Skip to main content

Advertisement

Log in

Biologic Therapy in Chronic Pain Management: a Review of the Clinical Data and Future Investigations

  • Alternative Treatments for Pain Medicine (M Jones, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose

With the aging population, it is clear that the demand for future chronic pain treatment modalities is at an all-time high. One of the newest treatment modalities that is gaining popularity with both practitioners and patients alike is that of regenerative medicine and the use of stem cells to treat chronic painful conditions. This article aims to distill the most recent, available data from both laboratory research and clinical trials to better illuminate the potentials for these therapies in the treatment of chronic pain.

Recent Findings

There are numerous investigations underway using mesenchymal stem cells (MSCs) to treat painful, largely degenerative conditions. A large majority of these investigations focus on osteoarthritis of the knee and have demonstrated significantly improved pain scores. Some of these investigations have demonstrated significantly increased articular cartilage and meniscus growth as well as improved function. These studies have been smaller (n, 18) and need to be corroborated on a macrolevel. Platelet-rich plasma (PRP)-based therapies have been most extensively studied in the treatment of knee osteoarthritis. Multiple prospective and randomized trials and meta-analyses have afforded level I evidence in support of PRP’s safety and efficacy in chronic knee pain demonstrating both decreased pain (via VAS) and increased functional status (via WOMAC and IKDC). There have been randomized controlled trials examining PRP therapies in treatment degenerative disc disease (intradiscal treatment), facet arthropathy (intra-facet injections), and sacroiliitis (SIJ) which have all yielded similar positive results. Each RTC demonstrated decreased pain scores and increased function but lacks the scale to derive concrete guidelines. Newer investigations are underway examining modified PRP formulas with increased fibrin (PRF) or various growth factors (PRGF) and have shown positive outcomes with respect to osteoarthritic conditions in small trials. Animal trials are underway further investigating these therapies as well as specific gene modulation therapies.

Summary

This review of the most recent investigations into the application and uses of biologic stem cell–derived treatments for chronic painful conditions should act to illustrate the growing, favorable data for these types of modalities both with respect to pain control and functional improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Older people projected to outnumber children for first time in U.S. history. https://www.census.gov/newsroom/press-releases/2018/cb18-41-population-projections.html. Accessed May 16, 2019.

  2. Murphy LB, Cisternas MG, Pasta DJ, Helmick CG, Yelin EH. Medical expenditures and earnings losses among us adults with arthritis in 2013. Arthritis Care Res. 2018;70:869–76. https://doi.org/10.1002/acr.23425.

    Article  Google Scholar 

  3. Sanapati J, Manchikanti L, Atluri S, Jordan S, Albers SL, Pappolla MA, et al. Systematic review do regenerative medicine therapies provide long-term relief in chronic low back pain: a systematic review and metaanalysis. Pain Physician. 2018;21:515–40 www.painphysicianjournal.com. Accessed September 2, 2020.

    PubMed  Google Scholar 

  4. Kishk NA, Gabr H, Hamdy S, Afifi L, Abokresha N, Mahmoud H, et al. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neural Repair. 2010;24:702–8. https://doi.org/10.1177/1545968310369801.

    Article  PubMed  Google Scholar 

  5. Gupta AK, Cole J, Deutsch DP, Everts PA, Niedbalski RP, Panchaprateep R, et al. Platelet-rich plasma as a treatment for androgenetic alopecia. Dermatologic Surg. 2019;45:1262–73. https://doi.org/10.1097/DSS.0000000000001894.

    Article  CAS  Google Scholar 

  6. Wang AT, Feng Y, Jia HH, Zhao M, Yu H. Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: a concise review. World J Stem Cells. 2019;11(4):222–35. https://doi.org/10.4252/wjsc.v11.i4.222.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 2017;6(12):2173–85. https://doi.org/10.1002/sctm.17-0129.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baglio SR, Rooijers K, Koppers-Lalic D, et al. Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome. 2012;6:127. https://doi.org/10.1186/s13287-015-0116-z.

  9. Tao S-C, Yuan T, Zhang Y-L, Yin W-J, Guo S-C, Zhang C-Q. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017;7(1):180–95. https://doi.org/10.7150/thno.17133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toghraie F, Razmkhah M, Gholipour MA, et al. Scaffold-free adipose-derived stem cells (ASCs) improve experimentally induced osteoarthritis in rabbits. Arch Iran Med. 2012. https://doi.org/10.12158/AIM.0011.

  11. Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells, platelet lysate and dexamethasone. Am J Case Rep. 2008.

  12. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66. https://doi.org/10.1002/stem.1634.

    Article  CAS  PubMed  Google Scholar 

  13. Orozco L, Soler R, Morera C, Alberca M, Sánchez A, García-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation. 2011;92(7):822–8. https://doi.org/10.1097/TP.0b013e3182298a15.

    Article  PubMed  Google Scholar 

  14. Alves R, Grimalt R. A review of platelet-rich plasma: history, biology, mechanism of action, and classification. Ski Appendage Disord. 2018;4(1):18–24. https://doi.org/10.1159/000477353.

    Article  Google Scholar 

  15. Mishra A, Woodall J, Vieira A. Treatment of tendon and muscle using platelet-rich plasma. Clin Sports Med. 2009;28:113–25. https://doi.org/10.1016/j.csm.2008.08.007.

    Article  PubMed  Google Scholar 

  16. Zhu Y, Yuan M, Meng HY, Wang AY, Guo QY, Wang Y, et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthr Cartil. 2013;21:1627–37. https://doi.org/10.1016/j.joca.2013.07.017.

    Article  CAS  Google Scholar 

  17. Trams E, Kulinski K, Kozar-Kaminska K, Pomianowski SKR. The clinical use of platelet-rich plasma in knee disorders and surgery—a systematic review and meta-analysis. Life. 2020;10(94). https://doi.org/10.3390/life10060094.

  18. Pourcho AM, Smith J, Wisniewski SJ, Sellon JL. Intraarticular platelet-rich plasma injection in the treatment of knee osteoarthritis: review and recommendations. Am J Phys Med Rehabil. 2014;93:S108–21. https://doi.org/10.1097/PHM.0000000000000115.

    Article  PubMed  Google Scholar 

  19. Mautner K, Malanga GA, Smith J, Shiple B, Ibrahim V, Sampson S, et al. A call for a standard classification system for future biologic research: the rationale for new PRP nomenclature. PM R. 2015;7:S53–9. https://doi.org/10.1016/j.pmrj.2015.02.005.

    Article  PubMed  Google Scholar 

  20. Hohmann E, Tetsworth K, Glatt V. Is platelet-rich plasma effective for the treatment of knee osteoarthritis? A systematic review and meta-analysis of level 1 and 2 randomized controlled trials. Eur J Orthop Surg Traumatol. 2020;30(6):955–67. https://doi.org/10.1007/s00590-020-02623-4.

    Article  PubMed  Google Scholar 

  21. Chen P, Huang L, Ma Y, Zhang D, Zhang X, Zhou J, et al. Intra-articular platelet-rich plasma injection for knee osteoarthritis: a summary of meta-analyses. J Orthop Surg Res. 2019;14(1):385. https://doi.org/10.1186/s13018-019-1363-y.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao J, Huang H, Liang G, Zeng L, LJ YW. Effects and safety of the combination of platelet-rich plasma (PRP) and hyaluronic acid (HA) in the treatment of knee osteoarthritis: a systematic review and meta-analysis. BMC Muscoloskeletal Disord. 202(21):224–35.

  23. Tuakli-Wosornu YA, Terry A, Boachie-Adjei K, Harrison JR, Gribbin CK, LaSalle EE, et al. Lumbar intradiskal platelet-rich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. PM R. 2016;8:1–10. https://doi.org/10.1016/j.pmrj.2015.08.010.

    Article  PubMed  Google Scholar 

  24. Hirase T, Jack RA II, Sochacki KR, Harris JD, Weiner BK. Systemic review: is an intradiscal injection of platelet-rich plasma for lumbar disc degeneration effective? Cureus. 2020. https://doi.org/10.7759/cureus.8831.

  25. Singla V, Batra YK, Bharti N, Goni VG, Marwaha N. Steroid vs. platelet-rich plasma in ultrasound-guided sacroiliac joint injection for chronic low back pain. Pain Pract. 2017. https://doi.org/10.1111/papr.12526.

  26. Burnham T, Sampson J, Speckman RA, Conger A, Cushman DM, McCormick ZL. The effectiveness of platelet-rich plasma injection for the treatment of suspected sacroiliac joint complex pain; a systematic review. Pain Med. 2020;21:2518–28. https://doi.org/10.1093/pm/pnaa170.

    Article  PubMed  Google Scholar 

  27. Wu J, Zhou J, Liu C, Zhang J, Xiong W, Lv Y, et al. A prospective study comparing platelet-rich plasma and local anesthetic (LA)/corticosteroid in intra-articular injection for the treatment of lumbar facet joint syndrome. Pain Pract. 2017;17:914–24.

    Article  Google Scholar 

  28. Desai MJ, Mansfield JT, Robinson DM, Miller BCB-SJ. Regenerative medicine for axial and radicular spine-related pain: a narrative review. Pain Pract. 2020;20(4):437–53.

    Article  Google Scholar 

  29. Dulgeroglu TCSB. A review of the role of platelet rich fibrin in healing and regenerative process and its use in orthopedic surgery. Med J SDU. 2019;26(3):354–261. https://doi.org/10.17343/sdutfd.451366.

    Article  Google Scholar 

  30. Mohi Eldin M, Sorour OO, Hassan ASA, Baraka M, Ahmed MF. Percutaneous injection of autologous platelet-rich fibrin versus platelet-rich plasma in sacroiliac joint dysfunction: an applied comparative study. J Back Musculoskelet Rehabil. 2019;32:511–8. https://doi.org/10.3233/BMR-181366.

    Article  PubMed  Google Scholar 

  31. Anitua E, Tejero R, Zalduendo MM, Orive G. Plasma rich in growth factors promotes bone tissue regeneration by stimulating proliferation, migration, and autocrine secretion in primary human osteoblasts. J Periodontol. 2013;84:1180–90. https://doi.org/10.1902/jop.2012.120292.

    Article  CAS  PubMed  Google Scholar 

  32. Okada H, Takahashi K, Ogura N, Tomoki R, Ito K, Kondoh T. Plasma rich in growth factors stimulates proliferation, migration, and gene expression associated with bone formation in human dental follicle cells. J Dent Sci. 2016;11:245–52. https://doi.org/10.1016/j.jds.2015.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tang XB, Dong PL, Wang J, Zhou HY, Zhang HX, Wang SZ. Effect of autologous platelet-rich plasma on the chondrogenic differentiation of rabbit adipose-derived stem cells in vitro. Exp Ther Med. 2015;10:477–83. https://doi.org/10.3892/etm.2015.2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kirchner F, Anitua E. Intradiscal and intra articular facet infiltrations with plasma rich in growth factors reduce pain in patients with chronic low back pain. J Craniovertebr Junction Spine. 2016;7:251–6. https://doi.org/10.4103/0974-8237.193260.

    Article  Google Scholar 

  35. Becker C, Heidersdorf S, Drewlo S, De Rodriguez SZ, Krämer J, Willburger RE. Efficacy of epidural perineural injections with autologous conditioned serum for lumbar radicular compression: an investigator-initiated, prospective, double-blind, reference-controlled study. Spine (Phila Pa 1976). 2007. https://doi.org/10.1097/BRS.0b013e3181076514.

  36. Ravi Kumar HS, Goni VG, Batra YK. Autologous conditioned serum as a novel alternative option in the treatment of unilateral lumbar radiculopathy: a prospective study. Asian Spine J. 2015;9:916–22. https://doi.org/10.4184/asj.2015.9.6.916.

    Article  Google Scholar 

  37. Sun Y, Zhang D, Li H, Long R, Sun Q. Intrathecal administration of human bone marrow mesenchymal stem cells genetically modified with human proenkephalin gene decrease nociceptive pain in neuropathic rats. Mol Pain. 2017;13:174480691770144. https://doi.org/10.1177/1744806917701445.

    Article  CAS  Google Scholar 

  38. Im HJ, Sharrocks AD, Lin X, et al. Basic fibroblast growth factor induces matrix metalloproteinase-13 via eRK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes. Open Access Rheumatol Res Rev. 2009.

  39. Imoto S, Ohbayashi N, Ikeda O, Kamitani S, Muromoto R, Sekine Y, et al. Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-β signaling. Biochem Biophys Res Commun. 2008;370:359–65. https://doi.org/10.1016/j.bbrc.2008.03.116.

    Article  CAS  PubMed  Google Scholar 

  40. Dustrude ET, Moutal A, Yang X, Wang Y, Khanna M, Khanna R. Hierarchical CRMP2 posttranslational modifications control NaV1.7 function. Proc Natl Acad Sci U S A. 2016. https://doi.org/10.1073/pnas.1610531113.

  41. Jiang J, Hu Y, Zhang B, Shi Y, Zhang J, Wu X, et al. MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury. Mol Pain. 2017;13:174480691771161. https://doi.org/10.1177/1744806917711612.

    Article  CAS  Google Scholar 

  42. Sun LH, Yan ML, Hu XL, et al. MicroRNA-9 induces defective trafficking of Nav1.1 and Nav1.2 by targeting Navβ2 protein coding region in rat with chronic brain hypoperfusion. Mol Neurodegener. 2015. https://doi.org/10.1186/s13024-015-0032-9.

  43. Qu J, Lu D, Guo H, Miao W, Wu G, Zhou M. MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway. Mol Cell Biochem. 2016;411:23–33. https://doi.org/10.1007/s11010-015-2565-1.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Whitney Motejunas.

Ethics declarations

Conflict of Interest

Dr. Mark Motejunas, Dr. Devin Reed, Dr. Cleao Carter, Dr Ken Ehrhardt, and Dr. Lauren Bonneval have no conflict of interests to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Alternative Treatments for Pain Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motejunas, M.W., Bonneval, L., Carter, C. et al. Biologic Therapy in Chronic Pain Management: a Review of the Clinical Data and Future Investigations. Curr Pain Headache Rep 25, 30 (2021). https://doi.org/10.1007/s11916-021-00947-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-021-00947-2

Keywords

Navigation