Skip to main content

Advertisement

Log in

Neurovascular Compression-Induced Intracranial Allodynia May Be the True Nature of Migraine Headache: an Interpretative Review

  • Episodic Migraine (S Parikh, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Surgical deactivation of migraine trigger sites by extracranial neurovascular decompression has produced encouraging results and challenged previous understanding of primary headaches. However, there is a lack of in-depth discussions on the pathophysiological basis of migraine surgery. This narrative review provides interpretation of relevant literature from the perspective of compressive neuropathic etiology, pathogenesis, and pathophysiology of migraine.

Recent Findings

Vasodilation, which can be asymptomatic in healthy subjects, may produce compression of cranial nerves in migraineurs at both extracranial and intracranial entrapment-prone sites. This may be predetermined by inherited and acquired anatomical factors and may include double crush-type lesions. Neurovascular compression can lead to sensitization of the trigeminal pathways and resultant cephalic hypersensitivity. While descending (central) trigeminal activation is possible, symptomatic intracranial sensitization can probably only occur in subjects who develop neurovascular entrapment of cranial nerves, which can explain why migraine does not invariably afflict everyone. Nerve compression–induced focal neuroinflammation and sensitization of any cranial nerve may neurogenically spread to other cranial nerves, which can explain the clinical complexity of migraine. Trigger dose-dependent alternating intensity of sensitization and its synchrony with cyclic central neural activities, including asymmetric nasal vasomotor oscillations, may explain the laterality and phasic nature of migraine pain. Intracranial allodynia, i.e., pain sensation upon non-painful stimulation, may better explain migraine pain than merely nociceptive mechanisms, because migraine cannot be associated with considerable intracranial structural changes and consequent painful stimuli.

Summary

Understanding migraine as an intracranial allodynia could stimulate research aimed at elucidating the possible neuropathic compressive etiology of migraine and other primary headaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. GBD 2016 Headache Collaborators. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:954–76.

  2. Bink T, Duraku LS, Ter Louw RP, Zuidam JM, Mathijssen IMJ, Driessen C. The cutting edge of headache surgery: a systematic review on the value of extracranial surgery in the treatment of chronic headache. Plast Reconstr Surg. 2019;144:1431–48.

    Article  PubMed  CAS  Google Scholar 

  3. • ElHawary H, Barone N, Baradaran A, Janis JE. Efficacy and safety of migraine surgery: a systematic review and meta-analysis of outcomes and complication rates. Ann Surg. 2022;275:e315–23. This systematic review shows efficacy of migraine treatment by extracranial nerve decompression.

    Article  PubMed  Google Scholar 

  4. Henriques S, Almeida A, Peres H, Costa-Ferreira A. Current evidence in migraine surgery: a systematic review. Ann Plast Surg. 2022;89:113–20.

    Article  PubMed  CAS  Google Scholar 

  5. • Biondi DM. Is migraine a neuropathic pain syndrome? Curr Pain Headache Rep. 2006;10:167–78. One of the few articles that conceptually discusses migraine as a neuropathic condition.

    Article  PubMed  Google Scholar 

  6. Gfrerer L, Hulsen JH, McLeod MD, Wright EJ, Austen WG. Migraine surgery: an all or nothing phenomenon? Prospective evaluation of surgical outcomes. Ann Surg. 2019;269:994–9.

    Article  PubMed  Google Scholar 

  7. Vincent AJPE, van Hoogstraten WS, Maassen Van Den Brink A, van Rosmalen J, Bouwen BLJ. Extracranial trigger site surgery for migraine: a systematic review with meta-analysis on elimination of headache symptoms. Front Neurol. 2019;10:89.

  8. Muehlberger T. How does migraine surgery work? Migraine Surg Clin Guide Theory Pract. Cham: Springer International Publishing; 2018. p. 73–105.

    Google Scholar 

  9. Edmeads J. Editorial review: migraine: new views on an old theory. Can J Neurol Sci J Can Sci Neurol. 1984;11:363–4.

    Article  CAS  Google Scholar 

  10. Shevel E. The extracranial vascular theory of migraine–a great story confirmed by the facts. Headache. 2011;51:409–17.

    Article  PubMed  Google Scholar 

  11. Goadsby PJ. The vascular theory of migraine–a great story wrecked by the facts. Brain J Neurol. 2009;132:6–7.

    Article  Google Scholar 

  12. Amin FM, Asghar MS, Hougaard A, Hansen AE, Larsen VA, de Koning PJH, et al. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol. 2013;12:454–61.

    Article  PubMed  Google Scholar 

  13. Shevel E. Intracranial and extracranial arteries in migraine. Lancet Neurol. 2013;12:847.

    Article  PubMed  Google Scholar 

  14. Janis JE, Hatef DA, Reece EM, McCluskey PD, Schaub TA, Guyuron B. Neurovascular compression of the greater occipital nerve: implications for migraine headaches. Plast Reconstr Surg. 2010;126:1996–2001.

    Article  PubMed  CAS  Google Scholar 

  15. Janis JE, Hatef DA, Ducic I, Ahmad J, Wong C, Hoxworth RE, et al. Anatomy of the auriculotemporal nerve: variations in its relationship to the superficial temporal artery and implications for the treatment of migraine headaches. Plast Reconstr Surg. 2010;125:1422–8.

    Article  PubMed  CAS  Google Scholar 

  16. Raposio E, Raposio G, Del Duchetto D, Tagliatti E, Cortese K. Morphologic vascular anomalies detected during migraine surgery. J Plast Reconstr Aesthetic Surg JPRAS. 2022;75:4069–73.

    Article  Google Scholar 

  17. Rempel D, Dahlin L, Lundborg G. Pathophysiology of nerve compression syndromes: response of peripheral nerves to loading. J Bone Joint Surg Am. 1999;81:1600–10.

    Article  PubMed  CAS  Google Scholar 

  18. Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain. 2017;158:543–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Iyengar S, Johnson KW, Ossipov MH, Aurora SK. CGRP and the trigeminal system in migraine. Headache. 2019;59:659–81.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Russell FA, King R, Smillie S-J, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94:1099–142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zheng L-F, Wang R, Xu Y-Z, Yi X-N, Zhang J-W, Zeng Z-C. Calcitonin gene-related peptide dynamics in rat dorsal root ganglia and spinal cord following different sciatic nerve injuries. Brain Res. 2008;1187:20–32.

    Article  PubMed  CAS  Google Scholar 

  22. Toth CC, Willis D, Twiss JL, Walsh S, Martinez JA, Liu W-Q, et al. Locally synthesized calcitonin gene-related peptide has a critical role in peripheral nerve regeneration. J Neuropathol Exp Neurol. 2009;68:326–37.

    Article  PubMed  CAS  Google Scholar 

  23. Zochodne DW. Local blood flow in peripheral nerves and their ganglia: resurrecting key ideas around its measurement and significance. Muscle Nerve. 2018;57:884–95.

    Article  PubMed  Google Scholar 

  24. Li C, White TG, Shah KA, Chaung W, Powell K, Wang P, et al. Percutaneous trigeminal nerve stimulation induces cerebral vasodilation in a dose-dependent manner. Neurosurgery. 2021;88:E529–36.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stjärne P, Lacroix JS, Anggård A, Lundberg JM. Release of calcitonin gene-related peptide in the pig nasal mucosa by antidromic nerve stimulation and capsaicin. Regul Pept. 1991;33:251–62.

    Article  PubMed  Google Scholar 

  26. Kunkler PE, Ballard CJ, Oxford GS, Hurley JH. TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation. Pain. 2011;152:38–44.

    Article  PubMed  CAS  Google Scholar 

  27. Petzold GC, Albeanu DF, Sato TF, Murthy VN. Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron. 2008;58:897–910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lecrux C, Bourourou M, Hamel E. How reliable is cerebral blood flow to map changes in neuronal activity? Auton Neurosci Basic Clin. 2019;217:71–9.

    Article  Google Scholar 

  29. Drew PJ. Neurovascular coupling: motive unknown. Trends Neurosci. 2022;45:809–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Umbrello M, Dyson A, Feelisch M, Singer M. The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply-demand matching. Antioxid Redox Signal. 2013;19:1690–710.

    Article  PubMed  CAS  Google Scholar 

  31. Allen BW, Stamler JS, Piantadosi CA. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med. 2009;15:452–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hoiland RL, MacLeod DB, Stacey BS, Caldwell HG, Howe CA, Nowak-Flück D, et al. Hemoglobin and cerebral hypoxic vasodilation in humans: evidence for nitric oxide-dependent and S-nitrosothiol mediated signal transduction. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2023;271678X231169579.

  33. Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol. 2016;310:R398-413.

    Article  PubMed  Google Scholar 

  34. Arngrim N, Schytz HW, Britze J, Amin FM, Vestergaard MB, Hougaard A, et al. Migraine induced by hypoxia: an MRI spectroscopy and angiography study. Brain J Neurol. 2016;139:723–37.

    Article  Google Scholar 

  35. Martin VT, Vij B. Diet and headache: part 2. Headache. 2016;56:1553–62.

    Article  PubMed  Google Scholar 

  36. Kesserwani H. Migraine triggers: an overview of the pharmacology, biochemistry, atmospherics, and their effects on neural networks. Cureus. 2021;13: e14243.

    PubMed  PubMed Central  Google Scholar 

  37. Grech O, Mollan SP, Wakerley BR, Fulton D, Lavery GG, Sinclair AJ. The role of metabolism in migraine pathophysiology and susceptibility. Life Basel Switz. 2021;11:415.

    CAS  Google Scholar 

  38. Britze J, Arngrim N, Schytz HW, Ashina M. Hypoxic mechanisms in primary headaches. Cephalalgia Int J Headache. 2017;37:372–84.

    Article  Google Scholar 

  39. Savourey G, Launay J-C, Besnard Y, Guinet A, Travers S. Normo- and hypobaric hypoxia: are there any physiological differences? Eur J Appl Physiol. 2003;89:122–6.

    Article  PubMed  Google Scholar 

  40. Zanette EM, Agnoli A, Roberti C, Chiarotti F, Cerbo R, Fieschi C. Transcranial Doppler in spontaneous attacks of migraine. Stroke. 1992;23:680–5.

    Article  PubMed  CAS  Google Scholar 

  41. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Posterior cerebral hypoperfusion in migraine without aura. Cephalalgia Int J Headache. 2008;28:856–62.

    Article  CAS  Google Scholar 

  42. Viola S, Viola P, Litterio P, Buongarzone MP, Fiorelli L. Pathophysiology of migraine attack with prolonged aura revealed by transcranial Doppler and near infrared spectroscopy. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2010;31(Suppl 1):S165-166.

    Google Scholar 

  43. Kellner-Weldon F, El-Koussy M, Jung S, Jossen M, Klinger-Gratz PP, Wiest R. Cerebellar hypoperfusion in migraine attack: incidence and significance. AJNR Am J Neuroradiol. 2018;39:435–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mojadidi MK, Ruiz JC, Chertoff J, Zaman MO, Elgendy IY, Mahmoud AN, et al. Patent foramen ovale and hypoxemia. Cardiol Rev. 2019;27:34–40.

    Article  PubMed  Google Scholar 

  45. Liu K, Wang BZ, Hao Y, Song S, Pan M. The correlation between migraine and patent foramen ovale. Front Neurol. 2020;11: 543485.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee M, Erickson C, Guyuron B. Intranasal pathology in the migraine surgery population: incidence, patterns, and predictors of surgical success. Plast Reconstr Surg. 2017;139:184–9.

    Article  PubMed  CAS  Google Scholar 

  47. Hu S, Helman S, Filip P, Cabin J, Colley P. The role of the otolaryngologist in the evaluation and management of headaches. Am J Otolaryngol. 2019;40:115–20.

    Article  PubMed  Google Scholar 

  48. Lee K-I, In SM, Kim J-Y, Hong J-Y, Han K-D, Kim J-S, et al. Association of nasal septal deviation with the incidence of anxiety, depression, and migraine: a national population-based study. PLoS ONE. 2021;16: e0259468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Evers S. Non-invasive neurostimulation methods for acute and preventive migraine treatment—a narrative review. J Clin Med. 2021;10:3302.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brinton M, Mandel Y, Schachar I, Palanker D. Mechanisms of electrical vasoconstriction. J Neuroengineering Rehabil. 2018;15:43.

    Article  Google Scholar 

  51. Emerson GG, Segal SS. Electrical activation of endothelium evokes vasodilation and hyperpolarization along hamster feed arteries. Am J Physiol Heart Circ Physiol. 2001;280:H160-167.

    Article  PubMed  CAS  Google Scholar 

  52. Segal SS, Welsh DG, Kurjiaka DT. Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. J Physiol. 1999;516(Pt 1):283–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mo H, Chung SJ, Rozen TD, Cho S-J. Oxygen therapy in cluster headache, migraine, and other headache disorders. J Clin Neurol Seoul Korea. 2022;18:271–9.

    Article  Google Scholar 

  54. Floyd TF, Clark JM, Gelfand R, Detre JA, Ratcliffe S, Guvakov D, et al. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol Bethesda Md. 1985;2003(95):2453–61.

    Google Scholar 

  55. Hirunpattarasilp C, Barkaway A, Davis H, Pfeiffer T, Sethi H, Attwell D. Hyperoxia evokes pericyte-mediated capillary constriction. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2022;42:2032–47.

    Article  CAS  Google Scholar 

  56. Wang M, Lan D, Dandu C, Ding Y, Ji X, Meng R. Normobaric oxygen may attenuate the headache in patients with patent foramen ovale and migraine. BMC Neurol. 2023;23:44.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zobdeh F, Ben Kraiem A, Attwood MM, Chubarev VN, Tarasov VV, Schiöth HB, et al. Pharmacological treatment of migraine: drug classes, mechanisms of action, clinical trials and new treatments. Br J Pharmacol. 2021;178:4588–607.

    Article  PubMed  CAS  Google Scholar 

  58. Hsu Y-Y, Chen C-J, Wu S-H, Chen K-H. Cold intervention for relieving migraine symptoms: a systematic review and meta-analysis. J Clin Nurs. 2023;32:2455–65.

    Article  PubMed  Google Scholar 

  59. Alvarez DJ, Rockwell PG. Trigger points: diagnosis and management. Am Fam Physician. 2002;65:653–60.

    PubMed  Google Scholar 

  60. Baeumler P, Hupe K, Irnich D. Proposal of a diagnostic algorithm for myofascial trigger points based on a multiple correspondence analysis of cross-sectional data. BMC Musculoskelet Disord. 2023;24:62.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gautschi RU. Trigger points as a fascia-related disorder. In: Schleip R, Stecco C, Driscoll M, Huijing PA, editors. Fascia Tens Netw Hum Body. Elsevier; 2022. p. 329–40.

    Google Scholar 

  62. Akamatsu FE, Saleh S, Pinesi HT, Rodrigues KR, Zandoná CB, Andrade M, et al. Anatomical basis of the myofascial trigger points of the trapezius muscle. Int J Morphol. 2013;31:915–20.

    Article  Google Scholar 

  63. Akamatsu FE, Yendo TM, Rhode C, Itezerote AM, Hojaij F, Andrade M, et al. Anatomical basis of the myofascial trigger points of the gluteus maximus muscle. BioMed Res Int. 2017;2017:4821968.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wada JT, Akamatsu F, Hojaij F, Itezerote A, Scarpa JC, Andrade M, et al. An anatomical basis for the myofascial trigger points of the abductor hallucis muscle. BioMed Res Int. 2020;2020:9240581.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Procópio Pinheiro R, Gaubeur MA, Itezerote AM, Saleh SO, Hojaij F, Andrade M, et al. Anatomical study of the innervation of the masseter muscle and its correlation with myofascial trigger points. J Pain Res. 2020;13:3217–26.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang D, Morris SF. Trapezius muscle: anatomic basis for flap design. Ann Plast Surg. 1998;41:52–7.

    Article  PubMed  CAS  Google Scholar 

  67. Scheufler O, Farhadi J, Kovach SJ, Kukies S, Pierer G, Levin LS, et al. Anatomical basis and clinical application of the infragluteal perforator flap. Plast Reconstr Surg. 2006;118:1389–400.

    Article  PubMed  CAS  Google Scholar 

  68. Tansatit T, Chokrungyaranont P, Sanguansit P, Wanidchaphloi S. Anatomical study of the superior gluteal artery perforator (S-GAP) for free flap harvesting. J Med Assoc Thail Chotmaihet Thangphaet. 2008;91:1244–9.

    Google Scholar 

  69. Sarrafian S, Kelikian A. Nerves. In: Kelikian AS, editor. Sarrafian’s anatomy of the foot and ankle: descriptive, topographic, functional. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 381–427.

    Google Scholar 

  70. Kaya B, Apaydin N, Loukas M, Tubbs RS. The topographic anatomy of the masseteric nerve: a cadaveric study with an emphasis on the effective zone of botulinum toxin A injections in masseter. J Plast Reconstr Aesthetic Surg JPRAS. 2014;67:1663–8.

    Article  CAS  Google Scholar 

  71. Argoff CE. A focused review on the use of botulinum toxins for neuropathic pain. Clin J Pain. 2002;18:S177-181.

    Article  PubMed  Google Scholar 

  72. Oh H-M, Chung ME. Botulinum toxin for neuropathic pain: a review of the literature. Toxins. 2015;7:3127–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Becker WJ. Botulinum toxin in the treatment of headache. Toxins. 2020;12:803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Møller AR. Vascular compression of cranial nerves. I. History of the microvascular decompression operation. Neurol Res. 1998;20:727–31.

  75. McLaughlin MR, Jannetta PJ, Clyde BL, Subach BR, Comey CH, Resnick DK. Microvascular decompression of cranial nerves: lessons learned after 4400 operations. J Neurosurg. 1999;90:1–8.

    Article  PubMed  CAS  Google Scholar 

  76. Sirko A, Chekha K, Mizyakina K. Cranial nerve hyperfunction syndromes. modern approaches to diagnosis and treatment (review). Georgian Med News. 2020;6:113–20.

  77. • Szmyd B, Sołek J, Błaszczyk M, Jankowski J, Liberski PP, Jaskólski DJ, et al. The underlying pathogenesis of neurovascular compression syndromes: a systematic review. Front Mol Neurosci. 2022;15: 923089. This article discusses neurovascular compression syndromes of cranial nerves and thus can serve as an anatomical basis for the neurovascular entrapment concept of migraine.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Barbaro F, Bassi E, Toni R. Surgical anatomy of the vascularization and innervation of the human scalp. In: Raposio E, editor. Atlas Surg Ther Migraine Tens-Type Headache. Cham: Springer International Publishing; 2020. p. 5–11.

    Chapter  Google Scholar 

  79. Konschake M. Surgical anatomy of craniofacial nerves regarding migraine surgery. In: Raposio E, editor. Atlas Surg Ther Migraine Tens-Type Headache. Cham: Springer International Publishing; 2020. p. 13–8.

    Chapter  Google Scholar 

  80. Gamboa NT, Taussky P, Park MS, Couldwell WT, Mahan MA, Kalani MYS. Neurovascular patterning cues and implications for central and peripheral neurological disease. Surg Neurol Int. 2017;8:208.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Joo W, Yoshioka F, Funaki T, Mizokami K, Rhoton AL. Microsurgical anatomy of the trigeminal nerve. Clin Anat N Y N. 2014;27:61–88.

    Article  Google Scholar 

  82. Kosaras B, Jakubowski M, Kainz V, Burstein R. Sensory innervation of the calvarial bones of the mouse. J Comp Neurol. 2009;NA-NA.

  83. Schueler M, Neuhuber WL, De Col R, Messlinger K. Innervation of rat and human dura mater and pericranial tissues in the parieto-temporal region by meningeal afferents. Headache. 2014;54:996–1009.

    Article  PubMed  Google Scholar 

  84. Zhao J, Levy D. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior. Pain. 2014;155:1392–400.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mahalingam HV, Mani SE, Patel B, Prabhu K, Alexander M, Fatterpekar GM, et al. Imaging spectrum of cavernous sinus lesions with histopathologic correlation. Radiogr Rev Publ Radiol Soc N Am Inc. 2019;39:795–819.

  86. Gray H, Lewis WH. Anatomy of the human body. 20th ed. Philadelphia: Lea & Febiger; 1918.

    Google Scholar 

  87. Wiltse LL. Anatomy of the extradural compartments of the lumbar spinal canal. Peridural membrane and circumneural sheath. Radiol Clin North Am. 2000;38:1177–206.

  88. McCabe JS, Low FN. The subarachnoid angle: an area of transition in peripheral nerve. Anat Rec. 1969;164:15–33.

    Article  PubMed  CAS  Google Scholar 

  89. Ćetković M, Štimec BV, Mucić D, Dožić A, Ćetković D, Reçi V, et al. Arterial supply of the trigeminal ganglion, a micromorphological study. Folia Morphol. 2020;79:58–64.

    Google Scholar 

  90. Dellon AL, Mackinnon SE. Chronic nerve compression model for the double crush hypothesis. Ann Plast Surg. 1991;26:259–64.

    Article  PubMed  CAS  Google Scholar 

  91. Upton AR, McComas AJ. The double crush in nerve entrapment syndromes. Lancet Lond Engl. 1973;2:359–62.

    Article  CAS  Google Scholar 

  92. Novak CB, Mackinnon SE. Thoracic outlet syndrome. Orthop Clin North Am. 1996;27:747–62.

    Article  PubMed  CAS  Google Scholar 

  93. Liu P, Zhong W, Liao C, Liu M, Zhang W. Narrow foramen ovale and rotundum: a role in the etiology of trigeminal neuralgia. J Craniofac Surg. 2016;27:2168–70.

    Article  PubMed  Google Scholar 

  94. • Li S, Liao C, Qian M, Yang X, Zhang W. Narrow ovale foramina may be involved in the development of primary trigeminal neuralgia. Front Neurol. 2022;13:1013216. This study presents evidence that narrow cranial foramen ovale can be a secondary site of trigeminal nerve compression.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li S, Liao C, Zhang W. The potential role of a narrow foramen rotundum and foramen ovale in the development of concomitant continuous pain in trigeminal neuralgia. Med Hypotheses. 2023;177:111110.

  96. Hamann MC, Sacks MS, Malinin TI. Quantification of the collagen fibre architecture of human cranial dura mater. J Anat. 1998;192(Pt 1):99–106.

    Article  PubMed  Google Scholar 

  97. Do TP, Hougaard A, Dussor G, Brennan KC, Amin FM. Migraine attacks are of peripheral origin: the debate goes on. J Headache Pain. 2023;24:3.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Edvinsson L, Haanes KA. Views on migraine pathophysiology: where does it start? Neurol Clin Neurosci. 2020;8:120–7.

    Article  Google Scholar 

  99. Villar-Martinez MD, Goadsby PJ. Pathophysiology and therapy of associated features of migraine. Cells. 2022;11:2767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10:895–926.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Malick A, Burstein R. Peripheral and central sensitization during migraine. Funct Neurol. 2000;15(Suppl 3):28–35.

    PubMed  Google Scholar 

  102. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 2009;8:679–90.

    Article  PubMed  Google Scholar 

  103. • Brazenor GA, Malham GM, Teddy PJ. Can central sensitization after injury persist as an autonomous pain generator? A comprehensive search for evidence. Pain Med Malden Mass. 2022;23:1283–98. This article shows that central sensitization cannot persist without peripheral input.

    Google Scholar 

  104. Barbanti P, Brighina F, Egeo G, Di Stefano V, Silvestro M, Russo A. Migraine as a cortical brain disorder. Headache. 2020;60:2103–14.

    Article  PubMed  Google Scholar 

  105. Bauer PR, Tolner EA, Keezer MR, Ferrari MD, Sander JW. Headache in people with epilepsy. Nat Rev Neurol. 2021;17:529–44.

    Article  PubMed  Google Scholar 

  106. Nye BL, Thadani VM. Migraine and epilepsy: review of the literature. Headache. 2015;55:359–80.

    Article  PubMed  Google Scholar 

  107. Carneiro-Nascimento S, Levy D. Cortical spreading depression and meningeal nociception. Neurobiol Pain Camb Mass. 2022;11: 100091.

    Article  Google Scholar 

  108. Borgdorff P. Arguments against the role of cortical spreading depression in migraine. Neurol Res. 2018;40:173–81.

    Article  PubMed  Google Scholar 

  109. Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci Off J Soc Neurosci. 2010;30:8807–14.

    Article  CAS  Google Scholar 

  110. Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol. 2011;69:855–65.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhao J, Levy D. Modulation of intracranial meningeal nociceptor activity by cortical spreading depression: a reassessment. J Neurophysiol. 2015;113:2778–85.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhao J, Levy D. Cortical spreading depression promotes persistent mechanical sensitization of intracranial meningeal afferents: implications for the intracranial mechanosensitivity of migraine. eNeuro. 2016;3:ENEURO.0287–16.2016.

  113. Harriott AM, Chung DY, Uner A, Bozdayi RO, Morais A, Takizawa T, et al. Optogenetic spreading depression elicits trigeminal pain and anxiety behavior. Ann Neurol. 2021;89:99–110.

    Article  PubMed  Google Scholar 

  114. Houben T, Loonen IC, Baca SM, Schenke M, Meijer JH, Ferrari MD, et al. Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2017;37:1641–55.

    Article  Google Scholar 

  115. Pi C, Tang W, Li Z, Liu Y, Jing Q, Dai W, et al. Cortical pain induced by optogenetic cortical spreading depression: from whole brain activity mapping. Mol Brain. 2022;15:99.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kim S, Park J. Sleep deprivation, headache, and Fos immunohistochemistry. In: Rajendram R, Preedy VR, Patel VB, Martin CR, editors. Neurobiol Physiol Psychol Pain. Elsevier; 2022. p. 203–15.

    Chapter  Google Scholar 

  117. Macionis V. Chronic pain and local pain in usually painless conditions including neuroma may be due to compressive proximal neural lesion. Front Pain Res. 2023;4.

  118. Paillard T. Detrimental effects of sleep deprivation on the regulatory mechanisms of postural balance: a comprehensive review. Front Hum Neurosci. 2023;14:1146550.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kristiansen ES, Nielsen LS, Christensen SS, Botvid SHC, Nørgaard Poulsen J, Gazerani P. Sleep deprivation sensitizes human craniofacial muscles. Somatosens Mot Res. 2017;34:116–22.

    Article  PubMed  Google Scholar 

  120. Messlinger K. The big CGRP flood - sources, sinks and signalling sites in the trigeminovascular system. J Headache Pain. 2018;19:22.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ishida K, Tanaka S, Shen D, Matsui S, Fuseya S, Shindo T, et al. Calcitonin gene-related peptide is not involved in neuropathic pain induced by partial sciatic nerve ligation in mice. Neurosci Lett. 2022;778: 136615.

    Article  PubMed  CAS  Google Scholar 

  122. Bove GM, Moskowitz MA. Primary afferent neurons innervating guinea pig dura. J Neurophysiol. 1997;77:299–308.

    Article  PubMed  CAS  Google Scholar 

  123. Ashina M, Hansen JM, Á Dunga BO, Olesen J. Human models of migraine - short-term pain for long-term gain. Nat Rev Neurol. 2017;13:713–24.

  124. Greco R, Demartini C, De Icco R, Martinelli D, Putortì A, Tassorelli C. Migraine neuroscience: from experimental models to target therapy. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2020;41:351–61.

    Google Scholar 

  125. Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, et al. Nitroglycerin as a comparative experimental model of migraine pain: from animal to human and back. Prog Neurobiol. 2019;177:15–32.

    Article  PubMed  CAS  Google Scholar 

  126. Messlinger K, Balcziak LK, Russo AF. Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. J Neural Transm Vienna Austria. 1996;2020(127):431–44.

    Google Scholar 

  127. Ahn AH, Basbaum AI. Where do triptans act in the treatment of migraine? Pain. 2005;115:1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bove GM, Dilley A. The conundrum of sensitization when recording from nociceptors. J Neurosci Methods. 2010;188:213–8.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Satkeviciute I, Goodwin G, Bove GM, Dilley A. Time course of ongoing activity during neuritis and following axonal transport disruption. J Neurophysiol. 2018;119:1993–2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Dilley A, Bove GM. Resolution of inflammation-induced axonal mechanical sensitivity and conduction slowing in C-fiber nociceptors. J Pain. 2008;9:185–92.

    Article  PubMed  Google Scholar 

  131. Bove GM, Ransil BJ, Lin H-C, Leem J-G. Inflammation induces ectopic mechanical sensitivity in axons of nociceptors innervating deep tissues. J Neurophysiol. 2003;90:1949–55.

    Article  PubMed  Google Scholar 

  132. Greening J, Dilley A. Peripheral mechanisms of chronic upper limb pain: nerve dynamics, inflammation and neurophysiology. In: Fernandez de las Penas C, Cleland JA, Huijbregts PA, editors. Neck Arm Pain Syndr. Elsevier; 2011. p. 476–95.

  133. Satkeviciute I, Dilley A. Neuritis and vinblastine-induced axonal transport disruption lead to signs of altered dorsal horn excitability. Mol Pain. 2018;14:1744806918799581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Dilley A, Richards N, Pulman KG, Bove GM. Disruption of fast axonal transport in the rat induces behavioral changes consistent with neuropathic pain. J Pain. 2013;14:1437–49.

    Article  PubMed  CAS  Google Scholar 

  135. Armstrong BD, Hu Z, Abad C, Yamamoto M, Rodriguez WI, Cheng J, et al. Induction of neuropeptide gene expression and blockade of retrograde transport in facial motor neurons following local peripheral nerve inflammation in severe combined immunodeficiency and BALB/C mice. Neuroscience. 2004;129:93–9.

    Article  PubMed  CAS  Google Scholar 

  136. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149–58.

    Article  PubMed  Google Scholar 

  137. Noh M, Mikler B, Joy T, Smith PA. Time course of inflammation in dorsal root ganglia correlates with differential reversibility of mechanical allodynia. Neuroscience. 2020;428:199–216.

    Article  PubMed  CAS  Google Scholar 

  138. Bennett GJ, Xie Y-K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33:87–107.

    Article  PubMed  Google Scholar 

  139. Arendt-Nielsen L, Andersen OK. Capsaicin in human experimental pain models of skin, muscle and visceral sensitization. In: Malmberg AB, Bley KR, editors. Turn Heat Pain TRPV1 Recept Pain Inflamm. Basel: Birkhäuser-Verlag; 2005. p. 117–44.

    Chapter  Google Scholar 

  140. Brennan TJ. Pathophysiology of postoperative pain. Pain. 2011;152:S33-40.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Schmid AB, Fundaun J, Tampin B. Entrapment neuropathies: a contemporary approach to pathophysiology, clinical assessment, and management. Pain Rep. 2020;5: e829.

    Article  PubMed  Google Scholar 

  142. Peris F, Donoghue S, Torres F, Mian A, Wöber C. Towards improved migraine management: determining potential trigger factors in individual patients. Cephalalgia Int J Headache. 2017;37:452–63.

    Article  Google Scholar 

  143. Martinelli D, Pocora MM, De Icco R, Putortì A, Tassorelli C. Triggers of migraine: where do we stand? Curr Opin Neurol. 2022;35:360–6.

    Article  PubMed  CAS  Google Scholar 

  144. Sheftell F, Cady R. Migraine without aura. In: Bigal ME, Lipton RB, editors. Migraine Headache Disord. New York, NY: Taylor & Francis Group; 2006. p. 173–88.

    Google Scholar 

  145. Cady RK. The convergence hypothesis. Headache. 2007;47(Suppl 1):S44-51.

    PubMed  Google Scholar 

  146. de Ru JA, Filipovic B, Lans J, van der Veen EL, Lohuis PJ. Entrapment neuropathy: a concept for pathogenesis and treatment of headaches—a narrative review. Clin Med Insights Ear Nose Throat. 2019;12:1179550619834949.

    PubMed  PubMed Central  Google Scholar 

  147. Khasar SG, Miao FJ, Jänig W, Levine JD. Vagotomy-induced enhancement of mechanical hyperalgesia in the rat is sympathoadrenal-mediated. J Neurosci Off J Soc Neurosci. 1998;18:3043–9.

    Article  CAS  Google Scholar 

  148. Khasar SG, Miao JP, Jänig W, Levine JD. Modulation of bradykinin-induced mechanical hyperalgesia in the rat by activity in abdominal vagal afferents. Eur J Neurosci. 1998;10:435–44.

    Article  PubMed  CAS  Google Scholar 

  149. Furuta S, Shimizu T, Narita M, Matsumoto K, Kuzumaki N, Horie S, et al. Subdiaphragmatic vagotomy promotes nociceptive sensitivity of deep tissue in rats. Neuroscience. 2009;164:1252–62.

    Article  PubMed  CAS  Google Scholar 

  150. Kobayashi A, Shinoda M, Sessle BJ, Honda K, Imamura Y, Hitomi S, et al. Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats. Mol Pain. 2011;7:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Lewis SS, Grace PM, Hutchinson MR, Maier SF, Watkins LR. Constriction of the buccal branch of the facial nerve produces unilateral craniofacial allodynia. Brain Behav Immun. 2017;64:59–64.

    Article  PubMed  Google Scholar 

  152. Tseng CY, Lue JH, Lee SH, Wen CY, Shieh JY. Evidence of neuroanatomical connection between the superior cervical ganglion and hypoglossal nerve in the hamster as revealed by tract-tracing and degeneration methods. J Anat. 2001;198:407–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Păduraru D, Rusu MC. The anatomy of the intralingual neural interconnections. Surg Radiol Anat SRA. 2013;35:457–62.

    Article  PubMed  Google Scholar 

  154. Bičanić I, Hladnik A, Džaja D, Petanjek Z. The anatomy of orofacial innervation. Acta Clin Croat. 2019;58:35–42.

    PubMed  PubMed Central  Google Scholar 

  155. Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, et al. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimulat. 2020;13:717–50.

    Article  Google Scholar 

  156. Wang X, Meng D, Wang L, Chen G. The clinical characteristics and surgical treatment of glossopharyngeal neuralgia with pain radiating to the innervated area of the trigeminal nerve. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2021;79:786.e1-786.e8.

    Article  Google Scholar 

  157. Henssen DJHA, Derks B, van Doorn M, Verhoogt N, Van Cappellen van Walsum A-M, Staats P, et al. Vagus nerve stimulation for primary headache disorders: an anatomical review to explain a clinical phenomenon. Cephalalgia Int J Headache. 2019;39:1180–94.

  158. Terrier L-M, Fontaine D. Intracranial nociception. Rev Neurol (Paris). 2021;177:765–72.

    Article  PubMed  Google Scholar 

  159. Spead O, Poulain FE. Trans-axonal signaling in neural circuit wiring. Int J Mol Sci. 2020;21:5170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Assunção FB, Scoppetta TLPD, Yonekura Inada BS, Martins LDA, Narvaez EO, Soldatelli MD, et al. Secondary neurodegeneration: a general approach to axonal and transaxonal degeneration. Neurographics. 2021;11:111–26.

    Article  Google Scholar 

  161. Lee MH, Park JS. Pathogenesis of hemifacial spasm. In: Park K, Park JS, editors. Hemifacial Spasm. Singapore: Springer Singapore; 2020. p. 21–5.

    Chapter  Google Scholar 

  162. Wu G, Ringkamp M, Hartke TV, Murinson BB, Campbell JN, Griffin JW, et al. Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci Off J Soc Neurosci. 2001;21:RC140.

  163. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52:77–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Tal M, Bennett GJ. Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain. 1994;57:375–82.

    Article  PubMed  Google Scholar 

  165. Liu X-G, Pang R-P, Zhou L-J, Wei X-H, Zang Y. Neuropathic pain: sensory nerve injury or motor nerve injury? Adv Exp Med Biol. 2016;904:59–75.

    Article  PubMed  CAS  Google Scholar 

  166. Hildebrand C, Karlsson M, Risling M. Ganglionic axons in motor roots and pia mater. Prog Neurobiol. 1997;51:89–128.

    Article  PubMed  CAS  Google Scholar 

  167. Ji R-R, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018;129:343–66.

    Article  PubMed  Google Scholar 

  168. Estera LA, Walsh SP, Headen JA, Williamson RE, Kalinski AL. Neuroinflammation: breaking barriers and bridging gaps. Neurosci Res. 2021;S0168010221002224.

  169. Kubíčková L. Neuroinflammation in the trigeminal system. [Brno]: Masaryk University; 2021.

  170. Okada-Ogawa A, Suzuki I, Sessle BJ, Chiang C-Y, Salter MW, Dostrovsky JO, et al. Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci Off J Soc Neurosci. 2009;29:11161–71.

    Article  CAS  Google Scholar 

  171. Biscetti L, Cresta E, Cupini LM, Calabresi P, Sarchielli P. The putative role of neuroinflammation in the complex pathophysiology of migraine: from bench to bedside. Neurobiol Dis. 2023;180: 106072.

    Article  PubMed  CAS  Google Scholar 

  172. Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15:1063–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol. 2018;40:301–14.

    Article  PubMed  CAS  Google Scholar 

  174. Schumacher GA, Wolff HG. Experimental studies on headache: A. Contrast of histamine headache with the headache of migraine and that associated with hypertension B. Contrast of vascular mechanisms in preheadache and in headache phenomena of migraine. Arch Neurol Psychiatry. 1941;45:199.

  175. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152:S2-15.

    Article  PubMed  Google Scholar 

  176. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev. 2017;97:553–622.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci Off J Soc Neurosci. 2015;35:6619–29.

    Article  CAS  Google Scholar 

  178. Edvinsson L, Haanes KA, Warfvinge K. Does inflammation have a role in migraine? Nat Rev Neurol. 2019;15:483–90.

    Article  PubMed  Google Scholar 

  179. Goadsby PJ. Migraine, allodynia, sensitisation and all of that ... Eur Neurol. 2005;53 Suppl 1:10–6.

  180. Belopasova AV, Dobrynina LA, Gubanova MV, Suslina AD. Achievements of recent decades in the diagnosis and study of migraine pathogenesis. Hum Physiol. 2020;46:870–9.

    Article  Google Scholar 

  181. • Peng K-P, May A. Migraine understood as a sensory threshold disease. Pain. 2019;160:1494–501. Presents evidence for a variety of sensory changes in migraine, which relates to peripheral neural lesion.

    Article  PubMed  Google Scholar 

  182. Suzuki K, Suzuki S, Shiina T, Kobayashi S, Hirata K. Central sensitization in migraine: a narrative review. J Pain Res. 2022;15:2673–82.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Maleki N, Szabo E, Becerra L, Moulton E, Scrivani SJ, Burstein R, et al. Ictal and interictal brain activation in episodic migraine: Neural basis for extent of allodynia. PLoS ONE. 2021;16: e0244320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Mínguez-Olaondo A, Quintas S, Morollón Sánchez-Mateos N, López-Bravo A, Vila-Pueyo M, Grozeva V, et al. Cutaneous allodynia in migraine: a narrative review. Front Neurol. 2021;12: 831035.

    Article  PubMed  Google Scholar 

  185. Lovati C, D’Amico D, Bertora P, Rosa S, Suardelli M, Mailland E, et al. Acute and interictal allodynia in patients with different headache forms: an Italian pilot study. Headache. 2008;48:272–7.

    Article  PubMed  Google Scholar 

  186. Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47:614–24.

    Article  PubMed  CAS  Google Scholar 

  187. Kowacs PA, Utiumi MA, Piovesan EJ. The visual system in migraine: from the bench side to the office. Headache. 2015;55(Suppl 1):84–98.

    Article  PubMed  Google Scholar 

  188. Perenboom MJL, Zamanipoor Najafabadi AH, Zielman R, Carpay JA, Ferrari MD. Quantifying visual allodynia across migraine subtypes: the Leiden Visual Sensitivity Scale. Pain. 2018;159:2375–82.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Todd AJ. Plasticity of inhibition in the spinal cord. In: Schaible H-G, editor. Pain Control. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 171–90.

  190. • Hughes DI, Todd AJ. Central nervous system targets: inhibitory interneurons in the spinal cord. Neurother J Am Soc Exp Neurother. 2020;17:874–85. This review includes discussion of how reduced peripheral afferent input causes interneuronal disinhibition, which is required for development of allodynia.

    Google Scholar 

  191. Levy D, Strassman AM. Mechanical response properties of A and C primary afferent neurons innervating the rat intracranial dura. J Neurophysiol. 2002;88:3021–31.

    Article  PubMed  Google Scholar 

  192. Bartsch T, Goadsby PJ. Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain J Neurol. 2003;126:1801–13.

    Article  CAS  Google Scholar 

  193. Strassman AM, Weissner W, Williams M, Ali S, Levy D. Axon diameters and intradural trajectories of the dural innervation in the rat. J Comp Neurol. 2004;473:364–76.

    Article  PubMed  Google Scholar 

  194. Abraira VE, Ginty DD. The sensory neurons of touch. Neuron. 2013;79:618–39.

    Article  PubMed  CAS  Google Scholar 

  195. Andres KH, von Düring M, Muszynski K, Schmidt RF. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl). 1987;175:289–301.

    Article  PubMed  CAS  Google Scholar 

  196. Fricke B, Andres KH, Von Düring M. Nerve fibers innervating the cranial and spinal meninges: morphology of nerve fiber terminals and their structural integration. Microsc Res Tech. 2001;53:96–105.

    Article  PubMed  CAS  Google Scholar 

  197. Crawford LK, Caterina MJ. Functional anatomy of the sensory nervous system: updates from the neuroscience bench. Toxicol Pathol. 2020;48:174–89.

    Article  PubMed  Google Scholar 

  198. Larriva-Sahd J, León-Olea M, Vargas-Barroso V, Varela-Echavarría A, Concha L. On the existence of mechanoreceptors within the neurovascular unit of the mammalian brain. Brain Struct Funct. 2019;224:2247–67.

    Article  PubMed  Google Scholar 

  199. Nascimento AI. Sensory neurons have an axon initial segment that initiates spontaneous activity in neuropathic pain [Thesis]. [Porto, Portugal]: University of Porto; 2022.

  200. Massler M, Pawlak J. The affected and infected pulp. Oral Surg Oral Med Oral Pathol. 1977;43:929–47.

    Article  PubMed  CAS  Google Scholar 

  201. Doepp F, Schreiber SJ, Dreier JP, Einhäupl KM, Valdueza JM. Migraine aggravation caused by cephalic venous congestion. Headache. 2003;43:96–8.

    Article  PubMed  Google Scholar 

  202. Chou C-H, Chao A-C, Lu S-R, Hu H-H, Wang S-J. Cephalic venous congestion aggravates only migraine-type headaches. Cephalalgia Int J Headache. 2004;24:973–9.

    Article  Google Scholar 

  203. Chou C-H, Fuh J-L, Hu H-H, Wu J-C, Wang S-J. Throbbing pain is related to Queckenstedt’s test effect in migraine patients. Cephalalgia. 2009;29:373–8.

    Article  PubMed  Google Scholar 

  204. Chou C-H, Fuh J-L, Wang S-J, Hu H-H, Wu J-C, Cheng Y-T. Queckenstedt’s test headache response is associated with increased jugular venous flow volume during migraine attack. Ultrasound Med Biol. 2011;37:23–8.

    Article  PubMed  Google Scholar 

  205. Christensen CE, Younis S, Lindberg U, de Koning P, Tolnai D, Paulson OB, et al. Intradural artery dilation during experimentally induced migraine attacks. Pain. 2021;162:176–83.

    Article  PubMed  CAS  Google Scholar 

  206. Khan S, Amin FM, Christensen CE, Ghanizada H, Younis S, Olinger ACR, et al. Meningeal contribution to migraine pain: a magnetic resonance angiography study. Brain J Neurol. 2019;142:93–102.

    Article  Google Scholar 

  207. Leroux E, Rothrock J. Triptans for migraine patients with vascular risks: new insights, new options. Headache. 2019;59:1589–96.

    Article  PubMed  Google Scholar 

  208. Burstein R, Levy D, Jakubowski M. Effects of sensitization of trigeminovascular neurons to triptan therapy during migraine. Rev Neurol (Paris). 2005;161:658–60.

    Article  PubMed  CAS  Google Scholar 

  209. Kelman L. Pain characteristics of the acute migraine attack. Headache. 2006;46:942–53.

    Article  PubMed  Google Scholar 

  210. Di Antonio S, Castaldo M, Ponzano M, Bovis F, Hugo Villafañe J, Torelli P, et al. Trigeminal and cervical sensitization during the four phases of the migraine cycle in patients with episodic migraine. Headache. 2022;62:176–90.

    Article  PubMed  Google Scholar 

  211. De Simone R, Ranieri A, Montella S, Cappabianca P, Quarantelli M, Esposito F, et al. Intracranial pressure in unresponsive chronic migraine. J Neurol. 2014;261:1365–73.

    Article  PubMed  PubMed Central  Google Scholar 

  212. De Simone R, Ranieri A, Sansone M, Marano E, Russo CV, Saccà F, et al. Dural sinus collapsibility, idiopathic intracranial hypertension, and the pathogenesis of chronic migraine. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2019;40:59–70.

    Google Scholar 

  213. Onder H, Goksungur G. Increased intracranial pressure in migraine? Neuroimaging study on a cohort of migraineurs. Ann Med Res. 2020;27:1554.

    Article  Google Scholar 

  214. Barmettler G, Brawn J, Maleki N, Scrivani S, Burstein R, Becerra L, et al. A new electronic diary tool for mapping and tracking spatial and temporal head pain patterns in migraine. Cephalalgia Int J Headache. 2015;35:417–25.

    Article  Google Scholar 

  215. Assina R, Sarris CE, Mammis A. The history of craniotomy for headache treatment. Neurosurg Focus. 2014;36:E9.

    Article  PubMed  Google Scholar 

  216. Latimer K, Pendleton C, Rosenberg J, Cohen-Gadol AA, Quiñones-Hinojosa A. Dr. Harvey Cushing’s attempts to cure migraine based on theories of pathophysiology. J Neurosurg. 2011;115:924–8.

  217. Valdueza JM, Dreier JP, Woitzik J, Dohmen C, Sakowitz O, Platz J, et al. Course of preexisting migraine following spontaneous subarachnoid hemorrhage. Front Neurol. 2022;13: 880856.

    Article  PubMed  PubMed Central  Google Scholar 

  218. González-Darder JM. Cranial trepanation in primitive cultures. Neurocir Astur Spain. 2017;28:28–40.

    Article  Google Scholar 

  219. Kelman L. Migraine pain location: a tertiary care study of 1283 migraineurs. Headache. 2005;45:1038–47.

    Article  PubMed  Google Scholar 

  220. Clement P, Mutsaerts H-J, Václavů L, Ghariq E, Pizzini FB, Smits M, et al. Variability of physiological brain perfusion in healthy subjects - a systematic review of modifiers. Considerations for multi-center ASL studies. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2018;38:1418–37.

  221. Kannakorn I. Dynamic cerebral autoregulation, neurovascular coupling and cerebral haemodynamic parameters: clinical applications [Thesis]. [Leicester, UK]: University of Leicester; 2022.

  222. Förster A, Wenz H, Kerl HU, Brockmann MA, Groden C. Perfusion patterns in migraine with aura. Cephalalgia Int J Headache. 2014;34:870–6.

    Article  Google Scholar 

  223. Mahammedi A, Wang LL, Vagal AS. Imaging appearance of migraine and tension type headache. Neurol Clin. 2022;40:491–505.

    Article  PubMed  Google Scholar 

  224. Karsan N, Silva E, Goadsby PJ. Evaluating migraine with typical aura with neuroimaging. Front Hum Neurosci. 2023;17:1112790.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Pinto SN, Lerner A, Phung D, Barisano G, Chou B, Xu W, et al. Arterial spin labeling in migraine: a review of migraine categories and mimics. J Cent Nerv Syst Dis. 2023;15:117957352311600.

    Article  Google Scholar 

  226. Xu WJ, Barisano G, Phung D, Chou B, Pinto SN, Lerner A, et al. Structural MRI in migraine: a review of migraine vascular and structural changes in brain parenchyma. J Cent Nerv Syst Dis. 2023;15:11795735231167868.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Scutelnic A, Petroulia V, Schraml L, Jung S, Branca M, Beyeler M, et al. The “index vein” as a sign for migraine aura in the emergency setting. Cephalalgia Int J Headache. 2023;43:3331024221132010.

    Article  Google Scholar 

  228. Bagher P, Segal SS. Regulation of blood flow in the microcirculation: role of conducted vasodilation. Acta Physiol Oxf Engl. 2011;202:271–84.

    Article  CAS  Google Scholar 

  229. McManus IC. The distribution of skull asymmetry in man. Ann Hum Biol. 1982;9:167–70.

    Article  PubMed  CAS  Google Scholar 

  230. • Urhan N, Sağlam Y, Akkaya F, Sağlam O, Şahin H, Uraloğlu M. Long-term results of migraine surgery and the relationship between anatomical variations and pain. J Plast Reconstr Aesthetic Surg JPRAS. 2023;82:284–90. This article shows influence of facial asymmetry to occurrence of unilateral migraine headache and thus supports the anatomical etiology of this condition.

    Article  Google Scholar 

  231. Law H-Z, Amirlak B, Cheng J, Sammer DM. An association between carpal tunnel syndrome and migraine headaches—national health interview survey, 2010. Plast Reconstr Surg Glob Open. 2015;3: e333.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Gfrerer L, Lans J, Chartier C, Wenzinger E, Austen WG, Eberlin KR. Migraine headaches in patients with upper extremity compressive neuropathy. Plast Reconstr Surg. 2022;150:1333–9.

    Article  PubMed  CAS  Google Scholar 

  233. Werntz DA, Bickford RG, Bloom FE, Shannahoff-Khalsa DS. Alternating cerebral hemispheric activity and the lateralization of autonomic nervous function. Hum Neurobiol. 1983;2:39–43.

    PubMed  CAS  Google Scholar 

  234. Shannahoff-Khalsa D. Lateralized rhythms of the central and autonomic nervous systems. Int J Psychophysiol Off J Int Organ Psychophysiol. 1991;11:225–51.

    CAS  Google Scholar 

  235. Price A, Eccles R. Nasal airflow and brain activity: is there a link? J Laryngol Otol. 2016;130:794–9.

    Article  PubMed  CAS  Google Scholar 

  236. Eccles R, Lee RL. Nasal vasomotor oscillations in the cat associated with the respiratory rhythm. Acta Otolaryngol (Stockh). 1981;92:357–61.

    Article  PubMed  CAS  Google Scholar 

  237. Bamford OS, Eccles R. The central reciprocal control of nasal vasomotor oscillations. Pflugers Arch. 1982;394:139–43.

    Article  PubMed  CAS  Google Scholar 

  238. Tatar A, Altas E. Nasal cycle pattern can transform into another form over time. Electron J Gen Med. 2014;11.

  239. Kern EB. The noncycle nose. Rhinology. 1981;19:59–74.

    PubMed  CAS  Google Scholar 

  240. Susaman N, Cingi C, Mullol J. Is the nasal cycle real? How important is it? In: Cingi C, Bayar Muluk N, Scadding GK, Mladina R, editors. Chall Rhinol. Cham: Springer International Publishing; 2021. p. 1–8.

    Google Scholar 

  241. Pendolino AL, Lund VJ, Nardello E, Ottaviano G. The nasal cycle: a comprehensive review. Rhinol Online. 2018;1:67–76.

    Article  Google Scholar 

  242. Vanast WJ, Diaz-Mitoma F, Tyrrell DL. Hypothesis: chronic benign daily headache is an immune disorder with a viral trigger. Headache. 1987;27:138–42.

    Article  PubMed  CAS  Google Scholar 

  243. Baringer JR. Herpes simplex infections of the nervous system. Neurol Clin. 2008;26:657–74, viii.

  244. Theil D, Derfuss T, Paripovic I, Herberger S, Meinl E, Schueler O, et al. Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am J Pathol. 2003;163:2179–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Martin-Du Pan RC, Benoit R, Girardier L. The role of body position and gravity in the symptoms and treatment of various medical diseases. Swiss Med Wkly. 2004;134:543–51.

    PubMed  Google Scholar 

  246. Becker WJ. Cervicogenic headache: evidence that the neck is a pain generator. Headache. 2010;50:699–705.

    Article  PubMed  Google Scholar 

  247. Mungoven TJ, Henderson LA, Meylakh N. Chronic migraine pathophysiology and treatment: a review of current perspectives. Front Pain Res Lausanne Switz. 2021;2: 705276.

    Article  Google Scholar 

  248. Guyuron B, Yohannes E, Miller R, Chim H, Reed D, Chance MR. Electron microscopic and proteomic comparison of terminal branches of the trigeminal nerve in patients with and without migraine headaches. Plast Reconstr Surg. 2014;134:796e–805e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Mungoven TJ, Meylakh N, Marciszewski KK, Macefield VG, Macey PM, Henderson LA. Microstructural changes in the trigeminal nerve of patients with episodic migraine assessed using magnetic resonance imaging. J Headache Pain. 2020;21:59.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Mungoven TJ, Meylakh N, Macefield VG, Macey PM, Henderson LA. Alterations in brain structure associated with trigeminal nerve anatomy in episodic migraine. Front Pain Res Lausanne Switz. 2022;3: 951581.

    Article  Google Scholar 

  251. Malo-Urriés M, Estébanez-de-Miguel E, Bueno-Gracia E, Tricás-Moreno JM, Santos-Lasaosa S, Hidalgo-García C. Sensory function in headache: a comparative study among patients with cluster headache, migraine, tension-type headache, and asymptomatic subjects. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2020;41:2801–10.

    Google Scholar 

  252. Altay H, Celenay ST. An investigation of the relationship between cutaneous allodynia and kinesiophobia, gastrointestinal system symptom severity, physical activity and disability in individuals with migraine. Korean J Pain. 2023;36:137–46.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Hasan H, Irfan Waheed R, Bin Arif T, Saleem S, Anwar A. Gray and white matter changes in migraineurs: a review of literature. SN Compr Clin Med. 2020;2:2185–96.

    Article  Google Scholar 

  254. Kim S-K, Nikolova S, Schwedt TJ. Structural aberrations of the brain associated with migraine: a narrative review. Headache. 2021;61:1159–79.

    Article  PubMed  Google Scholar 

  255. Ashina S, Bentivegna E, Martelletti P, Eikermann-Haerter K. Structural and functional brain changes in migraine. Pain Ther. 2021;10:211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Taylor KS, Anastakis DJ, Davis KD. Cutting your nerve changes your brain. Brain J Neurol. 2009;132:3122–33.

    Article  Google Scholar 

  257. Osborne NR, Anastakis DJ, Davis KD. Peripheral nerve injuries, pain, and neuroplasticity. J Hand Ther. 2018;31:184–94.

    Article  PubMed  Google Scholar 

  258. Gambeta E, Chichorro JG, Zamponi GW. Trigeminal neuralgia: an overview from pathophysiology to pharmacological treatments. Mol Pain. 2020;16:1744806920901890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Henssen D, Dijk J, Knepflé R, Sieffers M, Winter A, Vissers K. Alterations in grey matter density and functional connectivity in trigeminal neuropathic pain and trigeminal neuralgia: a systematic review and meta-analysis. NeuroImage Clin. 2019;24: 102039.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Wang Y, Yang Q, Cao D, Seminowicz D, Remeniuk B, Gao L, et al. Correlation between nerve atrophy, brain grey matter volume and pain severity in patients with primary trigeminal neuralgia. Cephalalgia Int J Headache. 2019;39:515–25.

    Article  Google Scholar 

  261. Maeda Y, Kettner N, Sheehan J, Kim J, Cina S, Malatesta C, et al. Altered brain morphometry in carpal tunnel syndrome is associated with median nerve pathology. NeuroImage Clin. 2013;2:313–9.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Lu Y-C, Zhang H, Zheng M-X, Hua X-Y, Qiu Y-Q, Shen Y-D, et al. Local and extensive neuroplasticity in carpal tunnel syndrome: a resting-state fMRI study. Neurorehabil Neural Repair. 2017;31:898–909.

    Article  PubMed  Google Scholar 

  263. Xue X, Wu J-J, Hua X-Y, Zheng M-X, Ma J, Ma Z-Z, et al. Structural white matter alterations in carpal tunnel syndrome: a modified TBSS study. Brain Res. 2021;1767: 147558.

    Article  PubMed  CAS  Google Scholar 

  264. Geha PY, Apkarian AV. Brain imaging findings in neuropathic pain. Curr Pain Headache Rep. 2005;9:184–8.

    Article  PubMed  Google Scholar 

  265. Lu Y, Liu H, Hua X, Xu J-G, Gu Y-D, Shen Y. Attenuation of brain grey matter volume in brachial plexus injury patients. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2016;37:51–6.

    Google Scholar 

  266. Wang J-W, Huang Z-Q, Lu Y-J, Sha K, Li W-M, Zhao J-M. Cerebral gray matter volume changes in patients with neuropathic pain from total brachial plexus injury. Eur Neurol. 2023;86:45–54.

    Article  PubMed  Google Scholar 

  267. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci Off J Soc Neurosci. 2004;24:10410–5.

    Article  CAS  Google Scholar 

  268. Andreou AP, Edvinsson L. Mechanisms of migraine as a chronic evolutive condition. J Headache Pain. 2019;20:117.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Straube A, Andreou A. Primary headaches during lifespan. J Headache Pain. 2019;20:35.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Stovner LJ, Hagen K, Linde M, Steiner TJ. The global prevalence of headache: an update, with analysis of the influences of methodological factors on prevalence estimates. J Headache Pain. 2022;23:34.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Sufrinko A, McAllister-Deitrick J, Elbin RJ, Collins MW, Kontos AP. Family history of migraine associated with posttraumatic migraine symptoms following sport-related concussion. J Head Trauma Rehabil. 2018;33:7–14.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Stam AH, Haan J, van den Maagdenberg AMJM, Ferrari MD, Terwindt GM. Migraine and genetic and acquired vasculopathies. Cephalalgia Int J Headache. 2009;29:1006–17.

    Article  CAS  Google Scholar 

  273. Edvinsson JCA, Viganò A, Alekseeva A, Alieva E, Arruda R, De Luca C, et al. The fifth cranial nerve in headaches. J Headache Pain. 2020;21:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Cuadrado M-L. Epicranial headaches part 2: Nummular headache and epicrania fugax. Cephalalgia Int J Headache. 2023;43:3331024221146976.

    Article  Google Scholar 

  275. May A, Goadsby PJ. The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1999;19:115–27.

    Article  CAS  Google Scholar 

  276. Holland P, Goadsby PJ. The hypothalamic orexinergic system: pain and primary headaches. Headache. 2007;47:951–62.

    Article  PubMed  Google Scholar 

  277. Edvinsson L, Uddman R. Neurobiology in primary headaches. Brain Res Brain Res Rev. 2005;48:438–56.

    Article  PubMed  Google Scholar 

  278. Cady R, Schreiber C, Farmer K, Sheftell F. Primary headaches: a convergence hypothesis. Headache. 2002;42:204–16.

    Article  PubMed  Google Scholar 

  279. Al-Karagholi MA-M, Peng K-P, Petersen AS, De Boer I, Terwindt GM, Ashina M. Debate: Are cluster headache and migraine distinct headache disorders? J Headache Pain. 2022;23:151.

  280. Frattale I, Ruscitto C, Papetti L, Ursitti F, Sforza G, Moavero R, et al. Migraine and its equivalents: what do they share? A narrative review on common pathophysiological patterns. Life Basel Switz. 2021;11:1392.

    CAS  Google Scholar 

  281. Tfelt-Hansen PC, Tfelt-Hansen J. Nitroglycerin headache and nitroglycerin-induced primary headaches from 1846 and onwards: a historical overview and an update. Headache. 2009;49:445–56.

    Article  PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

The entire manuscript is author’s original work.

Corresponding author

Correspondence to Valdas Macionis.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The author declares competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macionis, V. Neurovascular Compression-Induced Intracranial Allodynia May Be the True Nature of Migraine Headache: an Interpretative Review. Curr Pain Headache Rep 27, 775–791 (2023). https://doi.org/10.1007/s11916-023-01174-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-023-01174-7

Keywords

Navigation