Skip to main content

Advertisement

Log in

LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Angiogenesis plays an important role in tumor growth. Angiogenic growth factors may be useful as biomarkers of antiangiogenic activity since their plasma concentrations correlate with the efficacy of treatments directed toward angiogenic targets. SW2 small-cell lung carcinoma (SCLC), Caki-1 renal cell carcinoma and HCT-116 colon carcinoma tumors produce measurable plasma VEGF, bFGF and TGFβ in nude mice. Mice bearing these human tumor xenografts were treated orally twice daily with the PKCβ inhibitor, LY317615 (days 14–30 for SW2 and HCT116, and days 21–39 for Caki-1). Plasma was collected every 3 days from control and treated mice. LY317615 significantly decreased plasma VEGF levels in mice bearing SW2 SCLC and Caki-1 renal cell carcinoma compared to control plasma concentrations beginning 5–7 days after initiating therapy. VEGF plasma levels remained suppressed after termination of LY317615 treatment and for the duration of the study (an additional 2 to 3 weeks). Plasma VEGF levels in mice bearing HCT116 xenografts were not altered by LY317615 treatment and plasma bFGF and TGF-β were not altered by LY317615 in any of the animals. As shown by CD31 immunohistochemical staining, LY317615 decreased intratumoral vessel density by nearly 40% in all three tumors. Only the Caki-1 tumor responded to single-agent LY317615 therapy with a measurable tumor growth delay. Thus, unexpectedly inhibition of PKCβ in vivo led to decreased VEGF production that persisted after therapy as well as to decreased intratumoral vessels. Plasma VEGF was a weak marker of response to LY317615, and plasma bFGF and TGFβ were not markers of LY317615 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

bFGF:

Basic fibroblast growth factor

PKC-β:

Protein kinase C-beta

SCLC:

Small-cell lung cancer

TGD:

Tumor growth delay

TGF-β:

Transforming growth factor-beta

VEGF:

Vascular endothelial growth factor

References

  1. Jung Y, Ahmad S, Akagi Y, Takahashi Y, Liu W, Reinmuth N, Shaheen R, Fan F, Ellis L (2000) Role of the tumor microenvironment in mediating response to anti-angiogenic therapy. Cancer Metastasis Rev 19:147–157

    CAS  PubMed  Google Scholar 

  2. Oehler MK, Caffier H (2000) Prognostic relevance of serum vascular endothelial growth factor in ovarian cancer. Anticancer Res 20:5109–5112

    CAS  PubMed  Google Scholar 

  3. Salven P, Orpana A, Teerenhovi L, Joensuu H (2000) Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood 96:3712–3718

    CAS  PubMed  Google Scholar 

  4. Gasparini G (2001) Clinical significance of determination of surrogate markers for angiogenesis in breast cancer. Crit Rev Oncol Hematol 37:97–114

    Article  CAS  PubMed  Google Scholar 

  5. Sheen-Chen S, Chen H, Sheen C, Eng H, Chen W (2001) Serum levels of transforming growth factor β1 in patients with breast cancer. Arch Surg 136:937–940

    CAS  PubMed  Google Scholar 

  6. Jacobsen J, Rasmuson T, Grankvist K, Ljungberg B (2000) Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 163:343–347

    CAS  PubMed  Google Scholar 

  7. Linderholm B, Grankvist K, Wilking N, Johansson M, Tavelin B, Henriksson R (2000) Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant chemotherapy. J Clin Oncol 18:1423–1431

    CAS  PubMed  Google Scholar 

  8. Foekens J, Peters H, Grebenchtchikov M, Look M, Meijer-van Gelder M, Geurts-Moespot A, van der Kwast T, Sweep C, Klijn G (2001) High tumor levels of VEGF predict poor response to systemic therapy in advanced breast cancer. Cancer Res 61:5407–5414

    CAS  PubMed  Google Scholar 

  9. Chin K, Greenman J, Gardiner E, Kumar H, Topping K, Monson J (2000) Pre-operative serum vascular endothelial growth factor can select patients for adjuvant treatment after curative resection in colorectal cancer. Br J Cancer 11:1425–1431

    Article  Google Scholar 

  10. Broll R, Erdmann H, Duchrow M, Oevermann E, Schwandner O, Merkert U, Bruch H, Windhovel U (2001) Vascular endothelial growth factor (VEGF)—a valuable serum tumor marker in patients with colorectal cancer? Eur J Surg Oncol 27:37–42

    Article  CAS  PubMed  Google Scholar 

  11. Werther K, Christensen I, Brunner N, Nielsen H, and the Danish RANX05 Colorectal Cancer Study Group (2000) Soluble vascular endothelial growth factor levels in patients with primary colorectal carcinoma. Eur J Surg Oncol 26:657–662

    Article  CAS  PubMed  Google Scholar 

  12. Takeda A, Shimada H, Imaseki H, Okazumi S, Natsume T, Suzuki T, Ochiai T (2000) Clinical significance of serum vascular endothelial growth factor in colorectal cancer patients: correlation with clinicopathological factors and tumor markers. Oncol Rep 7:333–338

    CAS  PubMed  Google Scholar 

  13. Slaton J, Inoue K, Perrotte P, El-Naggar A, Swanson D, Fidler I, Dinney C (2001) Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 158:735–743

    Google Scholar 

  14. Han H, Silverman J, Santucci T, Macherey R, dAmato T, Tung M, Weyant R, Landreneau R (2001) Vascular endothelial growth factor expression in stage I non-small cell lung cancer correlates with neoangiogenesis and a poor prognosis. Ann Surg Oncol 8:72–79

    Article  CAS  PubMed  Google Scholar 

  15. Baillie R, Carlile J, Pendleton N, Schor A (2001) Prognostic value of vascularity and vascular endothelial growth factor expression in non-small cell lung cancer. J Clin Pathol 54:116–120

    Google Scholar 

  16. Kido Y (2001) Vascular endothelial growth factor (VEGF) serum concentration changes during chemotherapy in patients with lung cancer. Kurume Med J 48:43–47

    CAS  PubMed  Google Scholar 

  17. Abendstein B, Daxenbichler G, Windbichler G, Zeimet A, Geurts A, Sweep F, Marth C (2000) Predictive value of uPA, PAI-1, HER-2, and VEGF in the serum of ovarian cancer patients. Anticancer Res 20:569–572

    CAS  PubMed  Google Scholar 

  18. Hyodo I, Doi T, Endo H, Hosokawa Y, Nishikawa Y, Tanimizu M, Jinno K, Kotani Y (1998) Clinical significance of plasma vascular endothelial growth factor in gastrointestinal cancer. Eur J Cancer 34:2041–2045

    Article  CAS  PubMed  Google Scholar 

  19. Takiuchi H, Hirata I, Kawabe S, Egashira Y, Katsu K (2000) Immunohistochemical expression of vascular endothelial growth factor can predict response to 5-fluorouracil and cisplatin in patients with gastric adenocarcinoma. Oncol Rep 7:841–846

    CAS  PubMed  Google Scholar 

  20. Pal S, Claffey KP, Cohen H, Mukhopadhay D (1998) Activation of Sp-1 mediated vascular permeability growth factor transcription requires specific interaction with protein kinase C zeta. J Biol Chem 273:26277–26280

    Article  CAS  PubMed  Google Scholar 

  21. Pal S, Datta K, Khosravi-Far R, Mukhopadhyay D (2001) Role of Protein kinase C zeta ras-mediated transcriptional activation of vascular permeability factor/vascular endothelial growth factor expression. J Biol Chem 276:2395–2403

    Article  CAS  PubMed  Google Scholar 

  22. Shih S, Mullen A, Abrams K, Mukhopadhyay D, Claffey K (1999) Role of protein kinase C isoforms in phorbol ester-induced vascular endothelial growth factor expression in human glioblastoma cells. J Biol Chem 274:15407–15414

    Article  CAS  PubMed  Google Scholar 

  23. Chabannes E, Fauconnet S, Bernardini S, Wallerand H, Adessi G, Bittard H (2001) Protein kinase C signaling pathway is involved in the regulation of vascular endothelial growth factor expression in human bladder transitional cancer. Cell Signal 13:585–591

    Article  CAS  PubMed  Google Scholar 

  24. Aiello L, Bursell S, Clemont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla T, Ways K, Jirousek M, Smith L, King G (1997) Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 46:1473–1480

    CAS  PubMed  Google Scholar 

  25. Danis R, Bingaman D, Jirousek M, Yang Y (1998) Inhibition of intraocular neovascularization caused by retinal ischemia in pigs by PKCbeta inhibition with LY333531. Ophthalmol Vis Sci 39:171–179

    CAS  Google Scholar 

  26. Ishii H, Jirousek M, Koya D, Takagi C, Xia P, Clermont A, Bursell S, Kern T, Ballas L, Heath W, Stramm L, Feener E, King G (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor (see comments). Science 272:728–731

    CAS  PubMed  Google Scholar 

  27. Jirousek M, Gillig J, Gonzalez C, Heath W, McDonald J, Neal D, Rito C, Singh U, Stramm L, Melikian-Badalian A, Baevsky M, Ballas L, Hall S, Winneroski L, Faul M (1996) (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16,21-dimetheno-1H,13H-dibenzo[e,k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)-dione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C beta. J Med Chem 39:2664–2671

    Article  CAS  PubMed  Google Scholar 

  28. Teicher BA, Alvarez E, Menon K, Esterman MA, Considine E, Shih C, Faul MM (2002) Antiangiogenic effects of a protein kinase C beta-selective small molecule. Cancer Chemother Pharmacol 49:69–77

    Article  CAS  PubMed  Google Scholar 

  29. Teicher BA, Menon K, Alvarez E, Galbreath E, Shih C, Faul MM (2001) Antiangiogenic and antitumor effects of a protein kinase C beta inhibitor in human HT-29 colon carcinoma and human Caki-1 renal cell carcinoma xenografts. Anticancer Res 21:3175–3184

    CAS  PubMed  Google Scholar 

  30. Teicher BA, Menon K, Alvarrez E, Galbreath E, Shih C, Faul MM (2001) Antiangiogenic and antitumor effects of a protein kinase C beta inhibitor in murine Lewis lung carcinoma and human Calu-6 non-small cell lung carcinoma xenografts. Cancer Chemother Pharmacol 48:473–480

    Article  CAS  PubMed  Google Scholar 

  31. Teicher BA, Menon K, Alvarez E, Liu P, Shih C, Faul MM (2001) Antiangiogenic and antitumor effects of a protein kinase C beta inhibitor in human hepatocellular and gastric cancer xenografts. In Vivo 15:185–193

    CAS  PubMed  Google Scholar 

  32. Teicher BA, Menon K, Alvarez E, Galbreath E, Shih C, Faul MM (2001) Antiangiogenic and antitumor effects of a protein kinase C beta inhibitor in human T98G glioblastoma multiforme xenografts. Clin Cancer Res 7:634–640

    CAS  PubMed  Google Scholar 

  33. Thornton DE, Keyes K, Mann L, Marder P, Cox K, Treadway P, Sherman M, Galbreath E, Menon K, Iversen P, Chen Y-F, Teicher BA (2002) Determination of cancer growth factor biomarkers in plasma from mice bearing subcutaneous human tumor xenografts using Luminex Multiplex technology. Proc Am Assoc Cancer Res 43:897

    Google Scholar 

  34. Keyes K, Cox K, Treadway P, Mann L, Shih C, Faul MM, Teicher BA (2002) An in vitro tumor model: analysis of angiogenic factor expression after chemotherapy. Cancer Res 62:5597–5602

    CAS  PubMed  Google Scholar 

  35. Keyes KA, Mann L, Cox K, Treadway P, Iversen P, Chen Y-F, Teicher BA (2003) Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex multiplex technology. Cancer Chemother Pharmacol 51:321–327

    CAS  PubMed  Google Scholar 

  36. Herbst RS, Thornton DE, Kies MS, Sinha V, Flanagan S, Cassidy CA, Carducci MA (2002) Phase 1 study of LY317615, a protein kinase Cβ inhibitor (abstract 326). Proceedings ASCO Annual Meeting

  37. Keyes KA, Mann L, Cox K, Treadway P, Mann L, Iversen P, Chen Y, Teicher BA (2002) Circulating angiogenic growth factor levels in mice bearing human tumors using Luminex Multiplex technology (abstract 4451). Proceedings ASCO Annual Meeting

  38. Kakeji Y, Maehara Y, Ikebe M, Teicher BA (1997) Dynamics of tumor oxygenation, CD31 staining and transforming growth factor-beta levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma. Int J Radiat Oncol Biol Phys 37:1115–1123

    Article  CAS  PubMed  Google Scholar 

  39. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med 1:27–23

    CAS  PubMed  Google Scholar 

  40. Teicher BA (ed) (1999) Antiangiogenic agents in cancer therapy. Humana Press, New Jersey

  41. Myoung H, Hong S, Kim Y, Hong S, Kim M (2001) Evaluation of the anti-tumor and anti-angiogenic effect of paclitaxel and thalidomide on the xenotransplanted oral squamous cell carcinoma. Cancer Lett 163:191–200

    Article  CAS  PubMed  Google Scholar 

  42. Guba M, Cernaianu G, Koehl G, Geissler E, Jauch K, Anthuber M, Falk W, Steinbauer A (2001) Primary tumor promoters dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res 61:5575–5579

    CAS  PubMed  Google Scholar 

  43. Kim K, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362:841–844

    CAS  PubMed  Google Scholar 

  44. Asano M, Yukita A, Suzuki H (1999) Wide spectrum of antitumor activity of a neutralizing monoclonal antibody to human vascular endothelial growth factor. Jpn J Cancer Res 90:93–100

    CAS  PubMed  Google Scholar 

  45. Monsky WL, Carreira CM, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8:1008–1013

    CAS  PubMed  Google Scholar 

  46. Fong T, Shawver L, Tang C, App H, Powell T, Kim Y, Schreck R, Wang X, Risau W, Ullrich A, Hirth K, McMahon G (1999) SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 59:99–106

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly A. Teicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keyes, K.A., Mann, L., Sherman, M. et al. LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother Pharmacol 53, 133–140 (2004). https://doi.org/10.1007/s00280-003-0713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-003-0713-x

Keywords

Navigation