Skip to main content

Advertisement

Log in

MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MiR-9 has been found to be involved in the repair of spinal cord injury and regulates the proliferation and differentiation of mesenchymal stem cells. However, the role of miR-9 in repair of bone defects has not been well studied. The current study was designed to investigate its role and potential underlying mechanism in regulating osteoblast differentiation and angiogenesis. After treating the murine pre-osteoblast cell line MC3T3-E1 with BMP2, miR-9 expression was obviously down-regulated. Following transfection with miR-9 mimics, its overexpression enhanced the differentiation of MC3T3-E1 cells into osteoblasts as evidence that miR-9 up-regulated the mRNA levels of osteoblast differentiation-related protein, as well as increased differentiation and mineralization of osteoblasts. Further functional analysis has shown that miR-9 overexpression effectively increased human umbilical vein endothelial cell proliferation. Moreover, miR-9 up-regulation promoted cell migration, VEGF, and VE-cadherin concentrations, as well as tube formation in vitro. The mechanistic assay demonstrated that overexpression of miR-9-induced activation of the AMPK signaling pathway. Taken together, our findings suggested that miR-9 overexpression promoted osteoblast differentiation and angiogenesis via the AMPK signaling pathway, representing a novel and potential therapeutic target for the treatment of bone injury-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BMP2:

Bone morphogenetic protein 2

HUVECs:

Human umbilical vein endothelial cells

VEGF:

Vascular endothelial growth factor

VE-cadherin:

Vascular endothelial cadherin

AMPK:

Adenosine 5′-monophosphate (AMP)-activated protein kinase

iPS:

Induced pluripotent stem cells

MSC:

Mesenchymal stem cell

aMEM:

a-Minimal essential medium

FBS:

Fetal bovine serum

ALP:

Alkaline phosphatase

ARS:

Alizarin red staining

OC:

Osteocalcin

Runx2:

Runt-related transcription factor 2

OSX:

Osterix

p21:

Cyclin-dependent kinase inhibitor 1

References

  1. Dong S, Yang B, Guo H, Kang F (2012) MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun 418:587–591

    Article  CAS  PubMed  Google Scholar 

  2. Long F, Ornitz DM (2013) Development of the endochondral skeleton. CSH Perspect Biol 5:a008334

    Google Scholar 

  3. Hu N, Jiang D, Huang E, Liu X, Li R, Liang X, Kim SH, Chen X, Gao J-L, Zhang H (2013) BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J Cell Sci 126:532–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012) miR-34 s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197:509–521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Portal-Nunez S, Lozano D, Esbrit P (2012) Role of angiogenesis on bone formation. Histol Histopathol 27:559–566

    CAS  PubMed  Google Scholar 

  6. Kular J, Tickner J, Chim SM, Xu J (2012) An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 45:863–873

    Article  CAS  PubMed  Google Scholar 

  7. Dirckx N, Hul M, Maes C (2013) Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C 99:170–191

    Article  CAS  Google Scholar 

  8. Chen G, Deng C, Li Y-P (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Taipaleenmäki H, Hokland LB, Chen L, Kauppinen S, Kassem M (2012) Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 166:359–371

    Article  PubMed  Google Scholar 

  10. Izu Y, Sun M, Zwolanek D, Veit G, Williams V, Cha B, Jepsen KJ, Koch M, Birk DE (2011) Type XII collagen regulates osteoblast polarity and communication during bone formation. J Cell Biol 193:1115–1130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Thompson WR, Rubin CT, Rubin J (2012) Mechanical regulation of signaling pathways in bone. Gene 503:179–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Inoki K, Kim J, Guan K-L (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol 52:381–400

    Article  CAS  Google Scholar 

  13. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward Iii JL, Goodyear LJ, Tong Q (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging (Albany NY) 1:771

    CAS  Google Scholar 

  14. Hardie DG, Sakamoto K (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21:48–60

    Article  CAS  PubMed  Google Scholar 

  15. Chang JT, Wherry EJ, Goldrath AW (2014) Molecular regulation of effector and memory T cell differentiation. Nat Immunol 15:1104–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Thompson AM, Martin KA, Rzucidlo EM (2014) Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK. PLoS One 9:e85495

    Article  PubMed Central  PubMed  Google Scholar 

  17. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    Article  CAS  PubMed  Google Scholar 

  18. Poltronieri P, D’Urso PI, Mezzolla V, D’Urso OF (2013) Potential of anti-cancer therapy based on anti-miR-155 oligonucleotides in glioma and brain tumours. Chem Biol Drug Des 81:79–84

    Article  CAS  PubMed  Google Scholar 

  19. Boese AS, Majer A, Saba R, Booth SA (2013) Small RNA drugs for prion disease: a new frontier. Expert Opin Drug Discov 8:1265–1284

    Article  CAS  PubMed  Google Scholar 

  20. Okamoto H, Matsumi Y, Hoshikawa Y, Takubo K, Ryoke K, Shiota G (2012) Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells. PLoS One 7:e43800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Suomi S, Taipaleenmaki H, Seppanen A, Ripatti T, Vaananen K, Hentunen T, Saamanen AM, Laitala-Leinonen T (2008) MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regul Syst Bio 2:177–191

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39:608–616

    Article  CAS  PubMed  Google Scholar 

  23. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613–626

    Article  CAS  PubMed  Google Scholar 

  24. Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33:1126–1133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Genda Y, Arai M, Ishikawa M, Tanaka S, Okabe T, Sakamoto A (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: a TaqMan® Low Density Array study. Int J Mol Med 31:129–137

    CAS  PubMed  Google Scholar 

  26. Wu D, Raafat A, Pak E, Clemens S, Murashov AK (2012) Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol 233:555–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Han R, Kan Q, Sun Y, Wang S, Zhang G, Peng T, Jia Y (2012) MiR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neurosci Lett 515:147–152

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Xie H, Liu W, Hu R, Huang B, Tan Y-F, Liao E-Y, Xu K, Sheng Z-F, Zhou H-D (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Investig 119:3666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Andris F, Leo O (2015) AMPK in lymphocyte metabolism and function. Int Rev Immunol 34:67–81

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Peng T, Li L, Wang X, Duan R, Gao H, Guan W, Lu J, Teng J, Jia Y (2014) MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci 36:19–24

    Article  CAS  PubMed  Google Scholar 

  31. Brandenburger T, Castoldi M, Brendel M, Grievink H, Schlosser L, Werdehausen R, Bauer I, Hermanns H (2012) Expression of spinal cord microRNAs in a rat model of chronic neuropathic pain. Neurosci Lett 506:281–286

    Article  CAS  PubMed  Google Scholar 

  32. Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, Oeh J, Modrusan Z, Bais C, Sampath D, Ferrara N (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 31:3513–3523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Chevallier N, Anagnostou F, Zilber S, Bodivit G, Maurin S, Barrault A, Bierling P, Hernigou P, Layrolle P, Rouard H (2010) Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials 31:270–278

    Article  CAS  PubMed  Google Scholar 

  34. Singh A, Ali S, Mahdi AA, Srivastava RN (2012) MicroRNAs and their role in bone remodeling and pathogenesis. Br J Med Res 2:727–749

    Article  Google Scholar 

  35. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    Article  CAS  PubMed  Google Scholar 

  36. Kunimasa K, Ahn M-R, Kobayashi T, Eguchi R, Kumazawa S, Fujimori Y, Nakano T, Nakayama T, Kaji K and Ohta T (2011) Brazilian propolis suppresses angiogenesis by inducing apoptosis in tube-forming endothelial cells through inactivation of survival signal ERK1/2. Evid Based Complement Altern Med 2011. doi:10.1093/ecam/nep024

  37. Zhao X, Zmijewski JW, Lorne E, Liu G, Park Y-J, Tsuruta Y, Abraham E (2008) Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol-Lung C 295:L497–L504

    Article  CAS  Google Scholar 

  38. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419

    Article  CAS  PubMed  Google Scholar 

  39. Nagata D, Mogi M, Walsh K (2003) AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem 278:31000–31006

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jining Qu or Hua Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Jining Qu and Daigang Lu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Lu, D., Guo, H. et al. MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway. Mol Cell Biochem 411, 23–33 (2016). https://doi.org/10.1007/s11010-015-2565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2565-1

Keywords

Navigation