Skip to main content

Thalamic Pathology in Schizophrenia

  • Chapter
  • First Online:
Behavioral Neurobiology of Schizophrenia and Its Treatment

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 4))

Abstract

The thalamus plays a critical role in the coordination of information as it passes from region to region within the brain. A disruption of that information flow may give rise to some of the cardinal symptoms of schizophrenia. In support of this hypothesis, schizophrenia-like syndromes emerge when illnesses, such as stroke, selectively damage the thalamus while sparing the rest of the brain. Evidence from many sources has implicated thalamic dysfunction in schizophrenia. In postmortem studies, several subregions of the thalamus, including the mediodorsal nucleus and the pulvinar, have been shown to have fewer neurons in schizophrenia. Neurochemical disturbances are also seen, with changes in both the glutamate and dopamine systems; thalamic glutamate receptor expression is altered in schizophrenia, and dopamine appears to be elevated in thalamic subregions, while evidence exists of an imbalance between dopamine and other neurotransmitters. In vivo studies using magnetic resonance imaging have demonstrated smaller thalamic volumes in schizophrenia, as well as shape deformations suggesting changes in those thalamic regions that are most densely connected to the portions of the brain responsible for executive function and sensory integration. These changes seem to be correlated with clinical symptoms. The thalamus is a starting point for several parallel, overlapping networks that extend from thalamic nuclei to the cortex. Evidence is emerging that changes in the thalamic nodes of these networks are echoed by changes at other points along the chain; this suggests that schizophrenia might be a disease of disrupted thalamocortical neural networks. This model distributes the pathology throughout the network, but also concentrates attention on the thalamus as a critical structure, especially because of its role in coordinating the flow of information within and between neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal N, Rambaldelli G, Perlini C, Dusi N, Kitis O, Bellani M, Cerini R, Isola M, Versace A, Balestrieri M, Gasparini A, Mucelli RP, Tansella M, Brambilla P (2008) Microstructural thalamic changes in schizophrenia: a combined anatomic and diffusion weighted magnetic resonance imaging study. J Psychiatry Neurosci 33:440–448

    PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Arndt S, Swayze V, Cizadlo T, Flaum M, O’Leary D, Ehrhardt JC, Yuh WT (1994) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266:294–298

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC, Paradiso S, O’Leary DS (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical–subcortical–cerebellar circuitry? Schizophr Bull 24:203–218

    Article  PubMed  CAS  Google Scholar 

  • Andrews J, Wang L, Csernansky JG, Gado MH, Barch DM (2006) Abnormalities of thalamic activation and cognition in schizophrenia. Am J Psychiatry 163:463–469

    Article  PubMed  Google Scholar 

  • Annoni JM, Khateb A, Gramigna S, Staub F, Carota A, Maeder P, Bogousslavsky J (2003) Chronic cognitive impairment following laterothalamic infarcts: a study of 9 cases. Arch Neurol 60:1439–1443

    Article  PubMed  Google Scholar 

  • Benke T (2006) Peduncular hallucinosis: a syndrome of impaired reality monitoring. J Neurol 253:1561–1571

    Article  PubMed  Google Scholar 

  • Blackwood DH, Glabus MF, Dunan J, O’Carroll RE, Muir WJ, Ebmeier KP (1999) Altered cerebral perfusion measured by SPECT in relatives of patients with schizophrenia. Correlations with memory and P300. Br J Psychiatry 175:357–366

    Article  PubMed  CAS  Google Scholar 

  • Boos HB, Aleman A, Cahn W, Pol HH, Kahn RS (2007) Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Arch Gen Psychiatry 64:297–304

    Article  PubMed  Google Scholar 

  • Byne W, Buchsbaum MS, Kemether E, Hazlett EA, Shinwari A, Mitropoulou V, Siever LJ (2001) Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 58:133–140

    Article  PubMed  CAS  Google Scholar 

  • Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL, Purohit DP, Haroutunian V, Jones L (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 159:59–65

    Article  PubMed  Google Scholar 

  • Byne W, Fernandes J, Haroutunian V, Huacon D, Kidkardnee S, Kim J, Tatusov A, Thakur U, Yiannoulos G (2007) Reduction of right medial pulvinar volume and neuron number in schizophrenia. Schizophr Res 90:71–75

    Article  PubMed  Google Scholar 

  • Byne W, Dracheva S, Chin B, Schmeidler JM, Davis KL, Haroutunian V (2008a) Schizophrenia and sex associated differences in the expression of neuronal and oligodendrocyte-specific genes in individual thalamic nuclei. Schizophr Res 98:118–128

    Article  PubMed  Google Scholar 

  • Byne W, Hazlett EA, Buchsbaum MS, Kemether E (2008b) The thalamus and schizophrenia: current status of research. Acta Neuropathol 117:347–368

    Article  PubMed  Google Scholar 

  • Callicott JH, Egan MF, Mattay VS, Bertolino A, Bone AD, Verchinksi B, Weinberger DR (2003) Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am J Psychiatry 160:709–719

    Article  PubMed  Google Scholar 

  • Camchong J, Dyckman KA, Chapman CE, Yanasak NE, McDowell JE (2006) Basal ganglia-thalamocortical circuitry disruptions in schizophrenia during delayed response tasks. Biol Psychiatry 60:235–241

    Article  PubMed  Google Scholar 

  • Carrera E, Bogousslavsky J (2006) The thalamus and behavior: effects of anatomically distinct strokes. Neurology 66:1817–1823

    Article  PubMed  Google Scholar 

  • Chakos MH, Lieberman JA, Bilder RM, Borenstein M, Lerner G, Bogerts B, Wu H, Kinon B, Ashtari M (1994) Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 151:1430–1436

    PubMed  CAS  Google Scholar 

  • Clinton SM, Meador-Woodruff JH (2004) Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res 69:237–253

    Article  PubMed  Google Scholar 

  • Coscia DM, Narr KL, Robinson DG, Hamilton LS, Sevy S, Burdick KE, Gunduz-Bruce H, McCormack J, Bilder RM, Szeszko PR (2009) Volumetric and shape analysis of the thalamus in first-episode schizophrenia. Hum Brain Mapp 30:1236–1245

    Article  PubMed  Google Scholar 

  • Crespo-Facorro B, Roiz-Santiáñez R, Pelayo-Terán JM, Rodríguez-Sánchez JM, Pérez-Iglesias R, González-Blanch C, Tordesillas-Gutiérrez D, González-Mandly A, Díez C, Magnotta VA, Andreasen NC, Vázquez-Barquero JL (2007) Reduced thalamic volume in first-episode non-affective psychosis: correlations with clinical variables, symptomatology and cognitive functioning. Neuroimage 35:1613–1623

    Article  PubMed  Google Scholar 

  • Csernansky JG, Schindler MK, Splinter NR, Wang L, Gado M, Selemon LD, Rastogi-Cruz D, Posener JA, Thompson PA, Miller MI (2004) Abnormalities of thalamic volume and shape in schizophrenia. Am J Psychiatry 161:896–902

    Article  PubMed  Google Scholar 

  • Cullen TJ, Walker MA, Parkinson N, Craven R, Crow TJ, Esiri MM, Harrison PJ (2003) A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 60:157–166

    Article  PubMed  CAS  Google Scholar 

  • Danos P, Baumann B, Bernstein HG, Franz M, Stauch R, Northoff G (1998) Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res 82:1–10

    Article  PubMed  CAS  Google Scholar 

  • Danos P, Baumann B, Krämer A, Bernstein HG, Stauch R, Krell D, Falkai P, Bogerts B (2003) Volumes of association thalamic nuclei in schizophrenia: a postmortem study. Schizophr Res 60:141–155

    Article  PubMed  Google Scholar 

  • Danos P, Schmidt A, Baumann B, Bernstein HG, Northoff G, Stauch R, Krell D, Bogerts B (2005) Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study. Psychiatry Res 140:281–289

    Article  PubMed  Google Scholar 

  • Dazzan P, Morgan KD, Orr KG, Hutchinson G, Chitnis X, Suckling J, Fearon P, Salvo J, McGuire PK, Mallett RM, Jones PB, Leff J, Murray RM (2004) The structural brain correlates of neurological soft signs in AESOP first-episode psychoses study. Brain 127:143–153

    Article  PubMed  Google Scholar 

  • Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 165:1015–1023

    Article  PubMed  Google Scholar 

  • Ettinger U, Chitnis XA, Kumari V, Fannon DG, Sumich AL, O’Ceallaigh S, Doku VC, Sharma T (2001) Magnetic resonance imaging of the thalamus in first-episode psychosis. Am J Psychiatry 158:116–118

    Article  PubMed  CAS  Google Scholar 

  • Ettinger U, Picchioni M, Landau S, Matsumoto K, van Haren NE, Marshall N, Hall MH, Schulze K, Toulopoulou T, Davies N, Ribchester T, McGuire PK, Murray RM (2007) Magnetic resonance imaging of the thalamus and adhesio interthalamica in twins with schizophrenia. Arch Gen Psychiatry 64:401–409

    Article  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  PubMed  CAS  Google Scholar 

  • Ford JM, Johnson MB, Whitfield SL, Faustman WO, Mathalon DH (2005) Delayed hemodynamic responses in schizophrenia. Neuroimage 26:922–931

    Article  PubMed  Google Scholar 

  • Friston KJ, Frith CD (1995) Schizophrenia: a disconnection syndrome? Clin Neurosci 3:89–97

    PubMed  CAS  Google Scholar 

  • Gallassi R, Morreale A, Montagna P, Cortelli P, Avoni P, Castellani R, Gambetti P, Lugaresi E (1996) Fatal familial insomnia: behavioral and cognitive features. Neurology 46:935–939

    Article  PubMed  CAS  Google Scholar 

  • Gur RE, Maany V, Mozley PD, Swanson C, Bilker W, Gur RC (1998) Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatry 155:1711–1717

    PubMed  CAS  Google Scholar 

  • Harms MP, Wang L, Mamah D, Barch DM, Thompson PA, Csernansky JG (2007) Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. J Neurosci 27:13835–13842

    Article  PubMed  CAS  Google Scholar 

  • Hazlett EA, Buchsbaum MS, Byne W, Wei TC, Spiegel-Cohen J, Geneve C, Kinderlehrer R, Haznedar MM, Shihabuddin L, Siever LJ (1999) Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. Am J Psychiatry 156:1190–1199

    PubMed  CAS  Google Scholar 

  • Hazlett EA, Buchsbaum MS, Kemether E, Bloom R, Platholi J, Brickman AM, Shihabuddin L, Tang C, Byne W (2004) Abnormal glucose metabolism in the mediodorsal nucleus of the thalamus in schizophrenia. Am J Psychiatry 161:305–314

    Article  PubMed  Google Scholar 

  • Heckers S (1997) Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizophr Bull 23:403–421

    Article  PubMed  CAS  Google Scholar 

  • Henson RN, Price CJ, Rugg MD, Turner R, Friston KJ (2002) Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. Neuroimage 15:83–97

    Article  PubMed  CAS  Google Scholar 

  • James AC, James S, Smith DM, Javaloyes A (2004) Cerebellar, prefrontal cortex, and thalamic volumes over two time points in adolescent-onset schizophrenia. Am J Psychiatry 161:1023–1029

    Article  PubMed  Google Scholar 

  • Javitt DC (2007) Glutamate and schizophrenia: phencyclidine, N-methyl-d-aspartate receptors, and dopamine–glutamate interactions. Int Rev Neurobiol 78:69–108

    Article  PubMed  CAS  Google Scholar 

  • Kemether EM, Buchsbaum MS, Byne W, Hazlett EA, Haznedar M, Brickman AM, Platholi J, Bloom R (2003) Magnetic resonance imaging of mediodorsal, pulvinar, and centromedian nuclei of the thalamus in patients with schizophrenia. Arch Gen Psychiatry 60:983–991

    PubMed  Google Scholar 

  • Kendler KS, Gruenberg AM, Kinney DK (1994) Independent diagnoses of adoptees and relatives as defined by DSM-III in the provincial and national samples of the Danish Adoption Study of Schizophrenia. Arch Gen Psychiatry 51:456–468

    Article  PubMed  CAS  Google Scholar 

  • Kito S, Jung J, Kobayashi T, Koga Y (2009) Fiber tracking of white matter integrity connecting the mediodorsal nucleus of the thalamus and the prefrontal cortex in schizophrenia: a diffusion tensor imaging study. Eur Psychiatry 24:269–274

    Article  PubMed  Google Scholar 

  • Konick LC, Friedman L (2001) Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry 49:28–38

    Article  PubMed  CAS  Google Scholar 

  • Lawrie SM, Whalley HC, Abukmeil SS, Kestelman JN, Donnelly L, Miller P, Best JJ, Owens DG, Johnstone EC (2001) Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol Psychiatry 49:811–823

    Article  PubMed  CAS  Google Scholar 

  • Lawrie SM, McIntosh AM, Hall J, Owens DG, Johnstone EC (2008) Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr Bull 34:330–340

    Article  PubMed  Google Scholar 

  • Lewis DA, Cruz DA, Melchitzky DS, Pierri JN (2001) Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am J Psychiatry 158:1411–1422

    Article  PubMed  CAS  Google Scholar 

  • López-Bendito G, Molnár Z (2003) Thalamocortical development: how are we going to get there? Nat Rev Neurosci 4:276–289

    Article  PubMed  Google Scholar 

  • Manford M, Andermann F (1998) Complex visual hallucinations. Clinical and neurobiological insights. Brain 121:1819–1840

    Article  PubMed  Google Scholar 

  • McGilchrist I, Goldstein LH, Jadresic D, Fenwick P (1993) Thalamo-frontal psychosis. Br J Psychiatry 163:113–115

    Article  PubMed  CAS  Google Scholar 

  • McGuffin P, Owen MJ, Farmer AE (1995) Genetic basis of schizophrenia. Lancet 346:678–682

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Ohnishi T, Hashimoto R, Nemoto K, Moriguchi Y, Noguchi H, Nakabayashi T, Hori H, Harada S, Saitoh O, Matsuda H, Kunugi H (2007) Progressive changes of white matter integrity in schizophrenia revealed by diffusion tensor imaging. Psychiatry Res 154:133–145

    Article  PubMed  Google Scholar 

  • Nagayama M, Shinohara Y, Furukawa H, Kitamoto T (1996) Fatal familial insomnia with a mutation at codon 178 of the prion protein gene: first report from Japan. Neurology 47:1313–1316

    Article  PubMed  CAS  Google Scholar 

  • Oke AF, Adams RN, Winblad B, von Knorring L (1988) Elevated dopamine/norepinephrine ratios in thalami of schizophrenic brains. Biol Psychiatry 24:79–82

    Article  PubMed  CAS  Google Scholar 

  • Oke AF, Putz C, Adams RN, Bird ED (1992) Neuroleptic treatment is an unlikely cause of elevated dopamine in thalamus of schizophrenic subjects. Psychiatry Res 45:203–208

    Article  PubMed  CAS  Google Scholar 

  • Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Pakkenberg B (1992) The volume of the mediodorsal thalamic nucleus in treated and untreated schizophrenics. Schizophr Res 7:95–100

    Article  PubMed  CAS  Google Scholar 

  • Popken GJ, Leggio MG, Bunney WE, Jones EG (2002) Expression of mRNAs related to the GABAergic and glutamatergic neurotransmitter systems in the human thalamus: normal and schizophrenic. Thalamus Relat Syst 1:349–369

    Article  CAS  Google Scholar 

  • Portas CM, Goldstein JM, Shenton ME, Hokama HH, Wible CG, Fischer I, Kikinis R, Donnino R, Jolesz FA, McCarley RW (1998) Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging. Biol Psychiatry 43:649–659

    Article  PubMed  CAS  Google Scholar 

  • Preuss UW, Zetzsche T, Jäger M, Groll C, Frodl T, Bottlender R, Leinsinger G, Hegerl U, Hahn K, Möller HJ, Meisenzahl EM (2005) Thalamic volume in first-episode and chronic schizophrenic subjects: a volumetric MRI study. Schizophr Res 73:91–101

    Article  PubMed  CAS  Google Scholar 

  • Rapoport JL, Giedd J, Kumra S, Jacobsen L, Smith A, Lee P, Nelson J, Hamburger S (1997) Childhood-onset schizophrenia. Progressive ventricular change during adolescence. Arch Gen Psychiatry 54:897–903

    Article  PubMed  CAS  Google Scholar 

  • Reichova I, Sherman SM (2004) Somatosensory corticothalamic projections: distinguishing drivers from modulators. J Neurophysiol 92:2185–2197

    Article  PubMed  Google Scholar 

  • Reilly M, Connolly S, Stack J, Martin EA, Hutchinson M (1992) Bilateral paramedian thalamic infarction: a distinct but poorly recognized stroke syndrome. Q J Med 82:63–70

    PubMed  CAS  Google Scholar 

  • Rose SE, Chalk JB, Janke AL, Strudwick MW, Windus LC, Hannah DE, McGrath JJ, Pantelis C, Wood SJ, Mowry BJ (2006) Evidence of altered prefrontal-thalamic circuitry in schizophrenia: an optimized diffusion MRI study. Neuroimage 32:16–22

    Article  PubMed  Google Scholar 

  • Salami M, Itami C, Tsumoto T, Kimura F (2003) Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proc Natl Acad Sci USA 100:6174–6179

    Article  PubMed  CAS  Google Scholar 

  • Salgado-Pineda P, Junqué C, Vendrell P, Baeza I, Bargalló N, Falcón C, Bernardo M (2004) Decreased cerebral activation during CPT performance: structural and functional deficits in schizophrenic patients. Neuroimage 21:840–847

    Article  PubMed  Google Scholar 

  • Schlösser R, Gesierich T, Kaufmann B, Vucurevic G, Hunsche S, Gawehn J, Stoeter P (2003) Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage 19:751–763

    Article  PubMed  Google Scholar 

  • Schmahmann JD (2003) Vascular syndromes of the thalamus. Stroke 34:2264–2278

    Article  PubMed  Google Scholar 

  • Selemon LD, Wang L, Nebel MB, Csernansky JG, Goldman-Rakic PS, Rakic P (2005) Direct and indirect effects of fetal irradiation on cortical gray and white matter volume in the macaque. Biol Psychiatry 57:83–90

    Article  PubMed  Google Scholar 

  • Sharp FR, Tomitaka M, Bernaudin M, Tomitaka S (2001) Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosci 24:330–334

    Article  PubMed  CAS  Google Scholar 

  • Sherman SM (2004) Interneurons and triadic circuitry of the thalamus. Trends Neurosci 27:670–675

    Article  PubMed  CAS  Google Scholar 

  • Sherman SM (2005) Thalamic relays and cortical functioning. Prog Brain Res 149:107–126

    Article  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (1998) On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc Natl Acad Sci USA 95:7121–7126

    Article  PubMed  CAS  Google Scholar 

  • Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature 378:176–179

    Article  PubMed  CAS  Google Scholar 

  • Sim K, Cullen T, Ongur D, Heckers S (2006) Testing models of thalamic dysfunction in schizophrenia using neuroimaging. J Neural Transm 113:907–928

    Article  PubMed  CAS  Google Scholar 

  • Staal WG, Hulshoff Pol HE, Schnack H, van der Schot AC, Kahn RS (1998) Partial volume decrease of the thalamus in relatives of patients with schizophrenia. Am J Psychiatry 155:1784–1786

    PubMed  CAS  Google Scholar 

  • Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA (2006) Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 188:510–518

    Article  PubMed  Google Scholar 

  • Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Exp Brain Res 123:124–135

    Article  PubMed  CAS  Google Scholar 

  • Stone JM, Day F, Tsagaraki H, Valli I, McLean MA, Lythgoe DJ, O’Gorman RL, Barker G, Mcguire P, OASIS (2009) Glutamate dysfunction in people with prodromal symptoms of psychosis: relationship to gray matter volume. Biol Psychiatry 66:533–539

    Article  PubMed  CAS  Google Scholar 

  • Strungas S, Christensen JD, Holcomb JM, Garver DL (2003) State-related thalamic changes during antipsychotic treatment in schizophrenia: preliminary observations. Psychiatry Res 124:121–124

    Article  PubMed  Google Scholar 

  • Sullivan EV, Rosenbloom MJ, Serventi KL, Deshmukh A, Pfefferbaum A (2003) Effects of alcohol dependence comorbidity and antipsychotic medication on volumes of the thalamus and pons in schizophrenia. Am J Psychiatry 160:1110–1116

    Article  PubMed  Google Scholar 

  • Sussmann JE, Lymer GK, McKirdy J, Moorhead TW, Maniega SM, Job D, Hall J, Bastin ME, Johnstone EC, Lawrie SM, McIntosh AM (2009) White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disord 11:11–18

    Article  PubMed  Google Scholar 

  • Swadlow HA, Gusev AG (2001) The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat Neurosci 4:402–408

    Article  PubMed  CAS  Google Scholar 

  • Syková E (2004) Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129:861–876

    Article  PubMed  Google Scholar 

  • Théberge J, Williamson KE, Aoyama N, Drost DJ, Manchanda R, Malla AK, Northcott S, Menon RS, Neufeld RW, Rajakumar N, Pavlosky W, Densmore M, Schaefer B, Williamson PC (2007) Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. Br J Psychiatry 191:325–334

    Article  PubMed  Google Scholar 

  • Thermenos HW, Seidman LJ, Breiter H, Goldstein JM, Goodman JM, Poldrack R, Faraone SV, Tsuang MT (2004) Functional magnetic resonance imaging during auditory verbal working memory in nonpsychotic relatives of persons with schizophrenia: a pilot study. Biol Psychiatry 55:490–500

    Article  PubMed  Google Scholar 

  • Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR (2007) Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull 33:69–94

    Article  PubMed  Google Scholar 

  • van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Brans R, Carati I, Rais M, Kahn RS (2008) Progressive brain volume loss in schizophrenia over the course of the illness: evidence of maturational abnormalities in early adulthood. Biol Psychiatry 63:106–113

    Article  PubMed  Google Scholar 

  • Whyte MC, Whalley HC, Simonotto E, Flett S, Shillcock R, Marshall I, Goddard NH, Johnstone EC, Lawrie SM (2006) Event-related fMRI of word classification and successful word recognition in subjects at genetically enhanced risk of schizophrenia. Psychol Med 36:1427–1439

    Article  PubMed  Google Scholar 

  • Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157:16–25

    PubMed  CAS  Google Scholar 

  • Young KA, Manaye KF, Liang C, Hicks PB, German DC (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Liang M, Jiang T, Tian L, Liu Y, Liu Z, Liu H, Kuang F (2007) Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci Lett 417:297–302

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will J. Cronenwett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Cronenwett, W.J., Csernansky, J. (2010). Thalamic Pathology in Schizophrenia. In: Swerdlow, N. (eds) Behavioral Neurobiology of Schizophrenia and Its Treatment. Current Topics in Behavioral Neurosciences, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_55

Download citation

Publish with us

Policies and ethics