Skip to main content

Advertisement

Log in

Effects of atypical (risperidone) and typical (haloperidol) antipsychotic agents on astroglial functions

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Although classical and atypical antipsychotics may have different neurotoxic effects, their underlying mechanisms remain to be elucidated, especially regarding neuroglial function. In the present study, we compared the atypical antipsychotic risperidone (0.01–10 μM) with the typical antipsychotic haloperidol (0.01–10 μM) regarding different aspects such as glutamate uptake, glutamine synthetase (GS) activity, glutathione (GSH) content, and intracellular reactive oxygen species (ROS) production in C6 astroglial cells. Risperidone significantly increased glutamate uptake (up to 27%), GS activity (14%), and GSH content (up to 17%). In contrast, haloperidol was not able to change any of these glial functions. However, at concentration of 10 μM, haloperidol increased (12%) ROS production. Our data contribute to the clarification of different hypothesis concerning the putative neural responses after stimulus with different antipsychotics, and may establish important insights about how brain rewiring could be enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Araque A (2008) Astrocytes process synaptic information. Neuron Glia Biol 4:3–10

    Article  PubMed  Google Scholar 

  2. Bernstein HG, Steiner J, Bogerts B (2009) Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 9:1059–1071

    Article  CAS  PubMed  Google Scholar 

  3. Bowley MP, Drevets WC, Ongur D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52:404–412

    Article  PubMed  Google Scholar 

  4. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    CAS  PubMed  Google Scholar 

  5. Burbaeva G, Boksha IS, Tereshkina EB, Savushkina OK, Turishcheva MS, Starodubtseva LI, Brusov OS, Morozova MA (2006) Effect of olanzapine treatment on platelet glutamine synthetase-like protein and glutamate dehydrogenase immunoreactivity in schizophrenia. World J Biol Psychiatry 7:75–81

    Article  PubMed  Google Scholar 

  6. Carlson CD, Cavazzoni PA, Berg PH, Wei H, Beasley CM, Kane JM (2003) An integrated analysis of acute treatment-emergent extrapyramidal syndrome in patients with schizophrenia during olanzapine clinical trials: comparisons with placebo, haloperidol, risperidone, or clozapine. J Clin Psychiatry 64:898–906

    Article  CAS  PubMed  Google Scholar 

  7. Cechin SR, Dunkley PR, Rodnight R (2005) Signal transduction mechanisms involved in the proliferation of C6 glioma cells induced by lysophosphatidic acid. Neurochem Res 30:603–611

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  9. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  10. dos Santos AQ, Nardin P, Funchal C, de Almeida LM, Jacques-Silva MC, Wofchuk ST, Goncalves CA, Gottfried C (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167

    Article  PubMed  Google Scholar 

  11. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  CAS  PubMed  Google Scholar 

  12. Gottfried C, Tramontina F, Goncalves D, Goncalves CA, Moriguchi E, Dias RD, Wofchuk ST, Souza DO (2002) Glutamate uptake in cultured astrocytes depends on age: a study about the effect of guanosine and the sensitivity to oxidative stress induced by H(2)O(2). Mech Ageing Dev 123:1333–1340

    Article  CAS  PubMed  Google Scholar 

  13. Henn FA, Anderson DJ, Sellstrom A (1977) Possible relationship between glial cells, dopamine and the effects of antipsychotic drugs. Nature 266:637–638

    Article  CAS  PubMed  Google Scholar 

  14. Huang MZ, Shentu JZ, Chen JC, Liu J, Zhou HL (2008) Determination of risperidone in human plasma by HPLC-MS/MS and its application to a pharmacokinetic study in Chinese volunteers. J Zhejiang Univ Sci B 9:114–120

    Article  CAS  PubMed  Google Scholar 

  15. Jann MW (2004) Implications for atypical antipsychotics in the treatment of schizophrenia: neurocognition effects and a neuroprotective hypothesis. Pharmacotherapy 24:1759–1783

    Article  CAS  PubMed  Google Scholar 

  16. Janssen PA, Niemegeers CJ, Awouters F, Schellekens KH, Megens AA, Meert TF (1988) Pharmacology of risperidone (R 64 766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244:685–693

    CAS  PubMed  Google Scholar 

  17. Keilhoff G, Grecksch G, Bernstein HG, Roskoden T, Becker A (2009) Risperidone and haloperidol promote survival of stem cells in the rat hippocampus. Eur Arch Psychiatry Clin Neurosci (in press)

  18. Kornhuber J, Wiltfang J, Riederer P, Bleich S (2006) Neuroleptic drugs in the human brain: clinical impact of persistence and region-specific distribution. Eur Arch Psychiatry Clin Neurosci 256:274–280

    Article  PubMed  Google Scholar 

  19. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM (2009) Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373:31–41

    Article  CAS  PubMed  Google Scholar 

  20. Leysen JE, Janssen PM, Megens AA, Schotte A (1994) Risperidone: a novel antipsychotic with balanced serotonin-dopamine antagonism, receptor occupancy profile, and pharmacologic activity. J Clin Psychiatry 55(Suppl):5–12

    Google Scholar 

  21. Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RS, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M (2005) Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 62:361–370

    Article  CAS  PubMed  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  23. Mates JM, Perez-Gomez C, Nunez de Castro I, Asenjo M, Marquez J (2002) Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 34:439–458

    Article  CAS  PubMed  Google Scholar 

  24. Megens AA, Awouters FH, Schotte A, Meert TF, Dugovic C, Niemegeers CJ, Leysen JE (1994) Survey on the pharmacodynamics of the new antipsychotic risperidone. Psychopharmacology 114:9–23

    Article  CAS  PubMed  Google Scholar 

  25. Mitterauer B (2005) Nonfunctional glial proteins in tripartite synapses: a pathophysiological model of schizophrenia. Neuroscientist 11:192–198

    Article  CAS  PubMed  Google Scholar 

  26. Miyazaki I, Asanuma M, Diaz-Corrales FJ, Miyoshi K, Ogawa N (2004) Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Res 1029:120–123

    Article  CAS  PubMed  Google Scholar 

  27. Mortimer AM (2009) Update on the management of symptoms in schizophrenia: focus on amisulpride. Neuropsychiatr Dis Treat 5:267–277

    Article  CAS  PubMed  Google Scholar 

  28. Pillai A, Parikh V, Terry AV Jr, Mahadik SP (2007) Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 41:372–386

    Article  PubMed  Google Scholar 

  29. Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    CAS  PubMed  Google Scholar 

  30. Quincozes-Santos A, Abib RT, Leite MC, Bobermin D, Bambini-Junior V, Goncalves CA, Riesgo R, Gottfried C (2008) Effect of the atypical neuroleptic risperidone on morphology and S100B secretion in C6 astroglial lineage cells. Mol Cell Biochem 314:59–63

    Article  CAS  PubMed  Google Scholar 

  31. Quincozes-Santos A, Bobermin LD, Kleinkauf-Rocha J, Souza DO, Riesgo R, Goncalves CA, Gottfried C (2009) Atypical neuroleptic risperidone modulates glial functions in C6 astroglial cells. Prog Neuropsychopharmacol Biol Psychiatry 33:11–15

    Article  CAS  PubMed  Google Scholar 

  32. Quincozes-Santos A, Nardin P, de Souza DF, Gelain DP, Moreira JC, Latini A, Goncalves CA, Gottfried C (2009) The janus face of resveratrol in astroglial cells. Neurotox Res 16:30–41

    Article  CAS  PubMed  Google Scholar 

  33. Reuss B, Unsicker K (2001) Atypical neuroleptic drugs downregulate dopamine sensitivity in rat cortical and striatal astrocytes. Mol Cell Neurosci 18:197–209

    Article  CAS  PubMed  Google Scholar 

  34. Shivakumar BR, Ravindranath V (1993) Oxidative stress and thiol modification induced by chronic administration of haloperidol. J Pharmacol Exp Ther 265:1137–1141

    CAS  PubMed  Google Scholar 

  35. Smythies J (1999) Redox mechanisms at the glutamate synapse and their significance: a review. Eur J Pharmacol 370:1–7

    Article  CAS  PubMed  Google Scholar 

  36. Steffek AE, McCullumsmith RE, Haroutunian V, Meador-Woodruff JH (2008) Cortical expression of glial fibrillary acidic protein and glutamine synthetase is decreased in schizophrenia. Schizophr Res 103:71–82

    Article  PubMed  Google Scholar 

  37. Stevens B (2008) Neuron-astrocyte signaling in the development and plasticity of neural circuits. Neurosignals 16:278–288

    Article  CAS  PubMed  Google Scholar 

  38. Tan QR, Wang XZ, Wang CY, Liu XJ, Chen YC, Wang HH, Zhang RG, Zhen XC, Tong Y, Zhang ZJ (2007) Differential effects of classical and atypical antipsychotic drugs on rotenone-induced neurotoxicity in PC12 cells. Eur Neuropsychopharmacol 17:768–773

    Article  CAS  PubMed  Google Scholar 

  39. Ukai W, Ozawa H, Tateno M, Hashimoto E, Saito T (2004) Neurotoxic potential of haloperidol in comparison with risperidone: implication of Akt-mediated signal changes by haloperidol. J Neural Transm 111:667–681

    Article  CAS  PubMed  Google Scholar 

  40. van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    Article  PubMed  Google Scholar 

  41. Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    CAS  PubMed  Google Scholar 

  42. Zhang G, Terry AV Jr, Bartlett MG (2007) Sensitive liquid chromatography/tandem mass spectrometry method for the simultaneous determination of olanzapine, risperidone, 9-hydroxyrisperidone, clozapine, haloperidol and ziprasidone in rat brain tissue. J Chromatogr B Analyt Technol Biomed Life Sci 858:276–281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Fares Zeidán Chuliá for critical reading, helpful discussions and corrections of the manuscript. This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), FINEP/Rede IBN 01.06.0842-00 and INCT-EN National Institute of Science and Technology for Excitotoxicity and Neuroprotection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmem Gottfried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quincozes-Santos, A., Bobermin, L.D., Tonial, R.P.L. et al. Effects of atypical (risperidone) and typical (haloperidol) antipsychotic agents on astroglial functions. Eur Arch Psychiatry Clin Neurosci 260, 475–481 (2010). https://doi.org/10.1007/s00406-009-0095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-009-0095-0

Keywords

Navigation