, et al. Parietal lobe volume deficits in adolescents with schizophrenia and adolescents with cannabis use disorders. J Am Acad Child Adolesc Psychiatry. 2012;51(2):171–80.

    Article  PubMed  Google Scholar 

  21. Zhou S-Y, Suzuki M, Takahashi T, et al. Parietal lobe volume deficits in schizophrenia spectrum disorders. Schizophr Res. 2007;89(1–3):35–48.

    Article  PubMed  Google Scholar 

  22. Lee K-H, Farrow TFD, Parks RW, et al. Increased cerebellar vermis white-matter volume in men with schizophrenia. J Psychiatr Res. 2007;41(8):645–51.

    Article  PubMed  Google Scholar 

  23. Picard H, Amado I, Mouchet-Mages S, et al. The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull. 2008;34(1):155–72.

    Article  PubMed  Google Scholar 

  24. Lawyer G, Nesvåg R, Varnäs K, et al. Grey and white matter proportional relationships in the cerebellar vermis altered in schizophrenia. Cerebellum. 2009;8(1):52–60.

    Article  PubMed  Google Scholar 

  25. Cronenwett WJ, Csernansky J. Thalamic pathology in schizophrenia. Curr Top Behav Neurosci. 2010;4:509–28.

    Article  PubMed  Google Scholar 

  26. Glenthoj A, Glenthoj BY, Mackeprang T, et al. Basal ganglia volumes in drug-naive first-episode schizophrenia patients before and after short-term treatment with either a typical or an atypical antipsychotic drug. Psychiatry Res. 2007;154(3):199–208.

    Article  PubMed  CAS  Google Scholar 

  27. Guller Y, Ferrarelli F, Shackman AJ, et al. Probing thalamic integrity in schizophrenia using concurrent transcranial magnetic stimulation and functional magnetic resonance imaging. Arch Gen Psychiatry. 2012;69(7):662–71.

    Article  PubMed  Google Scholar 

  28. Welsh RC, Chen AC, Taylor SF. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophr Bull. 2010;36(4):713–22.

    Article  PubMed  Google Scholar 

  29. Pettersson-Yeo W, Allen P, Benetti S, et al. Dysconnectivity in schizophrenia: Where are we now? Neurosci Biobehav Rev. 2011;35(5):1110–24.

    Article  PubMed  Google Scholar 

  30. Buckley PF. Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications. Neuropsychiatr Dis Treat. 2005;1(3):193–204.

    PubMed  Google Scholar 

  31. Whalley HC, Papmeyer M, Sprooten E, et al. Review of functional magnetic resonance imaging studies comparing bipolar disorder and schizophrenia. Bipolar Disord. 2012;14(4):411–31.

    Article  PubMed  Google Scholar 

  32. Gottesman II, Shields J. Genetic Theorizing and Schizophrenia. BJP. 1973;122(566):15–30.

    Article  CAS  Google Scholar 

  33. Gottesman II, Gould TD. The Endophenotype Concept in Psychiatry: Etymology and Strategic Intentions. Am J Psychiatry. 2003;160(4):636–45.

    Article  PubMed  Google Scholar 

  34. Pillai A, Buckley PF. Reliable biomarkers and predictors of schizophrenia and its treatment. Psychiatr Clin North Am. 2012;35(3):645–59.

    Article  PubMed  Google Scholar 

  35. Rose EJ, Donohoe G.: Brain vs Behavior: An Effect Size Comparison of Neuroimaging and Cognitive Studies of Genetic Risk for Schizophrenia. Schizophr Bull. 2012;Apr 12 [Epub ahead of print].

  36. Harms MP, Wang L, Campanella C, et al. Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings. Br J Psychiatry. 2010;196(2):150–7.

    Article  PubMed  Google Scholar 

  37. Rosso IM, Makris N, Thermenos HW, et al. Regional prefrontal cortex gray matter volumes in youth at familial risk for schizophrenia from the Harvard Adolescent High Risk Study. Schizophr Res. 2010;123(1):15–21.

    Article  PubMed  Google Scholar 

  38. Lawrie SM, McIntosh AM, Hall J, et al. Brain Structure and Function Changes During the Development of Schizophrenia: The Evidence From Studies of Subjects at Increased Genetic Risk. Schizophr Bull. 2008;34(2):330–40.

    Article  PubMed  Google Scholar 

  39. Bohner G, Milakara D, Witthaus H, et al. MTR abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Schizophr Res. 2012;137(1–3):85–90.

    Article  PubMed  Google Scholar 

  40. Witthaus H, Kaufmann C, Bohner G, et al. Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Psychiatry Res. 2009;173(3):163–9.

    Article  PubMed  Google Scholar 

  41. Bhojraj TS, Francis AN, Rajarethinam R, et al. Verbal fluency deficits and altered lateralization of language brain areas in individuals genetically predisposed to schizophrenia. Schizophr Res. 2009;115(2–3):202–8.

    Article  PubMed  Google Scholar 

  42. MacDonald AW, Thermenos HW, Barch DM, Seidman LJ. Imaging Genetic Liability to Schizophrenia: Systematic Review of fMRI Studies of Patients’ Nonpsychotic Relatives. Schizophr Bull. 2009;35(6):1142–62.

    Article  PubMed  Google Scholar 

  43. Witthaus H, Mendes U, Brüne M, et al. Hippocampal subdivision and amygdalar volumes in patients in an at-risk mental state for schizophrenia. J Psychiatry Neurosci. 2010;35(1):33–40.

    Article  PubMed  Google Scholar 

  44. Mechelli A, Riecher-Rössler A, Meisenzahl EM, et al. Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Arch Gen Psychiatry. 2011;68(5):489–95.

    Article  PubMed  Google Scholar 

  45. Dazzan P, Soulsby B, Mechelli A, et al. Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: an MRI study in subjects at ultrahigh risk of psychosis. Schizophr Bull. 2012;38(5):1083–91.

    Article  PubMed  Google Scholar 

  46. Job DE, Whalley HC, McIntosh AM, et al. Grey matter changes can improve the prediction of schizophrenia in subjects at high risk. BMC Med. 2006;4:29.

    Article  PubMed  Google Scholar 

  47. Job DE, Whalley HC, Johnstone EC, Lawrie SM. Grey matter changes over time in high risk subjects developing schizophrenia. NeuroImage. 2005;25(4):1023–30.

    Article  PubMed  Google Scholar 

  48. Bloemen OJN, de Koning MB, Schmitz N, et al. White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychol Med. 2010;40(8):1297–304.

    Article  PubMed  CAS  Google Scholar 

  49. Walterfang M, Yung A, Wood AG, et al. Corpus callosum shape alterations in individuals prior to the onset of psychosis. Schizophr Res. 2008;103(1–3):1–10.

    Article  PubMed  Google Scholar 

  50. Farooq S, Large M, Nielssen O, Waheed W. The relationship between the duration of untreated psychosis and outcome in low-and-middle income countries: a systematic review and meta analysis. Schizophr Res. 2009;109(1–3):15–23.

    Article  PubMed  Google Scholar 

  51. Jeppesen P, Petersen L, Thorup A, et al. The association between pre-morbid adjustment, duration of untreated psychosis and outcome in first-episode psychosis. Psychol Med. 2008;38(8):1157–66.

    Article  PubMed  CAS  Google Scholar 

  52. Takahashi T, Suzuki M, Tanino R, et al. Volume reduction of the left planum temporale gray matter associated with long duration of untreated psychosis in schizophrenia: a preliminary report. Psychiatry Res. 2007;154(3):209–19.

    Article  PubMed  Google Scholar 

  53. Malla AK, Bodnar M, Joober R, Lepage M. Duration of untreated psychosis is associated with orbital-frontal grey matter volume reductions in first episode psychosis. Schizophr Res. 2011;125(1):13–20.

    Article  PubMed  Google Scholar 

  54. Wobrock T, Gruber O, Schneider-Axmann T, et al. Internal capsule size associated with outcome in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2009;259(5):278–83.

    Article  PubMed  Google Scholar 

  55. Boonstra G, Cahn W, Schnack HG, et al. Duration of untreated illness in schizophrenia is not associated with 5-year brain volume change. Schizophr Res. 2011;132(1):84–90.

    Article  PubMed  Google Scholar 

  56. Lieberman J, Chakos M, Wu H, et al. Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry. 2001;49(6):487–99.

    Article  PubMed  CAS  Google Scholar 

  57. Milev P, Ho B-C, Arndt S, et al. Initial magnetic resonance imaging volumetric brain measurements and outcome in schizophrenia: a prospective longitudinal study with 5-year follow-up. Biol Psychiatry. 2003;54(6):608–15.

    Article  PubMed  Google Scholar 

  58. van Haren NEM, Cahn W, Hulshoff Pol HE, et al. Brain volumes as predictor of outcome in recent-onset schizophrenia: a multi-center MRI study. Schizophr Res. 2003;64(1):41–52.

    Article  PubMed  Google Scholar 

  59. Cahn W, van Haren NEM, Hulshoff Pol HE, et al. Brain volume changes in the first year of illness and 5-year outcome of schizophrenia. Br J Psychiatry. 2006;189:381–2.

    Article  PubMed  CAS  Google Scholar 

  60. Kempton MJ, Stahl D, Williams SCR, DeLisi LE. Progressive lateral ventricular enlargement in schizophrenia: A meta-analysis of longitudinal MRI studies. Schizophr Res. 2010;120(1–3):54–62.

    Article  PubMed  Google Scholar 

  61. Ho B-C, Andreasen NC, Nopoulos P, et al. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry. 2003;60(6):585–94.

    Article  PubMed  Google Scholar 

  62. Nakamura M, Salisbury DF, Hirayasu Y, et al. Neocortical gray matter volume in first-episode schizophrenia and first-episode affective psychosis: a cross-sectional and longitudinal MRI study. Biol Psychiatry. 2007;62(7):773–83.

    Article  PubMed  Google Scholar 

  63. Mitelman SA, Canfield EL, Brickman AM, et al. Progressive ventricular expansion in chronic poor-outcome schizophrenia. Cogn Behav Neurol. 2010;23(2):85–8.

    Article  PubMed  Google Scholar 

  64. Wood SJ, Berger GE, Lambert M, et al. Prediction of functional outcome 18 months after a first psychotic episode: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry. 2006;63(9):969–76.

    Article  PubMed  CAS  Google Scholar 

  65. Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A. Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58(2):148–57.

    Article  PubMed  CAS  Google Scholar 

  66. Takahashi T, Wood SJ, Yung AR, et al. Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Arch Gen Psychiatry. 2009;66(4):366–76.

    Article  PubMed  Google Scholar 

  67. van Haren NEM, Hulshoff Pol HE, Schnack HG, et al. Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biol Psychiatry. 2008;63(1):106–13.

    Article  PubMed  Google Scholar 

  68. Kasai K, Shenton ME, Salisbury DF, et al. Progressive Decrease of Left Superior Temporal Gyrus Gray Matter Volume in Patients With First-Episode Schizophrenia. Am J Psychiatry. 2003;160(1):156–64.

    Article  PubMed  Google Scholar 

  69. Greenstein DK, Wolfe S, Gochman P, et al. Remission Status and Cortical Thickness in Childhood-Onset Schizophrenia. J Am Acad Child Adolesc Psychiatry. 2008;47(10):1133–40.

    Article  PubMed  Google Scholar 

  70. Thompson PM, Vidal C, Giedd JN, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA. 2001;98(20):11650–5.

    Article  PubMed  CAS  Google Scholar 

  71. Kubicki M, McCarley R, Westin C-F, et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res. 2007;41(1–2):15–30.

    Article  PubMed  Google Scholar 

  72. Sommer IE, Clos M, Meijering AL, et al. Resting state functional connectivity in patients with chronic hallucinations. PLoS One. 2012;7(9):e43516.

    Article  PubMed  CAS  Google Scholar 

  73. Vercammen A, Knegtering H, den Boer JA, et al. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol Psychiatry. 2010;67(10):912–8.

    Article  PubMed  Google Scholar 

  74. Plaze M, Paillère-Martinot M-L, Penttilä J, et al. “Where do auditory hallucinations come from?”–a brain morphometry study of schizophrenia patients with inner or outer space hallucinations. Schizophr Bull. 2011;37(1):212–21.

    Article  PubMed  Google Scholar 

  75. Arango C, Rapado-Castro M, Reig S, et al. Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry. 2012;69(1):16–26.

    Article  PubMed  Google Scholar 

  76. Prasad KMR, Sahni SD, Rohm BR, Keshavan MS. Dorsolateral prefrontal cortex morphology and short-term outcome in first-episode schizophrenia. Psychiatry Res. 2005;140(2):147–55.

    Article  PubMed  Google Scholar 

  77. Sigmundsson T, Maier M, Toone BK, et al. Frontal lobe N-acetylaspartate correlates with psychopathology in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res. 2003;64(1):63–71.

    Article  PubMed  Google Scholar 

  78. Spironelli C, Angrilli A, Calogero A, Stegagno L. Delta EEG band as a marker of left hypofrontality for language in schizophrenia patients. Schizophr Bull. 2011;37(4):757–67.

    Article  PubMed  Google Scholar 

  79. Bodnar M, Achim AM, Malla AK, et al. Functional magnetic resonance imaging correlates of memory encoding in relation to achieving remission in first-episode schizophrenia. Br J Psychiatry. 2012;200(4):300–7.

    Article  PubMed  Google Scholar 

  80. van Veelen NMJ, Vink M, Ramsey NF, et al. Prefrontal lobe dysfunction predicts treatment response in medication-naive first-episode schizophrenia. Schizophr Res. 2011;129(2–3):156–62.

    Article  PubMed  Google Scholar 

  81. Bodnar M, Malla AK, Czechowska Y, et al. Neural markers of remission in first-episode schizophrenia: a volumetric neuroimaging study of the hippocampus and amygdala. Schizophr Res. 2010;122(1–3):72–80.

    Article  PubMed  Google Scholar 

  82. Leifker FR, Bowie CR, Harvey PD. Determinants of everyday outcome in schizophrenia: the influences of cognitive impairment, functional capacity, and symptoms. Schizophr Res. 2009;115(1):82–7.

    Article  PubMed  Google Scholar 

  83. Winterer G, Coppola R, Goldberg TE, et al. Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiatry. 2004;161(3):490–500.

    Article  PubMed  Google Scholar 

  84. Roffman JL, Weiss AP, Deckersbach T, et al. Interactive effects of COMT Val108/158Met and MTHFR C677T on executive function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(6):990–5.

    Article  PubMed  CAS  Google Scholar 

  85. Karnik-Henry MS, Wang L, Barch DM, et al. Medial temporal lobe structure and cognition in individuals with schizophrenia and in their non-psychotic siblings. Schizophr Res. 2012;138(2–3):128–35.

    Article  PubMed  Google Scholar 

  86. Morey RA, Mitchell TV, Inan S, et al. Neural correlates of automatic and controlled auditory processing in schizophrenia. J Neuropsychiatry Clin Neurosci. 2008;20(4):419–30.

    Article  PubMed  Google Scholar 

  87. Ziauddeen H, Murray GK. The relevance of reward pathways for schizophrenia. Curr Opin Psychiatry. 2010;23(2):91–6.

    Article  PubMed  Google Scholar 

  88. • Nielsen MØ, Rostrup E, Wulff S, et al. Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biol Psychiatry. 2012;71(10):898–905. A study that provides neuroimaging evidence that areas related to reward processing such as the ventral tengmentum area, the ventral striatum, and the anterior cingulated cortex are poorly activated in people with schizophrenia during the processing of reward-based tasks.

    Article  PubMed  Google Scholar 

  89. Mamah D, Wang L, Barch D, et al. Structural analysis of the basal ganglia in schizophrenia. Schizophr Res. 2007;89(1–3):59–71.

    Article  PubMed  Google Scholar 

  90. Achim AM, Bertrand M-C, Sutton H, et al. Selective abnormal modulation of hippocampal activity during memory formation in first-episode psychosis. Arch Gen Psychiatry. 2007;64(9):999–1014.

    Article  PubMed  Google Scholar 

  91. Takahashi H, Koeda M, Oda K, et al. An fMRI study of differential neural response to affective pictures in schizophrenia. NeuroImage. 2004;22(3):1247–54.

    Article  PubMed  Google Scholar 

  92. Brunet-Gouet E, Decety J. Social brain dysfunctions in schizophrenia: a review of neuroimaging studies. Psychiatry Res. 2006;148(2–3):75–92.

    PubMed  Google Scholar 

  93. • Delvecchio G, Sugranyes G, Frangou S. Evidence of diagnostic specificity in the neural correlates of facial affect processing in bipolar disorder and schizophrenia: a meta-analysis of functional imaging studies. Psychol Med. 2012;9:1–17. A meta-analysis of studies that compare people with schizophrenia and people with bipolar disorder. The review demonstrated qualitative differences between people with schizophrenia and those with bipolar disorder in neural activation patterns relevant to social cognition.

    Google Scholar 

  94. Quincozes-Santos A, Bobermin LD, Tonial RPL, et al. Effects of atypical (risperidone) and typical (haloperidol) antipsychotic agents on astroglial functions. Eur Arch Psychiatry Clin Neurosci. 2010;260(6):475–81.

    Article  PubMed  Google Scholar 

  95. Gassó P, Mas S, Molina O, et al. Neurotoxic/neuroprotective activity of haloperidol, risperidone and paliperidone in neuroblastoma cells. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(1):71–7.

    Article  PubMed  Google Scholar 

  96. • Navari S, Dazzan P. Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med. 2009;39(11):1763–77. An interesting review of 33 MRI studies of the impact of antipsychotic use on brain structures that found differential effects of FGAs versus SGAs on the basal ganglia.

    Article  PubMed  CAS  Google Scholar 

  97. Bor J, Brunelin J, d’ Amato T, et al. How can cognitive remediation therapy modulate brain activations in schizophrenia? An fMRI study Psychiatry Res. 2011;192(3):160–6.

    Article  Google Scholar 

  98. • Eack SM, Hogarty GE, Cho RY, et al. Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia: results from a 2-year randomized controlled trial. Arch Gen Psychiatry. 2010;67(7):674–82. A clinical trial of cognitive remediation that demonstrates its neuroprotective effects at two-year follow-up against gray matter loss in the left amygdale, hippocampus, parahippocampus, and fusiform gyrus.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony O. Ahmed.

Additional information

This article is part of the Topical Collection on Schizophrenia and Other Psychotic Disorders

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, A.O., Buckley, P.F. & Hanna, M. Neuroimaging Schizophrenia: A Picture Is Worth a Thousand Words, but Is It Saying Anything Important?. Curr Psychiatry Rep 15, 345 (2013). https://doi.org/10.1007/s11920-012-0345-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-012-0345-0

Keywords

Navigation