Skip to main content

Advertisement

Log in

Targeted molecular therapy of malignant gliomas

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Malignant gliomas are the most common form of primary brain tumors in adults. Despite advances in diagnosis and standard therapies such as surgery, radiation, and chemotherapy, the prognosis remains poor. Recent scienti fic advances have enhanced our understanding of the biology of gliomas and the role of tyrosine kinase receptors and signal transduction pathways in tumor initiation and maintenance, such as the epidermal growth factor receptors, platelet-derived growth factor receptors, vascular endothelial growth factor receptors, and the Ras/Raf/mitogen-activated protein (MAP)-kinase and phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathways. Novel targeted drugs such as small molecular inhibitors of these receptors and signaling pathways are showing some activity in initial studies. As we learn more about these drugs and how to optimize their use as single agents and in combination with radiation, chemotherapy, and other targeted molecular agents, they will likely play an increasing role in the management of this devastating disease. This review summarizes the current results with targeted molecular agents in malignant gliomas and strategies under evaluation to increase their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. CBTRUS, Statistical Report: Primary Brain Tumors in the United States, 1997–2001. Chicago: Central Brain Tumor Registry of the United States (CBTRUS); 2004.

    Google Scholar 

  2. Kleihues P, Cavenee WK: Pathology and genetics of tumours of the nervous system. World Health Organization Classification of Tumors. Edited by Kleihues P, Sobin LH. Lyon: IARC Press; 2000.

    Google Scholar 

  3. Fiveash JB, Spencer SA: Role of radiation therapy and radiosurgery in glioblastoma multiforme. Cancer J 2003, 9:222–229.

    PubMed  Google Scholar 

  4. Wen PY, Kesari S: Malignant gliomas. Curr Neurol Neurosci Rep 2004, 4:218–227. This article is a recent review of the treatment of malignant gliomas.

    PubMed  Google Scholar 

  5. Mrugala MM, Kesari S, Ramakrishna N, Wen PY: Therapy for recurrent malignant glioma in adults. Expert Rev Anticancer Ther 2004, 4:759–782. This article is a comprehensive review of standard therapy for recurrent gliomas.

    Article  PubMed  CAS  Google Scholar 

  6. Stupp R, Mason WP, van den Bent MJ, et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352:987–996. A landmark study showing for the first time that adjuvant chemotherapy with temozolomide improves survival in patients with GBM.

    Article  PubMed  CAS  Google Scholar 

  7. Konopka G, Bonni A: Signaling pathways regulating gliomagenesis. Curr Mol Med 2003, 3:73–84.

    Article  PubMed  CAS  Google Scholar 

  8. Mischel PS, Nelson SF, Cloughesy TF: Molecular analysis of glioblastoma: pathway profiling and its implications for patient therapy. Cancer Biol Ther 2003, 2:242–247.

    PubMed  CAS  Google Scholar 

  9. Maher EA, Furnari FB, Bachoo RM, et al.: Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001, 15:1311–1333. This is a comprehensive review of the genetics of gliomas.

    Article  PubMed  CAS  Google Scholar 

  10. Nabors LB: Targeted molecular therapy for malignant gliomas. Curr Treat Options Oncol 2004, 5:519–526.

    PubMed  Google Scholar 

  11. Mischel PS, Cloughesy TF: Targeted molecular therapy of GBM. Brain Pathol 2003, 13:52–61.

    Article  PubMed  Google Scholar 

  12. Newton HB: Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors. Part 3: brain tumor invasiveness. Expert Rev Anticancer Ther 2004, 4:803–821. This is a comprehensive review of targeted molecular therapies for brain tumors, focusing on inhibition of invasion.

    Article  PubMed  CAS  Google Scholar 

  13. Newton HB: Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: Growth factor and Ras signaling pathways. Expert Rev Anticancer Ther 2003, 3:595–614. This is a comprehensive review of targeted molecular therapies for brain tumors, focusing on tyrosine kinase receptors and the reninagiontensin system pathway.

    Article  PubMed  CAS  Google Scholar 

  14. Newton HB: Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev Anticancer Ther 2004, 4:105–128. This is a comprehensive review of targeted molecular therapies for brain tumors, focusing on signal transduction pathways and angiogenesis.

    Article  PubMed  CAS  Google Scholar 

  15. Kondo Y, Hollingsworth EF, Kondo S: Molecular targeting for malignant gliomas [review]. Int J Oncol 2004, 24:1101–1109. A recent review of targeted molecular therapy.

    PubMed  CAS  Google Scholar 

  16. Rich JN, Bigner DD: Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 2004, 3:430–446. A recent review of targeted molecular therapy.

    Article  PubMed  CAS  Google Scholar 

  17. Kitange GJ, Templeton KL, Jenkins RB: Recent advances in the molecular genetics of primary gliomas. Curr Opin Oncol 2003, 15:197–203.

    Article  PubMed  CAS  Google Scholar 

  18. van den Boom J, Wolter M, Kuick R, et al.: Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol 2003, 163:1033–1043.

    PubMed  Google Scholar 

  19. Rao RD, Uhm JH, Krishnan S, James CD: Genetic and signaling pathway alterations in glioblastoma: relevance to novel targeted therapies. Front Biosci 2003, 8:e270-e280. A recent review of signaling alterations in glioblastomas.

    Article  PubMed  CAS  Google Scholar 

  20. Shai R, Shi T, Kremen TJ, et al.: Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 2003, 22:4918–4923.

    Article  PubMed  CAS  Google Scholar 

  21. Nutt CL, Mani DR, Betensky RA, et al.: Gene expressionbased classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 2003, 63:1602–1607. Pivotal study showing that molecular classification is a better predictor of survival than histologic classification.

    PubMed  CAS  Google Scholar 

  22. Jennings MT, Iyengar S: The molecular genetics of therapeutic resistance in malignant astrocytomas. Am J Pharmacogenomics 2001, 1:93–99.

    Article  PubMed  CAS  Google Scholar 

  23. Kew Y, Levin VA: Advances in gene therapy and immunotherapy for brain tumors. Curr Opin Neurol 2003, 16:665–670.

    Article  PubMed  CAS  Google Scholar 

  24. Chakravarti A, Dicker A, Mehta M: The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int J Radiat Oncol Biol Phys 2004, 58:927–931.

    Article  PubMed  CAS  Google Scholar 

  25. Li B, Yuan M, Kim IA, et al.: Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 2004, 23:4594–4602.

    Article  PubMed  CAS  Google Scholar 

  26. Druker BJ: Perspectives on the development of a molecularly targeted agent. Cancer Cell 2002, 1:31–36.

    Article  PubMed  CAS  Google Scholar 

  27. Rich JN, Reardon DA, Peery T, et al.: Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004, 22:133–142.

    Article  PubMed  CAS  Google Scholar 

  28. Shinojima N, Tada K, Shiraishi S, et al.: Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003, 63:6962–6970.

    PubMed  CAS  Google Scholar 

  29. Aldape KD, Ballman K, Furth A, et al.: Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J Neuropathol Exp Neurol 2004, 63:700–707.

    PubMed  CAS  Google Scholar 

  30. Lieberman FS, Cloughesy T, Fine H, et al.: Phase I/II study of ZD-1839 for recurrent malignant gliomas and unresectable meningiomas (Abst 1510). Paper presented at the American Society for Clinical Oncology meeting, New Orleans, 2004.

  31. Uhm JH, Ballman KV, Giannini C, et al.: Phase II study of ZD1839 in patients with newly diagnosed grade 4 astrocytoma (Abst 1505). Paper presented at the American Society for Clinical Oncology meeting, New Orleans, 2004.

  32. Chakravarti A, Seiferheld W, Robins HI, et al.: An update of phase I data from RTOG 0211: a phase I/II clinical study of ZD 1839 (gefitinib) + radiation for newly diagnosed glioblastoma (GBM) patients (TA-12). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  33. Prados MD, Yung WK, Wen P, et al.: Phase I study of ZD1839 plus temozolomide in patients with malignant glioma. A study of the North American Brain Tumor Consortium (Abstr 1504). Paper presented at the American Society for Clinical Oncology meeting, New Orleans, 2004.

  34. Raizer JJ, Abrey L, Wen P, et al.: A Phase II trial of OSI-774 (Tarceva) in patients (pts) with recurrent malignant gliomas (MG) not on EIAEDs (Abst 1502). Paper presented at the American Society for Clinical Oncology meeting, New Orleans, 2004.

  35. Prados M, Chang S, Burton E, et al.: Phase I study of OSI-774 alone or with temozolomide in patients with malignant glioma. Paper presented at the American Society for Clinical Oncology meeting, 2003.

  36. Vogelbaum MA, Peereboom D, Stevens GH, et al.: Response rate to single agent therapy with the EGFR tyrosine kinase inhibitor erlotinib in recurrent glioblastoma multiforme: results of a phase II study (TA-59). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  37. Yung A, Vrendenburgh J, Cloughsey T: Erlotinib HCL for glioblastoma multiforme in first relapse, a phase II trial (Abst 1555). J Clin Oncol 2004, 22(Suppl 14):120s.

    Google Scholar 

  38. Peereboom DM, Brewer C, Stevens GH, et al.: Phase II trial of erlotinib with temozolomide and concurrent radiation therapy post-operatively in patients with newly diagnosed glioblastoma multiforme (TA-41). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  39. Lynch TJ, Bell DW, Sordella R, et al.: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004, 350:2129–2139. Important study showing that lung cancer response to EGFR inhibitors is due to activating mutations in receptor.

    Article  PubMed  CAS  Google Scholar 

  40. Paez JG, Janne PA, Lee JC, et al.: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004, 304:1497–1500. Important study showing that lung cancer response to EGFR inhibitors is due to activating mutations in receptor.

    Article  PubMed  CAS  Google Scholar 

  41. Barber TD, Vogelstein B, Kinzler KW, Velculescu VE: Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med 2004, 351:2883–0.

    Article  PubMed  CAS  Google Scholar 

  42. Rich JN, Rasheed BK, Yan H: EGFR mutations and sensitivity to gefitinib. N Engl J Med 2004, 351:1260–1261;author reply 1260–1261.

    Article  PubMed  CAS  Google Scholar 

  43. Eller JL, Longo SL, Kyle MM, et al.: Anti-epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in glioblastoma multiforme in vitro and in vivo. Neurosurgery 2005, 56:155–162.

    PubMed  Google Scholar 

  44. Goudar RK, Shi Q, Hjelmeland MD, et al.: Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 2005, 4:101–112.

    PubMed  CAS  Google Scholar 

  45. Ostman A: PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev 2004, 15:275–286.

    Article  PubMed  CAS  Google Scholar 

  46. Kilic T, Alberta JA, Zdunek PR, et al.: Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 2000, 60:5143–5150.

    PubMed  CAS  Google Scholar 

  47. Ren H, Giese A, Walker C, et al.: logical activity of the receptor tyrosine kinase inhibitor imatinib (STI571) in malignant glioma (ET-20). Paper presented at Society for euro-Oncology meeting, Toronto, 2004.

  48. Wen PY, Yung WK, Lamborn K, et al.: Phase I/II study of imatinib mesylate (STI571) for patients with recurrent malignant gliomas (NABTC 99–08). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  49. van den Bent M, Brandes AA, Van Oosterom A, et al.: Multicentre Phase II Study of Imatinib Mesylate (Gleevec®) in Patients With Recurrent Glioblastoma: An EORTC: NDDG/BTG Intergroup Study. Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  50. Dai H, Marbach P, Lemaire M, et al.: Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 2003, 304:1085–1092.

    Article  PubMed  CAS  Google Scholar 

  51. Dresemann G: Imatinib (STI571)/ plus Hydroxyurea: Safety and efficacy in pre-treated, progressive glioblastoma multiforme (GBM) patients (pts) (Abstr 1550). Paper presented at the American Society for Clinical Oncology meeting, New Orleans, 2004.

  52. Reardon D, Friedman A, Herndon J, et al.: Phase II trial of imatinib mesylate plus hydroxyurea in the treatment of patients with malignant glioma (TA-47). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  53. de Bono JS, Tolcher AW, Rowinsky EK: Farnesyltransferase inhibitors and their potential in the treatment of breast carcinoma. Semin Oncol 2003, 30(5 Suppl 16):79–92.

    PubMed  Google Scholar 

  54. Cloughesy TF, Kuhn J, Wen P, et al.: Two phase II trials of R115777 (Zarnestra®) in patients with recurrent glioblastoma multiforme: A comparison of patients on enzyme-induing anti-epileptic drugs (EIAED) and not on EIAED at maximum tolerated dose respectively: A North American Brain Tumor Consortium (NABTC) Report. Neuro-oncology 2003, 5:349 (Abstr TA-310).

    Google Scholar 

  55. Gilbert MR, Hess K, Gaupp P, et al.: A phase I study of temozolomide (TMZ) and the farnesyltransferase inhibitor (FTI), tipifarnib (ZARNESTRA, R115777) in recurrent glioblastoma: a dose and schedule intensive regimen (TA-23). Paper presented at Society for Neuro-Oncology meeting. Toronto, 2004.

  56. Mita MM, Mita A, Rowinsky EK: The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol Ther 2003, 2(4 Suppl 1): S169-S177.

    PubMed  CAS  Google Scholar 

  57. Geoerger B, Kerr K, Tang CB, et al.: Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 2001, 61:1527–1532.

    PubMed  CAS  Google Scholar 

  58. Chang SM, Kuhn J, Wen P, et al.: Phase I/pharmacokinetic study of CCI-779 in patients with recurrent malignant glioma on enzyme-inducing antiepileptic drugs. Invest New Drugs 2004, 22:427–435.

    Article  PubMed  CAS  Google Scholar 

  59. Chang SM, Wen P, Cloughsey T, et al.: Phase II study of CCI-779 in patients with recurrent glioblastoma. Invest New Drugs 2005, 23:357–361.

    Article  PubMed  CAS  Google Scholar 

  60. Galanis E, Buckner JC, Maurer K, et al.: NCCTG Phase II Trial of CCI-779 in Recurrent Glioblastoma Multiforme (GBM) (Abstr 1503). Paper presented at the American Society for Clinical Oncology meeting, New Orleans, 2004.

  61. Marks PA, Richon VM, Miller T, Kelly WK: Histone deacetylase inhibitors. Adv Cancer Res 2004, 91:137–168.

    Article  PubMed  CAS  Google Scholar 

  62. Yang J, Yang JM, Iannone M, et al.: Disruption of the EF-2 kinase/Hsp90 protein complex: a possible mechanism to inhibit glioblastoma by geldanamycin. Cancer Res 2001, 61:4010–4016.

    PubMed  CAS  Google Scholar 

  63. Burrows F, Zhang H, Kamal A: Hsp90 Activation and Cell Cycle Regulation. Cell Cycle 2004, 3:123–125.

    Google Scholar 

  64. Ohba S, Hirose Y, Kawase T: Heat shock protein inhibitor Geldanamycin potentiates the cytotoxicity of DNA-damaging agents on human glioma cells (ET-17). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  65. Kieran MW: Anti-angiogenic chemotherapy in central nervous system tumors. Cancer Treat Res 2004, 117:337–349. Comprehensive review of angiogenesis in gliomas.

    PubMed  CAS  Google Scholar 

  66. Purow B, Fine HA: Antiangiogenic therapy for primary and metastatic brain tumors. Hematol Oncol Clin North Am 2004, 18:1161–1181.

    Article  PubMed  Google Scholar 

  67. Fine HA, Wen PY, Maher EA, et al.: Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J Clin Oncol 2003, 21:2299–2304.

    Article  PubMed  CAS  Google Scholar 

  68. Marx GM, Pavlakis N, McCowatt S, et al.: Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J Neuro-oncol 2001, 54:31–38.

    Article  CAS  Google Scholar 

  69. Short SC, Traish D, Dowe A, et al.: Thalidomide as an antiangiogenic agent in relapsed gliomas. J Neuro-oncol 2001, 51:41–45.

    Article  CAS  Google Scholar 

  70. Wood JM, Bold G, Buchdunger E, et al.: PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 2000, 60:2178–2189.

    PubMed  CAS  Google Scholar 

  71. Tong RT, Boucher Y, Kozin SV, et al.: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004, 64:3731–3736.

    Article  PubMed  CAS  Google Scholar 

  72. Wu JL, Abe T, Kimba Y, et al.: Mutant IkBa supresses hypoxia-induced VEGF expression through downregulation of HIF-1 and COX-2 in human glioma cells (AN-26). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  73. Keyes KA, Mann L, Sherman M, et al.: LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother Pharmacol 2004, 53:133–140.

    Article  PubMed  CAS  Google Scholar 

  74. Fong TA, Shawver LK, Sun L, et al.: SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999, 59:99–106.

    PubMed  CAS  Google Scholar 

  75. Conrad C, Friedman H, Reardon D, et al.: A phase I/II trial of single-agent PTK787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM) (Abstr 1512). Paper presented at the American Society for Clinical Oncology meeting, New Orleans, 2004.

  76. Reardon D, Friedman H, Brada M, et al.: A phase I/II trial of PTK787/ZK 222584 (PTK/ZK), a multi-VEGF receptor tyrosine kinase inhibitor, in combination with either temozolomide or lomustine for patients with recurrent glioblastoma multiforme (GBM) (TA-48). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  77. Fine HA, Kim L, Royce C, et al.: A Phase II trial of LY317615 in patients with recurrent high grade gliomas (Abstr 1511). Paper presented at the American Society for Clinical Oncology meeting, New Orleans, 2004.

  78. Shono T, Tofilon PJ, Bruner JM, et al.: Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 2001, 61:4375–4381.

    PubMed  CAS  Google Scholar 

  79. Giglio P, Levin V: Cyclooxygenase-2 inhibitors in glioma therapy. Am J Ther 2004, 11:141–143.

    Article  PubMed  Google Scholar 

  80. Joki T, Heese O, Nikas DC, et al.: Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res 2000, 60:4926–4931.

    PubMed  CAS  Google Scholar 

  81. Badie B, Schartner JM, Hagar AR, et al.: Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation. Clin Cancer Res 2003, 9:872–877.

    PubMed  CAS  Google Scholar 

  82. Groves MD, Tremont-Lukats IW, Conrad C, et al.: A Phase II trial of temozolomide plus thalidomide (NABTC 99–04) for recurrent malignant glioma. Proceedings of the 5th Congress of the European Association for Neuro-Oncology. Neuro-Oncology 2002, 4:S41.

    Google Scholar 

  83. Lamszus K, Kunkel P, Westphal M: Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 2003, 88:169–177.

    PubMed  CAS  Google Scholar 

  84. Winkler F, Kozin SV, Tong RT, et al.: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation; Role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004, 6:553–563.

    PubMed  CAS  Google Scholar 

  85. Hui AM, Zhang W, Chen W, et al.: Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells. Cancer Res 2004, 64:9115–9123.

    Article  PubMed  CAS  Google Scholar 

  86. Couldwell WT, Weiss MH, DeGiorgio CM, et al.: Clinical and radiographic response in a minority of patients with recurrent malignant gliomas treated with high-dose tamoxifen. Neurosurgery 1993, 32:485–489; discussion 489–490.

    Article  PubMed  CAS  Google Scholar 

  87. Chamberlain MC, Kormanik PA: Salvage chemotherapy with tamoxifen for recurrent anaplastic astrocytomas. Arch Neurol 1999, 56:703–708.

    Article  PubMed  CAS  Google Scholar 

  88. Spence AM, Peterson RA, Scharnhorst JD, et al.: Phase II study of concurrent continuous Temozolomide (TMZ) and Tamoxifen (TMX) for recurrent malignant astrocytic gliomas. J Neuro-oncol 2004, 70:91–95.

    Article  Google Scholar 

  89. Hercbergs AA, Goyal LK, Suh JH, et al.: Propylthiouracil-induced chemical hypothyroidism with high-dose tamoxifen prolongs survival in recurrent high grade glioma: a phase I/II study. Anticancer Res 2003, 23:617–626.

    PubMed  CAS  Google Scholar 

  90. Sykes V, Abd-Elfattah N, McCready J, et al.: Matrix metalloproteinase-1 in human gliomas (AN-24). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  91. Sarkar S, Yong VW: Interaction of extracellular matrix proteins and metalloproteinases in 3D glioma cultures facilitates the invasive process (AN-22). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  92. Groves MD, Puduvalli VK, Hess KR, et al.: Phase II trial of temozolomide plus the matrix metalloproteinase inhibitor, marimastat, in recurrent and progressive glioblastoma multiforme. J Clin Oncol 2002, 20:1383–1388.

    Article  PubMed  CAS  Google Scholar 

  93. Wong ET, Hess KR, Gleason MJ, et al.: Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 1999, 17:2572.

    PubMed  CAS  Google Scholar 

  94. MacDonald TJ, Taga T, Shimada H, et al.: Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery 2001, 48:151–157.

    Article  PubMed  CAS  Google Scholar 

  95. Nabors LB, Rosenfeld SS, Mikkelsen T, et al.: NABTT9911: a phase I trial of EMD 121974 for treatment of patients with recurrent malignant gliomas (TA-39). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  96. Zagzag D, Nomura M, Friedlander DR, et al.: Geldanamycin inhibits migration of glioma cells in vitro: a potential role for hypoxia-inducible factor (HIF-1alpha) in glioma cell invasion. J Cell Physiol 2003, 196:394–402.

    Article  PubMed  CAS  Google Scholar 

  97. Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, et al.: SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 2004, 3:737–745.

    PubMed  CAS  Google Scholar 

  98. Pluderi M, Lucini V, Caronzolo D, et al.: Long-term inhibition of glioma growth by systemic administration of human PEX. J Neurosurg Sci 2003, 47:69–78.

    PubMed  CAS  Google Scholar 

  99. Hjortland GO, Lillehammer T, Somme S, et al.: Plasminogen activator inhibitor-1 increases the expression of VEGF in human glioma cells. Exp Cell Res 2004, 294:130–139.

    Article  PubMed  CAS  Google Scholar 

  100. Yoshida D, Takahashi H, Teramoto A: Inhibition of glioma angiogenesis and invasion by SI-27, an anti-matrix metalloproteinase agent in a rat brain tumor model. Neurosurgery 2004, 54:1213–1220; discussion 1220–1211.

    Article  PubMed  Google Scholar 

  101. Adams J: The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004, 4:349–360.

    Article  PubMed  CAS  Google Scholar 

  102. Richardson PG: A review of the proteasome inhibitor bortezomib in multiple myeloma. Expert Opin Pharmacother 2004, 5:1321–1331.

    Article  PubMed  CAS  Google Scholar 

  103. Laurent N, de Bouard S, Guillamo JS, et al.: Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo. Mol Cancer Ther 2004, 3:129–136.

    PubMed  CAS  Google Scholar 

  104. Swanton C: Cell-cycle targeted therapies. Lancet Oncol 2004, 5:27–36.

    Article  PubMed  CAS  Google Scholar 

  105. Newcomb EW, Tamasdan C, Entzminger Y, et al.: Flavopiridol inhibits the growth of GL261 gliomas in vivo: implications for malignant glioma therapy. Cell Cycle 2004, 3:230–234.

    PubMed  CAS  Google Scholar 

  106. Guzman M: Cannabinoids: potential anticancer agents. Nat Rev Cancer 2003, 3:745–755.

    Article  PubMed  CAS  Google Scholar 

  107. Rubin JB, Kung AL, Klein RS, et al.: A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A 2003, 100:13513–13518.

    Article  PubMed  CAS  Google Scholar 

  108. Nakada M, Niska JA, Tran NL, et al.: Signaling Pathways of EphB2 in Invading Glioma Cells (AN-17). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  109. Koul D, Bergh S, Shen R, Yung WK: Targeting integrin linked kinase (ILK) pathway in human glioblastoma (ET-10). Paper presented at Society for Neuro-Oncology meeting, Toronto, 2004.

  110. Sanchez C, de Ceballos ML, del Pulgar TG, et al.: Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res 2001, 61:5784–5789.

    PubMed  CAS  Google Scholar 

  111. Mischel PS, Cloughesy TF, Nelson SF: DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 2004, 5:782–792. A review of molecular classification of gliomas based on DNA icroarrays.

    Article  PubMed  CAS  Google Scholar 

  112. Choe G, Horvath S, Cloughesy TF, et al.: Analysis of the phosphatidylinositol 3’-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 2003, 63:2742–2746.

    PubMed  CAS  Google Scholar 

  113. Haas-Kogan D, Prados MD, Tihan T, et al.: Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst 2005, 97:800–807.

    Google Scholar 

  114. Mellinghoff IK, Wang MY, Vivanco I, et al.: Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005, 353:2012–2024.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Y. Wen MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesari, S., Ramakrishna, N., Sauvageot, C. et al. Targeted molecular therapy of malignant gliomas. Curr Oncol Rep 8, 58–70 (2006). https://doi.org/10.1007/s11912-006-0011-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-006-0011-y

Keywords

Navigation