Skip to main content
Log in

Impact of Bone Fracture on Muscle Strength and Physical Performance—Narrative Review

  • Muscle and Bone (A Bonetto and M Brotto, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Low muscle strength and poor physical performance are associated with high risk of fracture. Many studies assessed clinical and functional outcomes of fractures. Fewer studies analyzed the impact of fractures on muscle strength and physical performance.

Recent Findings

Vertebral fractures (especially multiple and severe ones) are associated with back pain, back-related disability, lower grip strength, lower strength of lower limbs, lower gait speed, and poor balance. Patients with hip fracture have slower gait and lower quadriceps strength. Non-vertebral fractures were associated with lower strength of the muscles adjacent to the fracture site (e.g., grip strength in the case of distal radius fracture, knee extensors in the case of patellar fracture) and poor physical function dependent on the muscles adjacent to the fracture site (e.g., limited range of motion of the shoulder in the case of humerus fracture, gait disturbances in the case of the ankle fracture). Individuals with a fracture experience a substantial deterioration of muscle strength and physical performance which exceeds that related to aging and is focused on the period close to the fracture occurrence. After fracture, muscle strength increased and physical performance improved. The rate of normalization depended partly on the therapeutic approach and on the rehabilitation program. A subgroup of patients, mainly the elderly, never returns to the pre-fracture level of physical performance.

Summary

The permanent decline of physical function after fracture may be related to the limitation of movements due to pain, low physical activity, poor health before the fracture, and reduced efficacy of retraining after immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Trajanoska K, Rivadeneira F, Kiel DP, Karasik D. Genetics of bone and muscle interactions in humans. Curr Osteoporos Rep. 2019;17:86–95. https://doi.org/10.1007/s11914-019-00505-1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaji H. Effects of myokines on bone. Bonekey Rep. 2016;5:826. https://doi.org/10.1038/bonekey.2016.48.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Visweswaran M, Pohl S, Arfuso F, Newsholme P, Dilley R, Pervaiz S, et al. Multi-lineage differentiation of mesenchymal stem cells - to Wnt, or not Wnt. Int J Biochem Cell Biol. 2015;68:139–47. https://doi.org/10.1016/j.biocel.2015.09.008.

    Article  CAS  PubMed  Google Scholar 

  4. Szulc P, Beck TJ, Marchand F, Delmas PD. Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men--the MINOS study. J Bone Miner Res. 2005;20:721–9.

    PubMed  Google Scholar 

  5. Szulc P, Blaizot S, Boutroy S, Vilayphiou N, Boonen S, Chapurlat R. Impaired bone microarchitecture at the distal radius in older men with low muscle mass and grip strength: the STRAMBO study. J Bone Miner Res. 2013;28:169–78. https://doi.org/10.1002/jbmr.1726.

    Article  PubMed  Google Scholar 

  6. Scott D, Shore-Lorenti C, McMillan L, Mesinovic J, Clark RA, Hayes A, et al. Associations of components of sarcopenic obesity with bone health and balance in older adults. Arch Gerontol Geriatr. 2018;75:125–31. https://doi.org/10.1016/j.archger.2017.12.006.

    Article  PubMed  Google Scholar 

  7. Blaizot S, Boutroy S, Vilayphiou N, Boonen S, Chapurlat R, Szulc P. Poor bone microarchitecture in older men with impaired physical performance--the STRAMBO study. Osteoporos Int. 2012;23:2785–96.

    CAS  PubMed  Google Scholar 

  8. Verschueren S, Gielen E, O'Neill TW, Pye SR, Adams JE, Ward KA, et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int. 2013;24:87–98. https://doi.org/10.1007/s00198-012-2057-z.

    Article  CAS  Google Scholar 

  9. Qi H, Sheng Y, Chen S, Wang S, Zhang A, Cai J, et al. Bone mineral density and trabecular bone score in Chinese subjects with sarcopenia. Aging Clin Exp Res. 2019;31:1549–56. https://doi.org/10.1007/s40520-019-01266-8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Locquet M, Beaudart C, Reginster JY, Bruyère O. Association between the decline in muscle health and the decline in bone health in older individuals from the SarcoPhAge cohort. Calcif Tissue Int. 2019;104:273–84. https://doi.org/10.1007/s00223-018-0503-4.

    Article  CAS  PubMed  Google Scholar 

  11. Wagner P, Chapurlat R, Ecochard R, Szulc P. Low muscle strength and mass is associated with the accelerated decline of bone microarchitecture at the distal radius in older men: the prospective STRAMBO study. J Bone Miner Res. 2018;33:1630–40. https://doi.org/10.1002/jbmr.3456.

    Article  PubMed  Google Scholar 

  12. Cawthon PM, Fullman RL, Marshall L, Mackey DC, Fink HA, Cauley JA, et al. Physical performance and risk of hip fractures in older men. J Bone Miner Res. 2008;23:1037–44. https://doi.org/10.1359/jbmr.080227.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res. 2010;25:513–9. https://doi.org/10.1359/jbmr.090807.

    Article  PubMed  Google Scholar 

  14. Yu R, Leung J, Woo J. Incremental predictive value of sarcopenia for incident fracture in an elderly Chinese cohort: results from the osteoporotic fractures in men (MrOs) study. J Am Med Dir Assoc. 2014;15:551–8. https://doi.org/10.1016/j.jamda.2014.02.005.

    Article  PubMed  Google Scholar 

  15. Søgaard AJ, Magnus JH, Bjørnerem Å, Holvik K, Ranhoff AH, Emaus N, et al. Grip strength in men and women aged 50-79 years is associated with non-vertebral osteoporotic fracture during 15 years follow-up: the Tromso study 1994-1995. Osteoporos Int. 2020;31:131–40. https://doi.org/10.1007/s00198-019-05191-4.

    Article  CAS  PubMed  Google Scholar 

  16. Scott D, Johansson J, McMillan LB, Ebeling PR, Nordstrom A, Nordstrom P. Mid-calf skeletal muscle density and its associations with physical activity, bone health and incident 12-month falls in older adults: the Healthy Ageing Initiative. Bone. 2019;120:446–51. https://doi.org/10.1016/j.bone.2018.12.004.

    Article  PubMed  Google Scholar 

  17. Oleksik A, Lips P, Dawson A, Minshall ME, Shen W, Cooper C, et al. Health-related quality of life in postmenopausal women with low BMD with or without prevalent vertebral fractures. J Bone Miner Res. 2000;15:1384–92.

    CAS  PubMed  Google Scholar 

  18. Scane AC, Francis RM, Sutcliffe AM, Francis MJ, Rawlings DJ, Chapple CL. Case-control study of the pathogenesis and sequelae of symptomatic vertebral fractures in men. Osteoporos Int. 1999;9:91–7.

    CAS  PubMed  Google Scholar 

  19. Ismail AA, Cooper C, Felsenberg D, Varlow J, Kanis JA, Silman AJ, et al. Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos Int. 1999;9:206–13.

    CAS  PubMed  Google Scholar 

  20. Lyles KW, Gold DT, Shipp KM, Pieper CF, Martinez S, Mulhausen PL. Association of osteoporotic vertebral compression fractures with impaired functional status. Am J Med. 1993;94:595–601.

    CAS  PubMed  Google Scholar 

  21. Hallberg I, Bachrach-Lindström M, Hammerby S, Toss G, Ek AC. Health-related quality of life after vertebral or hip fracture: a seven-year follow-up study. BMC Musculoskelet Disord. 2009;10:135. https://doi.org/10.1186/1471-2474-10-135.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Silverman SL, Minshall ME, Shen W, Harper KD, Xie S. The relationship of health-related quality of life to prevalent and incident vertebral fractures in postmenopausal women with osteoporosis: results from the multiple outcomes of raloxifene evaluation study. Arthritis Rheum. 2001;44:2611–9.

    CAS  PubMed  Google Scholar 

  23. Huang C, Ross PD, Wasnich RD. Vertebral fractures and other predictors of back pain among older women. J Bone Miner Res. 1996;11:1026–32.

    CAS  PubMed  Google Scholar 

  24. Schlaich C, Minne HW, Bruckner T, Wagner G, Gebest HJ, Grunze M, et al. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int. 1998;8:261–7.

    CAS  PubMed  Google Scholar 

  25. Suzuki N, Ogikubo O, Hansson T. The prognosis for pain, disability, activities of daily living and quality of life after an acute osteoporotic vertebral body fracture: its relation to fracture level, type of fracture and grade of fracture deformation. Eur Spine J. 2009;18:77–88. https://doi.org/10.1007/s00586-008-0847-y.

    Article  PubMed  Google Scholar 

  26. Johansson L, Sundh D, Nilsson M, Mellström D, Lorentzon M. Vertebral fractures and their association with health-related quality of life, back pain and physical function in older women. Osteoporos Int. 2018;29:89–99. https://doi.org/10.1007/s00198-017-4296-5.

    Article  PubMed  Google Scholar 

  27. Tosteson AN, Gabriel SE, Grove MR, Moncur MM, Kneeland TS, Melton LJ 3rd. Impact of hip and vertebral fractures on quality-adjusted life years. Osteoporos Int. 2001;12:1042–9.

    CAS  PubMed  Google Scholar 

  28. Burger H, Van Daele PL, Grashuis K, Hofman A, Grobbee DE, Schütte HE, et al. Vertebral deformities and functional impairment in men and women. J Bone Miner Res. 1997;12:152–7.

    CAS  PubMed  Google Scholar 

  29. Pasco JA, Sanders KM, Hoekstra FM, Henry MJ, Nicholson GC, Kotowicz MA. The human cost of fracture. Osteoporos Int. 2005;16:2046–52.

    PubMed  Google Scholar 

  30. Leidig-Bruckner G, Minne HW, Schlaich C, Wagner G, Scheidt-Nave C, Bruckner T, et al. Clinical grading of spinal osteoporosis: quality of life components and spinal deformity in women with chronic low back pain and women with vertebral osteoporosis. J Bone Miner Res. 1997;12:663–75.

    CAS  PubMed  Google Scholar 

  31. Hall SE, Criddle RA, Comito TL, Prince RL. A case-control study of quality of life and functional impairment in women with long-standing vertebral osteoporotic fracture. Osteoporos Int. 1999;9:508–15.

    CAS  PubMed  Google Scholar 

  32. Pasco JA, Henry MJ, Korn S, Nicholson GC, Kotowicz MA. Morphometric vertebral fractures of the lower thoracic and lumbar spine, physical function and quality of life in men. Osteoporos Int. 2009;20:787–92. https://doi.org/10.1007/s00198-008-0744-6.

    Article  CAS  PubMed  Google Scholar 

  33. Macdonald JH, Evans SF, Davies HL, Wilson S, Davie MW, Sharp CA. Matched-cohort study of body composition, physical function, and quality of life in men with idiopathic vertebral fracture. Arthritis Care Res. 2012;64:92–100. https://doi.org/10.1002/acr.20580.

    Article  Google Scholar 

  34. •• Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, et al. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 1998;128:793–800 This study shows the impact of the ascertained incident vertebral fracture on physical function in a prospective cohort study, thus, it compares the effect of vertebral fracture with that of aging itself.

    CAS  PubMed  Google Scholar 

  35. Fink HA, Litwack-Harrison S, Ensrud KE, Shen J, Schousboe JT, Cawthon PM, et al. Association of incident, clinically undiagnosed radiographic vertebral fractures with follow-up back pain symptoms in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2017;32:2263–8. https://doi.org/10.1002/jbmr.3215.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Szulc P, Feyt C, Chapurlat R. High risk of fall, poor physical function, and low grip strength in men with fracture-the STRAMBO study. J Cachexia Sarcopenia Muscle. 2016;7:299–311. https://doi.org/10.1002/jcsm.12066Lower grip strength and higher risk of poor physical function and of multiple falls in older men with prevalent fragility fractures.

    Article  PubMed  Google Scholar 

  37. Johansson L, Svensson HK, Karlsson J, Olsson LE, Mellström D, Lorentzon M, et al. Decreased physical health-related quality of life-a persisting state for older women with clinical vertebral fracture. Osteoporos Int. 2019;30:1961–71. https://doi.org/10.1007/s00198-019-05044-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong N, Kim CO, Youm Y, Choi JY, Kim HC, Rhee Y. Dysmobility syndrome is associated with prevalent morphometric vertebral fracture in older adults: the Korean Urban-Rural Elderly (KURE) study. Arch Osteoporos. 2018;13:86. https://doi.org/10.1007/s11657-018-0500-2.

    Article  PubMed  Google Scholar 

  39. Siggeirsdottir K, Aspelund T, Jonsson BY, Mogensen B, Launer LJ, Harris TB, et al. Effect of vertebral fractures on function, quality of life and hospitalisation the AGES-Reykjavik study. Age Ageing. 2012;41:351–7. https://doi.org/10.1093/ageing/afs003.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eguchi Y, Toyoguchi T, Orita S, Shimazu K, Inage K, Fujimoto K, et al. Reduced leg muscle mass and lower grip strength in women are associated with osteoporotic vertebral compression fractures. Arch Osteoporos. 2019;14:112. https://doi.org/10.1007/s11657-019-0668-0.

    Article  PubMed  Google Scholar 

  41. • Cawthon PM, Blackwell TL, Marshall LM, Fink HA, Kado DM, Ensrud KE, et al. Physical performance and radiographic and clinical vertebral fractures in older men. J Bone Miner Res. 2014;29:2101–8. https://doi.org/10.1002/jbmr.2239Interesting paper illustrating challenges in the study of the association of vertebral fractures with muscle mass and physical performance.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dixon WG, Lunt M, Pye SR, Reeve J, Felsenberg D, Silman AJ, et al. Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology (Oxford). 2005;44:642–6.

    CAS  Google Scholar 

  43. Arima K, Abe Y, Nishimura T, Okabe T, Tomita Y, Mizukami S, et al. Association of vertebral compression fractures with physical performance measures among community-dwelling Japanese women aged 40 years and older. BMC Musculoskelet Disord. 2017;18:176. https://doi.org/10.1186/s12891-017-1531-3.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Katzman WB, Vittinghoff E, Kado DM. Age-related hyperkyphosis, independent of spinal osteoporosis, is associated with impaired mobility in older community-dwelling women. Osteoporos Int. 2011;22:85–90. https://doi.org/10.1007/s00198-010-1265-7.

    Article  CAS  PubMed  Google Scholar 

  45. Ziebart C, Gibbs JC, McArthur C, Papaioannou A, Mittmann N, Laprade J, et al. Are osteoporotic vertebral fractures or forward head posture associated with performance-based measures of balance and mobility? Arch Osteoporos. 2019;14:67. https://doi.org/10.1007/s11657-019-0626-x.

    Article  PubMed  Google Scholar 

  46. Jacobs E, McCrum C, Senden R, van Rhijn LW, Meijer K, Willems PC. Gait in patients with symptomatic osteoporotic vertebral compression fractures over 6 months of recovery. Aging Clin Exp Res. 2020;32:239–46. https://doi.org/10.1007/s40520-019-01203-9.

    Article  PubMed  Google Scholar 

  47. Tran T, Bliuc D, Hansen L, Abrahamsen B, van den Bergh J, Eisman JA, et al. Persistence of excess mortality following individual nonhip fractures: a relative survival analysis. J Clin Endocrinol Metab. 2018;103:3205–14. https://doi.org/10.1210/jc.2017-02656.

    Article  PubMed  Google Scholar 

  48. Osnes EK, Lofthus CM, Meyer HE, Falch JA, Nordsletten L, Cappelen I, et al. Consequences of hip fracture on activities of daily life and residential needs. Osteoporos Int. 2004;15:567–74.

    CAS  PubMed  Google Scholar 

  49. Vochteloo AJ, Moerman S, Tuinebreijer WE, Maier AB, de Vries MR, Bloem RM, et al. More than half of hip fracture patients do not regain mobility in the first postoperative year. Geriatr Gerontol Int. 2013;13:334–41. https://doi.org/10.1111/j.1447-0594.2012.00904.x.

    Article  PubMed  Google Scholar 

  50. Amarilla-Donoso FJ, López-Espuela F, Roncero-Martín R, Leal-Hernandez O, Puerto-Parejo LM, Aliaga-Vera I, et al. Quality of life in elderly people after a hip fracture: a prospective study. Health Qual Life Outcomes. 2020;18:71. https://doi.org/10.1186/s12955-020-01314-2.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ehlers MM, Nielsen CV, Bjerrum MB. Experiences of older adults after hip fracture: an integrative review. Rehabil Nurs. 2018;43:255–66. https://doi.org/10.1097/rnj.00000000000.00096.

    Article  PubMed  Google Scholar 

  52. Madsen OR, Lauridsen UB, Sørensen OH. Quadriceps strength in women with a previous hip fracture: relationships to physical ability and bone mass. Scand J Rehabil Med. 2000;32:37–40.

    CAS  PubMed  Google Scholar 

  53. Young Y, Fried LP, Kuo YH. Hip fractures among elderly women: longitudinal comparison of physiological function changes and health care utilization. J Am Med Dir Assoc. 2010;11:100–5. https://doi.org/10.1016/j.jamda.2009.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stasi S, Papathanasiou G, Chronopoulos E, Galanos A, Papaioannou NA, Triantafyllopoulos IK. Association between abductor muscle strength and functional outcomes in hip-fractured patients: a cross-sectional study. J Musculoskelet Neuronal Interact. 2018;18:530–42.

    PubMed  PubMed Central  Google Scholar 

  55. Jarnlo GB, Thorngren KG. Standing balance in hip fracture patients. 20 middle-aged patients compared with 20 healthy subjects. Acta Orthop Scand. 1991;62:427–34.

    CAS  PubMed  Google Scholar 

  56. Fredman L, Magaziner J, Hawkes W, Hebel JR, Fried LP, Kasper J, et al. Female hip fracture patients had poorer performance-based functioning than community-dwelling peers over 2-year follow-up period. J Clin Epidemiol. 2005;58:1289–98.

    PubMed  Google Scholar 

  57. Lloyd BD, Williamson DA, Singh NA, Hansen RD, Diamond TH, Finnegan TP, et al. Recurrent and injurious falls in the year following hip fracture: a prospective study of incidence and risk factors from the sarcopenia and hip fracture study. J Gerontol A Biol Sci Med Sci. 2009;64:599–609. https://doi.org/10.1093/gerona/glp003.

    Article  PubMed  Google Scholar 

  58. Lee SY, Yoon BH, Beom J, Ha YC, Lim JY. Effect of lower-limb progressive resistance exercise after hip fracture surgery: a systematic review and meta-analysis of randomized controlled studies. J Am Med Dir Assoc. 2017;18:1096.e19–26. https://doi.org/10.1016/j.jamda.2017.08.021.

    Article  Google Scholar 

  59. Fischer K, Trombik M, Freystätter G, Egli A, Theiler R, Bischoff-Ferrari HA. Timeline of functional recovery after hip fracture in seniors aged 65 and older: a prospective observational analysis. Osteoporos Int. 2019;30:1371–81. https://doi.org/10.1007/s00198-019-04944-5.

    Article  CAS  PubMed  Google Scholar 

  60. Zielinski SM, Keijsers NL, Praet SF, Heetveld MJ, Bhandari M, Wilssens JP, et al. Functional outcome after successful internal fixation versus salvage arthroplasty of patients with a femoral neck fracture. J Orthop Trauma. 2014;28:e273–80. https://doi.org/10.1097/BOT.0000000000000123.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Prestmo A, Hagen G, Sletvold O, Helbostad JL, Thingstad P, Taraldsen K, et al. Comprehensive geriatric care for patients with hip fractures: a prospective, randomised, controlled trial. Lancet. 2015;385:1623–33. https://doi.org/10.1016/S0140-6736(14)62409-0.

    Article  PubMed  Google Scholar 

  62. Salpakoski A, Kallinen M, Kiviranta I, Alen M, Portegijs E, Jämsen E, et al. Type of surgery is associated with pain and walking difficulties among older people with previous hip fracture. Geriatr Gerontol Int. 2016;16:754–61. https://doi.org/10.1111/ggi.12552.

    Article  PubMed  Google Scholar 

  63. Ren H, Huang Q, He J, Wang Y, Wu L, Yu B, et al. Does isolated greater trochanter implication affect hip abducent strength and functions in intertrochanteric fracture? BMC Musculoskelet Disord. 2019;20:79. https://doi.org/10.1186/s12891-019-2457-8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Aprato A, Lo Baido R, Crosio A, Matteotti R, Grosso E, Massè A. Does lesser trochanter implication affect hip flexion strength in proximal femur fracture? Eur J Trauma Emerg Surg. 2015;41:523–9. https://doi.org/10.1007/s00068-014-0476-6.

    Article  CAS  PubMed  Google Scholar 

  65. Chirpaz-Cerbat JM, Ruatti S, Houillon C, Ionescu S. Dorsally displaced distal radius fractures treated by fixed-angle volar plating: grip and pronosupination strength recovery. A prospective study. Orthopaed Traumatol Surg Res. 2011;97:465–70. https://doi.org/10.1016/j.otsr.2011.01.016.

    Article  Google Scholar 

  66. Tsitsilonis S, Machó D, Manegold S, Krapohl BD, Wichlas F. Fracture severity of distal radius fractures treated with locking plating correlates with limitations in ulnar abduction and inferior health-related quality of life. GMS Interdiscip Plast Reconstr Surg DGPW. 2016;5:Doc20. https://doi.org/10.3205/iprs000099.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Swart E, Nellans K, Rosenwasser M. The effects of pain, supination, and grip strength on patient-rated disability after operatively treated distal radius fractures. J Hand Surg [Am]. 2012;37:957–62. https://doi.org/10.1016/j.jhsa.2012.01.028.

    Article  Google Scholar 

  68. • Quadlbauer S, Pezzei C, Jurkowitsch J, Kolmayr B, Keuchel T, Simon D, et al. Early rehabilitation of distal radius fractures stabilized by volar locking plate: a prospective randomized pilot study. J Wrist Surg. 2017;6:102–12. https://doi.org/10.1055/s-0036-1587317Impact of early rehabilitation on the recovery of grip strength, of the range of motion and of the function of the wrist after distal radius fracture.

    Article  PubMed  Google Scholar 

  69. Ydreborg K, Engstrand C, Steinvall I, Larsson EL. Hand function, experienced pain, and disability after distal radius fracture. Am J Occup Ther. 2015;69:6901290030. https://doi.org/10.5014/ajot.2015.013102.

    Article  PubMed  Google Scholar 

  70. Tremayne A, Taylor N, McBurney H, Baskus K. Correlation of impairment and activity limitation after wrist fracture. Physiother Res Int. 2002;7:90–9.

    PubMed  Google Scholar 

  71. MacDermid JC, Richards RS, Roth JH. Distal radius fracture: a prospective outcome study of 275 patients. J Hand Ther. 2001;14:154–69.

    CAS  PubMed  Google Scholar 

  72. Ploegmakers J, The B, Wang A, Brutty M, Ackland T. Supination and pronation strength deficits persist at 2-4 years after treatment of distal radius fractures. Hand Surg. 2015;20:430–4. https://doi.org/10.1142/S0218810415500355.

    Article  PubMed  Google Scholar 

  73. Brogren E, Hofer M, Petranek M, Wagner P, Dahlin LB, Atroshi I. Relationship between distal radius fracture malunion and arm-related disability: a prospective population-based cohort study with 1-year follow-up. BMC Musculoskelet Disord. 2011;12:9. https://doi.org/10.1186/1471-2474-12-9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kaempffe FA, Wheeler DR, Peimer CA, Hvisdak KS, Ceravolo J, Senall J. Severe fractures of the distal radius: effect of amount and duration of external fixator distraction on outcome. J Hand Surg [Am]. 1993;18:33–41.

    CAS  Google Scholar 

  75. Cui Z, Pan J, Yu B, Zhang K, Xiong X. Internal versus external fixation for unstable distal radius fractures: an up-to-date meta-analysis. Int Orthop. 2011;35:1333–41. https://doi.org/10.1007/s00264-011-1300-0.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chung KC, Cho HE, Kim Y, Kim HM, Shauver MJ. Assessment of anatomic restoration of distal radius fractures among older adults: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2020;3:e1919433. https://doi.org/10.1001/jamanetworkopen.2019.19433.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ochen Y, Peek J, van der Velde D, Beeres FJP, van Heijl M, Groenwold RHH, et al. Operative vs nonoperative treatment of distal radius fractures in adults: a systematic review and meta-analysis. JAMA Netw Open. 2020;3:e203497. https://doi.org/10.1001/jamanetworkopen.2020.3497.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rouleau DM, Laflamme GY, Mutch J. Fractures of the greater tuberosity of the humerus: a study of associated rotator cuff injury and atrophy. Should Elb. 2016;8:242–9. https://doi.org/10.1177/1758573216647896.

    Article  Google Scholar 

  79. Visser CP, Tavy DL, Coene LN, Brand R. Electromyographic findings in shoulder dislocations and fractures of the proximal humerus: comparison with clinical neurological examination. Clin Neurol Neurosurg. 1999;101:86–91.

    CAS  PubMed  Google Scholar 

  80. Keser S, Bölükbaşi S, Bayar A, Kanatli U, Meray J, Ozdemir H. Proximal humeral fractures with minimal displacement treated conservatively. Int Orthop. 2004;28:231–4. https://doi.org/10.1007/s00264-004-0552-3.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tomić S, Bumbasirević M, Lesić A, Mitković M, Dushan H, Atkinson E. Ilizarov frame fixation without bone graft for atrophic humeral shaft nonunion: 28 patients with a minimum 2-year follow-up. J Orthop Trauma. 2007;21:549–56. https://doi.org/10.1097/BOT.0b013e31814612c8.

    Article  PubMed  Google Scholar 

  82. Gaebler C, McQueen MM, Court-Brown CM. Minimally displaced proximal humeral fractures: epidemiology and outcome in 507 cases. Acta Orthop Scand. 2003;74:580–5. https://doi.org/10.1080/00016470310017992.

    Article  PubMed  Google Scholar 

  83. Fialka C, Stampfl P, Arbes S, Reuter P, Oberleitner G, Vécsei V. Primary hemiarthroplasty in four-part fractures of the proximal humerus: randomized trial of two different implant systems. J Shoulder Elb Surg. 2008;17:210–5.

    Google Scholar 

  84. Lange M, Brandt D, Mittlmeier T, Gradl G. Proximal humeral fractures: non-operative treatment versus intramedullary nailing in 2-, 3- and 4-part fractures. Injury. 2016;47(Suppl 7):S14–9. https://doi.org/10.1016/S0020-1383(16)30848-8.

    Article  PubMed  Google Scholar 

  85. Gallinet D, Clappaz P, Garbuio P, Tropet Y, Obert L. Three or four parts complex proximal humerus fractures: hemiarthroplasty versus reverse prosthesis: a comparative study of 40 cases. Orthop Traumatol Surg Res. 2009;95:48–55. https://doi.org/10.1016/j.otsr.2008.09.002.

    Article  CAS  PubMed  Google Scholar 

  86. Grönhagen CM, Abbaszadegan H, Révay SA, Adolphson PY. Medium-term results after primary hemiarthroplasty for comminute proximal humerus fractures: a study of 46 patients followed up for an average of 4.4 years. J Shoulder Elb Surg. 2007;16:766–73.

    Google Scholar 

  87. Boons HW, Goosen JH, van Grinsven S, van Susante JL, van Loon CJ. Hemiarthroplasty for humeral four-part fractures for patients 65 years and older: a randomized controlled trial. Clin Orthop Relat Res. 2012;470:3483–91. https://doi.org/10.1007/s11999-012-2531-0.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Costantino C, Verdano MA, Jacopetti M, Romiti D, Lunini E, Pellegrini A, et al. Isokinetic strength test and functional outcomes in proximal humeral fractures treated with a locking plate. J Orthop Sci. 2014;19:776–85. https://doi.org/10.1007/s00776-014-0603-6.

    Article  PubMed  Google Scholar 

  89. Becker R, Pap G, Machner A, Neumann WH. Strength and motion after hemiarthroplasty in displaced four-fragment fracture of the proximal humerus: 27 patients followed for 1-6 years. Acta Orthop Scand. 2002;73:44–9.

    PubMed  Google Scholar 

  90. Muhm M, Bott J, Lahr C, Winkler H, Ruffing T. Outcome after operative treatment of proximal humeral fractures in elderly patients. Z Gerontol Geriatr. 2016;49:505–11. https://doi.org/10.1007/s00391-015-0954-4.

    Article  PubMed  Google Scholar 

  91. Levy J, Frankle M, Mighell M, Pupello D. The use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty for proximal humeral fracture. J Bone Joint Surg Am. 2007;89:292–300.

    PubMed  Google Scholar 

  92. Çaliskan E, Doğan Ö. PHILOS plate versus nonoperative treatment in 2-, 3-, and 4-part proximal humeral fractures: comparison with healthy control subjects. J Orthop Surg. 2019;27:2309499019875169. https://doi.org/10.1177/2309499019875169.

    Article  Google Scholar 

  93. Kubota M, Uchida K, Kokubo Y, Shimada S, Matsuo H, Yayama T, et al. Postoperative gait analysis and hip muscle strength in patients with pelvic ring fracture. Gait Posture. 2013;38:385–90. https://doi.org/10.1016/j.gaitpost.2012.12.016.

    Article  PubMed  Google Scholar 

  94. Kubota M, Uchida K, Kokubo Y, Shimada S, Matsuo H, Yayama T, et al. Changes in gait pattern and hip muscle strength after open reduction and internal fixation of acetabular fracture. Arch Phys Med Rehabil. 2012;93:2015–21. https://doi.org/10.1016/j.apmr.2012.01.016.

    Article  PubMed  Google Scholar 

  95. Lazaro LE, Wellman DS, Sauro G, Pardee NC, Berkes MB, Little MT, et al. Outcomes after operative fixation of complete articular patellar fractures: assessment of functional impairment. J Bone Joint Surg Am. 2013;95:e96 1–8. https://doi.org/10.2106/JBJS.L.00012.

    Article  Google Scholar 

  96. Vedel JO, Vistrup S, Larsen P, Elsoe R. Altered long-term health-related quality of life in patients following patella fractures: a long-term follow-up study of 49 patients. Eur J Trauma Emerg Surg. 2018;44:707–16. https://doi.org/10.1007/s00068-017-0857-8.

    Article  CAS  PubMed  Google Scholar 

  97. Elbaz A, Mor A, Segal G, Bar D, Monda MK, Kish B, et al. Lower extremity kinematic profile of gait of patients after ankle fracture: a case-control study. J Foot Ankle Surg. 2016;55:918–21. https://doi.org/10.1053/j.jfas.2016.04.004.

    Article  PubMed  Google Scholar 

  98. Hsu CY, Tsai YS, Yau CS, Shie HH, Wu CM. Differences in gait and trunk movement between patients after ankle fracture and healthy subjects. Biomed Eng Online. 2019;18:26. https://doi.org/10.1186/s12938-019-0644-3.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Segal G, Elbaz A, Parsi A, Heller Z, Palmanovich E, Nyska M, et al. Clinical outcomes following ankle fracture: a cross-sectional observational study. J Foot Ankle Res. 2014;7:50. https://doi.org/10.1186/s13047-014-0050-9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. van Hoeve S, Houben M, Verbruggen JPAM, Willems P, Meijer K, Poeze M. Gait analysis related to functional outcome in patients operated for ankle fractures. J Orthop Res. 2019;37:1658–66. https://doi.org/10.1002/jor.24071.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang R, Thur CK, Gutierrez-Farewik EM, Wretenberg P, Broström E. One year follow-up after operative ankle fractures: a prospective gait analysis study with a multi-segment foot model. Gait Posture. 2010;31:234–40. https://doi.org/10.1016/j.gaitpost.2009.10.012.

    Article  PubMed  Google Scholar 

  102. Nilsson G, Ageberg E, Ekdahl C, Eneroth M. Balance in single-limb stance after surgically treated ankle fractures: a 14-month follow-up. BMC Musculoskelet Disord. 2006;7:35.

    PubMed  PubMed Central  Google Scholar 

  103. Steinfeld Y, Shabat S, Nyska M, Peretz C, Dvir Z. Ankle rotators strength and functional indices following operative intervention for ankle fractures. Isokinet Exerc Sci. 2012;20:173–9.

    Google Scholar 

  104. Ekström H, Elmståhl S. Pain and fractures are independently related to lower walking speed and grip strength: results from the population study “Good Ageing in Skåne”. Acta Orthop. 2006;77:902–11.

    PubMed  Google Scholar 

  105. • Wolinsky FD, Fitzgerald JF, Stump TE. The effect of hip fracture on mortality, hospitalization, and functional status: a prospective study. Am J Public Health. 1997;87:398–403 Prospective study showing that an incident hip fracture is associated with greater deterioration of physical performance than aging itself.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Edwards BJ, Song J, Dunlop DD, Fink HA, Cauley JA. Functional decline after incident wrist fractures--study of osteoporotic fractures: prospective cohort study. BMJ. 2010 Jul 8;341:c3324. https://doi.org/10.1136/bmj.c3324.

    Article  PubMed  PubMed Central  Google Scholar 

  107. •• Greendale GA, DeAmicis TA, Bucur A, Bretsky P, Rowe JW, Reuben DB, et al. A prospective study of the effect of fracture on measured physical performance: results from the MacArthur Study--MAC. J Am Geriatr Soc. 2000;48:546–9 Prospective study showing that an incident fracture is associated with greater loss of grip strength and with greater functional decline compared with aging itself.

    CAS  PubMed  Google Scholar 

  108. Pham HM, Nguyen SC, Ho-Le TP, Center JR, Eisman JA, Nguyen TV. Association of muscle weakness with post-fracture mortality in older men and women: a 25-year prospective study. J Bone Miner Res. 2017;32:698–707. https://doi.org/10.1002/jbmr.3037.

    Article  CAS  PubMed  Google Scholar 

  109. Mochizuki T, Yano K, Shirahata T, Ikari K, Hiroshima R, Nasu Y, Okazaki K. Spinal sagittal balance associated with age, vertebral fracture, and functional disability in patients with rheumatoid arthritis: a cross-sectional study. Mod Rheumatol 2019 1–7. doi: https://doi.org/10.1080/14397595.2019.1702247.

  110. Fechtenbaum J, Etcheto A, Kolta S, Feydy A, Roux C, Briot K. Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporos Int. 2016;27:559–67. https://doi.org/10.1007/s00198-015-3283-y.

    Article  CAS  PubMed  Google Scholar 

  111. Huang C, Ross PD, Wasnich RD. Vertebral fracture and other predictors of physical impairment and health care utilization. Arch Intern Med. 1996;156:2469–75.

    CAS  PubMed  Google Scholar 

  112. Hussain N, Hussain FN, Sermer C, Kamdar H, Schemitsch EH, Sternheim A, et al. Antegrade versus retrograde nailing techniques and trochanteric versus piriformis intramedullary nailing entry points for femoral shaft fractures: a systematic review and meta-analysis. Can J Surg. 2017;60:19–29.

    PubMed  PubMed Central  Google Scholar 

  113. Gheorghita A, Webster F, Thielke S, Sale JEM. Long-term experiences of pain after a fragility fracture. Osteoporos Int. 2018;29:1093–104. https://doi.org/10.1007/s00198-018-4399-7.

    Article  CAS  PubMed  Google Scholar 

  114. Zusman EZ, Dawes MG, Edwards N, Ashe MC. A systematic review of evidence for older adults’ sedentary behavior and physical activity after hip fracture. Clin Rehabil. 2018;32:679–91. https://doi.org/10.1177/0269215517741665.

    Article  PubMed  Google Scholar 

  115. Ekegren CL, Beck B, Climie RE, Owen N, Dunstan DW, Gabbe BJ. Physical activity and sedentary behavior subsequent to serious orthopedic injury: a systematic review. Arch Phys Med Rehabil. 2018;99:164–77.e6. https://doi.org/10.1016/j.apmr.2017.05.014.

    Article  PubMed  Google Scholar 

  116. Murtagh EM, Murphy MH, Murphy NM, Woods C, Nevill AM, Lane A. Prevalence and correlates of physical inactivity in community-dwelling older adults in Ireland. PLoS One. 2015;10:e0118293. https://doi.org/10.1371/journal.pone.0118293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bower ES, Wetherell JL, Petkus AJ, Rawson KS, Lenze EJ. Fear of falling after hip fracture: prevalence, course, and relationship with one-year functional recovery. Am J Geriatr Psychiatry. 2016;24:1228–36. https://doi.org/10.1016/j.jagp.2016.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fielding RA, Guralnik JM, King AC, Pahor M, McDermott MM, Tudor-Locke C, et al. Dose of physical activity, physical functioning and disability risk in mobility-limited older adults: results from the LIFE study randomized trial. PLoS One. 2017;12:e0182155. https://doi.org/10.1371/journal.pone.0182155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Coker RH, Hays NP, Williams RH, Wolfe RR, Evans WJ. Bed rest promotes reductions in walking speed, functional parameters, and aerobic fitness in older, healthy adults. J Gerontol A Biol Sci Med Sci. 2015;70:91–6. https://doi.org/10.1093/gerona/glu123.

    Article  CAS  PubMed  Google Scholar 

  120. Lee R, Lee D, Gowda NB, Probasco WV, Ibrahim G, Falk DP, et al. Surgical complications associated with congestive heart failure in elderly patients following primary hip hemiarthroplasty for femoral neck fractures. Eur J Orthop Surg Traumatol. 2019;29:1253–61. https://doi.org/10.1007/s00590-019-02438-y.

    Article  PubMed  Google Scholar 

  121. Norring-Agerskov D, Madsen CM, Bathum L, Pedersen OB, Lauritzen JB, Jørgensen NR, et al. History of cardiovascular disease and cardiovascular biomarkers are associated with 30-day mortality in patients with hip fracture. Osteoporos Int. 2019;30:1767–78. https://doi.org/10.1007/s00198-019-05056-w.

    Article  CAS  PubMed  Google Scholar 

  122. Frost SA, Nguyen ND, Black DA, Eisman JA, Nguyen TV. Risk factors for in-hospital post-hip fracture mortality. Bone. 2011;49:553–8. https://doi.org/10.1016/j.bone.2011.06.002.

    Article  PubMed  Google Scholar 

  123. Mathew RO, Hsu WH, Young Y. Effect of comorbidity on functional recovery after hip fracture in the elderly. Am J Phys Med Rehabil. 2013;92:686–96. https://doi.org/10.1097/PHM.0b013e318282bc67.

    Article  PubMed  Google Scholar 

  124. Roche JJ, Wenn RT, Sahota O, Moran CG. Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study. BMJ. 2005;331:1374.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Le Manach Y, Collins G, Bhandari M, Bessissow A, Boddaert J, Khiami F, et al. Outcomes after hip fracture surgery compared with elective total hip replacement. JAMA. 2015;314:1159–66. https://doi.org/10.1001/jama.2015.10842.

    Article  CAS  PubMed  Google Scholar 

  126. Karlsson M, Nilsson JA, Sernbo I, Redlund-Johnell I, Johnell O, Obrant KJ. Changes of bone mineral mass and soft tissue composition after hip fracture. Bone. 1996;18:19–22.

    CAS  PubMed  Google Scholar 

  127. Rejc E, Floreani M, Taboga P, Botter A, Toniolo L, Cancellara L, et al. Loss of maximal explosive power of lower limbs after 2 weeks of disuse and incomplete recovery after retraining in older adults. J Physiol. 2018;596:647–65. https://doi.org/10.1113/JP274772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hvid L, Aagaard P, Justesen L, Bayer ML, Andersen JL, Ørtenblad N, et al. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol. 2010;109:1628–34. https://doi.org/10.1152/japplphysiol.00637.2010.

    Article  PubMed  Google Scholar 

  129. Hvid LG, Suetta C, Nielsen JH, Jensen MM, Frandsen U, Ørtenblad N, et al. Aging impairs the recovery in mechanical muscle function following 4 days of disuse. Exp Gerontol. 2014;52:1–8. https://doi.org/10.1016/j.exger.2014.01.012.

    Article  CAS  PubMed  Google Scholar 

  130. Suetta C, Hvid LG, Justesen L, Christensen U, Neergaard K, Simonsen L, et al. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol. 2009;107:1172–80. https://doi.org/10.1152/jappl.physiol.00290.2009.

    Article  CAS  PubMed  Google Scholar 

  131. Fujita K, Kaburagi H, Nimura A, Miyamoto T, Wakabayashi Y, Seki Y, et al. Lower grip strength and dynamic body balance in women with distal radial fractures. Osteoporos Int. 2019;30:949–56. https://doi.org/10.1007/s00198-018-04816-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Crockett K, Arnold CM, Farthing JP, Chilibeck PD, Johnston JD, Bath B, et al. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture. Osteoporos Int. 2015;26:2461–9. https://doi.org/10.1007/s00198-015-3160-8.

    Article  CAS  PubMed  Google Scholar 

  133. Jeon YT, Kim BR, Han EY, Nam KW, Lee SY, Park YG, et al. Post-operative physical performance factors associated with gait speed in patients surgically treated for hip fracture: a cross-sectional study. Ann Rehabil Med. 2019;43:570–80. https://doi.org/10.5535/arm.2019.43.5.570.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Dyer SM, Crotty M, Fairhall N, Magaziner J, Beaupre LA, Cameron ID, et al. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr. 2016;16:158. https://doi.org/10.1186/s12877-016-0332-0.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yeh HF, Shao JH, Li CL, Wu CC, Shyu YL. Predictors of postoperative falls in the first and second postoperative years among older hip fracture patients. J Clin Nurs. 2017;26:3710–23. https://doi.org/10.1111/jocn.13743.

    Article  PubMed  Google Scholar 

  136. Yau DT, Chung RC, Pang MY. Knee muscle strength and visual acuity are the most important modifiable predictors of falls in patients after hip fracture surgery: a prospective study. Calcif Tissue Int. 2013;92:287–95. https://doi.org/10.1007/s00223-012-9681-7.

    Article  CAS  PubMed  Google Scholar 

  137. Dieleman JL, Cao J, Chapin A, Chen C, Li Z, Liu A, et al. US health care spending by payer and health condition, 1996-2016. JAMA. 2020;323:863–84. https://doi.org/10.1001/jama.2020.0734.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Singer A, Exuzides A, Spangler L, O'Malley C, Colby C, Johnston K, et al. Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the United States. Mayo Clin Proc. 2015;90:53–62. https://doi.org/10.1016/j.mayocp.2014.09.011.

    Article  PubMed  Google Scholar 

  139. Grace TR, Patterson JT, Tangtiphaiboontana J, Krogue JD, Vail TP, Ward DT. Hip fractures and the bundle: a cost analysis of patients undergoing hip arthroplasty for femoral neck fracture vs degenerative joint disease. J Arthroplast. 2018;33:1681–5. https://doi.org/10.1016/j.arth.2018.01.071.

    Article  Google Scholar 

  140. Haddad YK, Bergen G, Florence CS. Estimating the economic burden related to older adult falls by state. J Public Health Manag Pract. 2019;25:E17–24. https://doi.org/10.1097/PHH.0000000000000816.

    Article  PubMed  PubMed Central  Google Scholar 

  141. WISQARS. Web-based Injury Statistics Query and Reporting System (WISQARS). www.cdc.gov/injury/wisqars. Accessed June 2020.

  142. Towne SD, Smith ML, Li Y, Dowdy D, Ahn S, Lee S, et al. A multi-level analyses of charges and cost of fall-related hospitalizations among older adults: individual, hospital, and geospatial variation. J Aging Soc Policy. 2020 online. https://doi.org/10.1080/08959420.2020.1740639.

  143. Florence CS, Bergen G, Atherly A, Burns E, Stevens J, Drake C. Medical costs of fatal and nonfatal falls in older adults. J Am Geriatr Soc. 2018;66:693–8.

    PubMed  PubMed Central  Google Scholar 

  144. Brainsky A, Glick H, Lydick E, Epstein R, Fox KM, Hawkes W, et al. The economic cost of hip fractures in community-dwelling older adults: a prospective study. J Am Geriatr Soc. 1997;45:281–7.

    CAS  PubMed  Google Scholar 

  145. Williams NH, Roberts JL, Din NU, Totton N, Charles JM, Hawkes CA, et al. Fracture in the elderly multidisciplinary rehabilitation (FEMuR): a phase II randomised feasibility study of a multidisciplinary rehabilitation package following hip fracture. BMJ Open. 2016;6:e012422. https://doi.org/10.1136/bmjopen-2016-012422.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Binder EF, Brown M, Sinacore DR, Steger-May K, Yarasheski KE, Schechtman KB. Effects of extended outpatient rehabilitation after hip fracture: a randomized controlled trial. JAMA. 2004;292:837–46.

    CAS  PubMed  Google Scholar 

  147. Gold DT, Shipp KM, Pieper CF, Duncan PW, Martinez S, Lyles KW. Group treatment improves trunk strength and psychological status in older women with vertebral fractures: results of a randomized, clinical trial. J Am Geriatr Soc. 2004;52:1471–8.

    PubMed  Google Scholar 

  148. Taraldsen K, Thingstad P, Døhl Ø, Follestad T, Helbostad JL, Lamb SE, et al. Short and long-term clinical effectiveness and cost-effectiveness of a late-phase community-based balance and gait exercise program following hip fracture. The EVA-Hip Randomised Controlled Trial PLoS One. 2019;14:e0224971. https://doi.org/10.1371/journal.pone.0224971.

    Article  CAS  PubMed  Google Scholar 

  149. Cameron ID, Lyle DM, Quine S. Cost effectiveness of accelerated rehabilitation after proximal femoral fracture. J Clin Epidemiol. 1994;47:1307–13.

    CAS  PubMed  Google Scholar 

  150. Ruchlin HS, Elkin EB, Allegrante JP. The economic impact of a multifactorial intervention to improve postoperative rehabilitation of hip fracture patients. Arthritis Rheum. 2001;45:446–52.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Szulc.

Ethics declarations

Conflict of Interest

Nothing to declare.

Human and Animal Rights and Informed Consent

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Muscle and Bone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szulc, P. Impact of Bone Fracture on Muscle Strength and Physical Performance—Narrative Review. Curr Osteoporos Rep 18, 633–645 (2020). https://doi.org/10.1007/s11914-020-00623-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00623-1

Keywords

Navigation