Skip to main content

Advertisement

Log in

Mycobacterium abscessus Complex Infections in Children: A Review

  • Pediatric Infectious Diseases (I Brook, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Infections in children with Mycobacterium abscessus complex represent a particular challenge for clinicians. Increasing incidence of these infections worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. Published medical literature was reviewed, with emphasis on material published in the past 5 years.

Recent Findings

Increasing availability of new diagnostic tools, such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and custom PCRs, has provided unique insights into the subspecies within the complex and improved diagnostic certainty. Microbiological review of all recent isolates at the University of Minnesota Medical Center was also conducted, with description of the antimicrobial sensitivity patterns encountered in our center, and compared with those published from other centers in the recent literature. A discussion of conventional antimicrobial treatment regimens, alongside detailed description of the relevant antimicrobials, is derived from recent publications.

Summary

Antimicrobial therapy, combined with surgical intervention in some cases, remains the mainstay of pediatric care. Ongoing questions remain regarding the transmission mechanics, immunologic vulnerabilities exploited by these organisms in the host, and the optimal antimicrobial regimens necessary to enable a reliable cure. Updated treatment guidelines based on focused clinical studies in children and accounting especially for the immunocompromised children at greatest risk are very much needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother. 2012;67(4):810–8.

    Article  CAS  PubMed  Google Scholar 

  2. Leao SC, Tortoli E, Viana-Niero C, Ueki SYM, Lima KVB, Lopes ML, et al. Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of the mycobacterium chelonae-M. Abscessus group is needed. J Clin Microbiol. 2009;47(9):2691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leao SC, Tortoli E, Paul Euzé J, Garcia MJ. Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacteri. Int J Syst Evol Microbiol. Sep. 2011;61(9):2311–3.

    Article  PubMed  Google Scholar 

  4. Blauwendraat C, Dixon GLJ, Hartley JC, Foweraker J, Harris KA. The use of a two-gene sequencing approach to accurately distinguish between the species within the Mycobacterium abscessus complex and Mycobacterium chelonae. Eur J Clin Microbiol Infect Dis. 2012;31(8):1847–53.

    Article  CAS  PubMed  Google Scholar 

  5. Harada T, Akiyama Y, Kurashima A, Nagai H, Tsuyuguchi K, Fujii T, et al. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J Clin Microbiol. 2012;50(11):3556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shin SJ, Choi GE, Cho SN, Woo SY, Jeong BH, Jeon K, et al. Mycobacterial genotypes are associated with clinical manifestation and progression of lung disease caused by Mycobacterium abscessus and Mycobacterium massiliense. Clin Infect Dis. 2013;57(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  7. Jeong SH, Kim SY, Huh HJ, Ki CS, Lee NY, Kang CI, et al. Mycobacteriological characteristics and treatment outcomes in extrapulmonary Mycobacterium abscessus complex infections. Int J Infect Dis. 2017;60:49–56.

    Article  PubMed  Google Scholar 

  8. Stout JE, Floto RA. Treatment of Mycobacterium abscessus: all macrolides are equal, but perhaps some are more equal than others. Am J Respir Crit Care Med. 2012;186(9):822–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Christianson S, Grierson W, Kein D, Tyler AD, Wolfe J, Sharma MK. Time-to-detection of inducible macrolide resistance in Mycobacterium abscessus subspecies and its association with the erm(41) sequevar. PLoS One. 2016;11(8):e0158723.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rubio M, March F, Garrigó M, Moreno C, Español M, Coll P. Inducible and acquired clarithromycin resistance in the Mycobacterium abscessus complex. PLoS One. 2015;10(10):1–10.

    Article  CAS  Google Scholar 

  11. Roux A, Viljoen A, Bah A, Simeone R, Bernut A, Laencina L, et al. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol. 2016;6(11):160185.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, Rottman M, et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One. 2009;4:6.

    Article  Google Scholar 

  13. Matsumoto CK, Bispo PJM, Santin K, Nogueira CL, Leão SC. Demonstration of plasmid-mediated drug resistance in Mycobacterium abscessus. J Clin Microbiol. 2014;52(5):1727–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183(3):405–10.

    Article  PubMed  Google Scholar 

  15. Shallom SJ, Gardina PJ, Myers TG, Sebastian Y, Conville P, Calhoun LB, et al. New rapid scheme for distinguishing the subspecies of the Mycobacterium abscessus group and identifying Mycobacterium massiliense isolates with inducible clarithromycin resistance. J Clin Microbiol. 2013;51(9):2943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park J, Cho J, Lee C-H, Han SK, Yim J-J. Progression and treatment outcomes of lung disease caused by Mycobacterium abscessus and Mycobacterium massiliense. Clin Infect Dis. 2017;64(3):301–8.

    Article  PubMed  Google Scholar 

  17. Pham-Huy A, Robinson JL, Tapiéro B, Bernard C, Daniel S, Dobson S, et al. Current trends in nontuberculous mycobacteria infections in Canadian children: a pediatric investigators collaborative network on infections in Canada (PICNIC) study. Paediatr Child Health (Oxford). 2010;15(5):276–82.

    Article  Google Scholar 

  18. Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis. 2016;45:123–34.

    Article  PubMed  Google Scholar 

  19. Vu T-T-V, Daniel SJ, Quach C. Nontuberculous mycobacteria in children: a changing pattern. J Otolaryngol. 2005;34(Suppl 1):S40–4.

    PubMed  Google Scholar 

  20. Hatzenbuehler LA, Starke JR. Common presentations of nontuberculous mycobacterial infections. Pediatr Infect Dis J. 2014;33(1):89–91.

    Article  PubMed  Google Scholar 

  21. Davies HD, C. O. I. COMMITTEE ON INFECTIOUS DISEASES, Saag K, Teng G, Patkar N, Toussi S, et al. Infectious complications with the use of biologic response modifiers in infants and children. Pediatrics. 2016;59(6):762–84.

    Google Scholar 

  22. Apiwattankul N, Flynn PM, Hayden RT, Adderson EE. Infections caused by rapidly growing Mycobacteria spp in children and adolescents with cancer. J Pediatric Infect Dis Soc. 2015;4(2):104–13.

    Article  PubMed  Google Scholar 

  23. Ng SS, Tay YK, Koh MJ, Thoon KC, Sng LH. Pediatric cutaneous nontuberculous Mycobacterium infections in Singapore. Pediatr Dermatol. 2015;32(4):488–94.

    Article  PubMed  Google Scholar 

  24. Heraud D, Carr RD, Mckee J, Dehority W. Nontuberculous mycobacterial adenitis outside of the head and neck region in children : a case report and systematic review of the literature. Int J Mycobacteriology. 2016;5(3):351–3.

    Article  Google Scholar 

  25. •• Iroh Tam P-Y, Kline S, Wagner JE, Guspiel A, Streifel A, Ward G, et al. Rapidly growing mycobacteria among pediatric hematopoietic cell transplant patients traced to the hospital water supply. Pediatr Infect Dis J. 2014;33(10):1043–6. Pediatric BMT outbreak 3 : Recent publication of an outbreak of rapidly growing atypical mycobacteria in a pediatric hospital bone marrow transplant ward, highlighting the environmental mechanisms implicated in the outbreak, as well as a contemporary discussion of infection control practices relating to atypical mycobacterial infections in such settings

    Article  PubMed  Google Scholar 

  26. Lee MR, Cheng A, Lee YC, Yang CY, Lai CC, Huang YT, et al. CNS infections caused by Mycobacterium abscessus complex: clinical features and antimicrobial susceptibilities of isolates. J Antimicrob Chemother. 2012;67(1):222–5.

    Article  CAS  PubMed  Google Scholar 

  27. • Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416. ATS/IDSA guidelines statement 1 : The most current summation of diagnostic and treatment recommendations from two national organizations, providing succinct discussion of clinically relevant peer-reviewed information about atypical mycobacterial infections. Considered a standard reference in pediatric clinical practice for management of atypical mycobacterial infections in lieu of age-specific guidelines

    Article  CAS  PubMed  Google Scholar 

  28. Kapnadak SG, Hisert KB, Pottinger PS, Limaye AP, Aitken ML. Infection control strategies that successfully controlled an outbreak of Mycobacterium abscessus at a cystic fibrosis center. Am J Infect Control. 2016;44(2):154–9.

    Article  PubMed  Google Scholar 

  29. Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2016;354(6313):751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381(9877):1551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fletcher LA, Chen Y, Whitaker P, Denton M, Peckham DG, Clifton IJ. Survival of Mycobacterium abscessus isolated from people with cystic fibrosis in artificially generated aerosols. Eur Respir J. 2016;48(6):1789–91.

    Article  PubMed  Google Scholar 

  32. Manuscript A. Europe PMC funders group population-level genomics identifies the emergence and global spread of a human transmissible multidrug-resistant nontuberculous mycobacterium. Science. 2017;354(6313):751–7.

    Google Scholar 

  33. Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J Clin Microbiol. 2013;51(9):3006–11.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kline S, Cameron S, Streifel A, Yakrus MA, Kairis F, Peacock K, et al. An outbreak of bacteremias associated with Mycobacterium mucogenicum in a hospital water supply. Infect Control Hosp Epidemiol. 2004;25(12):1042–9.

    Article  PubMed  Google Scholar 

  35. Guspiel A, Menk J, Streifel A, Messinger K, Wagner J, Ferrieri P, et al. Management of risks from water and ice from ice machines for the very immunocompromised host: a process improvement project prompted by an outbreak of rapidly growing mycobacteria on a pediatric hematopoietic stem cell transplant (Hsct) unit. Infect Control Hosp Epidemiol. 2017;41:1–9.

    Google Scholar 

  36. Babb T, Ph D, Levine B, Philley J. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med. 2012;185:231–2.

    Article  Google Scholar 

  37. Morimoto K, Hasegawa N, Izumi K, Namkoong H, Uchimura K, Yoshiyama T, et al. A laboratory-based analysis of nontuberculous mycobacterial lung disease in Japan from 2012 to 2013. Ann. Am. Thorac. Soc. 2017;14(1):49–56.

    Article  PubMed  Google Scholar 

  38. Hawkins HA, Lilly CM. A patient-based analysis of the geographic distribution of Mycobacterium Avium complex, Mycobacterium abscessus, and Mycobacterium kansasii infections in the United States. Chest. 2017;151(4):947–50.

    Article  Google Scholar 

  39. Schnabel D, Esposito DH, Gaines J, Ridpath A, Barry MA, Feldman KA, et al. Multistate US outbreak of rapidly growing mycobacterial infections associated with medical tourism to the Dominican Republic, 2013-2014(1). Emerg Infect Dis. 2016;22(8):1340–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chi C-Y, Lin C-H, Ho M-W, Ding J-Y, Huang W-C, Shih H-P, et al. Clinical manifestations, course, and outcome of patients with neutralizing anti-interferon-g autoantibodies and disseminated nontuberculous mycobacterial infections. Medicine (Baltimore). 2016;95(25)

  41. Sermet-Gaudelus I, Le Bourgeois M, Pierre-Audigier C, Offredo C, Guillemot D, Halley S, et al. Mycobacterium abscessus and children with cystic fibrosis. Emerg Infect Dis. 2003;9(12):1587–91.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Catherinot E, Roux AL, Vibet MA, Bellis G, Ravilly S, Lemonnier L, et al. Mycobacterium avium and Mycobacterium abscessus complex target distinct cystic fibrosis patient subpopulations. J Cyst Fibros. 2013;12(1):74–80.

    Article  PubMed  Google Scholar 

  43. Bar-On O, Mussaffi H, Mei-Zahav M, Prais D, Steuer G, Stafler P, et al. Increasing nontuberculous mycobacteria infection in cystic fibrosis. J Cyst Fibros. 2015;14(1):53–62.

    Article  PubMed  Google Scholar 

  44. Do PCM, Nussbaum E, Moua J, Chin T, Randhawa I. Clinical significance of respiratory isolates for Mycobacterium abscessus complex from pediatric patients. Pediatr Pulmonol. 2013;48(5):470–80.

    Article  PubMed  Google Scholar 

  45. Czaja CA, Levin AR, Cox CW, Vargas D, Daley CL, Cott GR. Improvement in quality of life after therapy for Mycobacterium abscessus group lung infection a prospective cohort study. Ann Am Thorac Soc. 2016;13(1):40–8.

    Article  PubMed  Google Scholar 

  46. Harris KA, Kenna DTD, Blauwendraat C, Hartley JC, Turton JF, Aurora P, et al. Molecular fingerprinting of Mycobacterium abscessus strains in a cohort of pediatric cystic fibrosis patients. J Clin Microbiol. 2012;50(5):1758–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roux AL, Catherinot E, Soismier N, Heym B, Bellis G, Lemonnier L, et al. Comparing Mycobacterium massiliense and Mycobacterium abscessus lung infections in cystic fibrosis patients. J Cyst Fibros. 2015;14(1):63–9.

    Article  PubMed  Google Scholar 

  48. Leung JM, Olivier KN. Nontuberculous mycobacteria: the changing epidemiology and treatment challenges in cystic fibrosis. Curr Opin Pulm Med. 2013;19(6):662–9.

    Article  PubMed  Google Scholar 

  49. •• Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann J, Nick JA et al. Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of nontuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2015. US/European cystic fibrosis consensus recommendations 2 : The most current summary of expert opinion based on peer-reviewed literature on the management of patients with cystic fibrosis, including detailed discussion on the epidemiology, diagnosis, and management of infections particular to this group.

  50. Böttger EC. Transmission of M abscessus in patients with cystic fibrosis. Lancet. 2013;382(9891):503–4.

    Article  PubMed  Google Scholar 

  51. Waters V, Ratjen F. Antibiotic treatment for nontuberculous mycobacteria lung infection in people with cystic fibrosis ( review ). Cochrane Database Syst Rev. 2016;1(12):1–17.

    Google Scholar 

  52. Qvist T, Pressler T, Thomsen VO, Skov M, Iversen M, Katzenstein TL. Nontuberculous mycobacterial disease is not a contraindication to lung transplantation in patients with cystic fibrosis: a retrospective analysis in a Danish patient population. Transplant Proc. 2013;45(1):342–5.

    Article  CAS  PubMed  Google Scholar 

  53. Robinson PD, Harris KA, Aurora P, Hartley JC, Tsang V, Spencer H. Paediatric lung transplant outcomes vary with Mycobacterium abscessus complex species. Eur Respir J. 2013;41(5):1230–2.

    Article  PubMed  Google Scholar 

  54. Shah SK, McAnally KJ, Seoane L, Lombard GA, LaPlace SG, Lick S, et al. Analysis of pulmonary non-tuberculous mycobacterial infections after lung transplantation. Transpl Infect Dis. 2016:1–7.

  55. Suzuki H, Yoshida S, Yoshida A, Okuzumi K, Fukusima A, Hishinuma A. A novel cluster of Mycobacterium abscessus complex revealed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Diagn Microbiol Infect Dis. 2015;83(4):365–70.

    Article  CAS  PubMed  Google Scholar 

  56. Buckwalter SP, Olson SL, Connelly BJ, Lucas BC, Rodning AA, Walchak RC, et al. Evaluation of matrix-assisted laser desorption ionization−time of flight mass spectrometry for identification of Mycobacterium species, Nocardia species, and other aerobic Actinomycetes. J Clin Microbiol. 2016;54(2):376–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fangous M, Mougari F, Gouriou S, Calvez E, Raskine L, Cambau E, et al. Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2014;52(9):3362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanson KE, Slechta ES, Muir H, Barker AP. Rapid molecular detection of inducible macrolide resistance in Mycobacterium chelonae and M. abscessus strains: a replacement for 14-day susceptibility testing? J Clin Microbiol. 2014;52(5):1705–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Caverly LJ, Carmody LA, Haig SJ, Kotlarz N, Kalikin LM, Raskin L, et al. Culture-independent identification of nontuberculous mycobacteria in cystic fibrosis respiratory samples. PLoS One. 2016;11(4):1–13.

    Article  Google Scholar 

  60. Keerthirathne TP, Magana-Arachchi DN, Madegedara D, Sooriyapathirana SS. Real time PCR for the rapid identification and drug susceptibility of Mycobacteria present in bronchial washings. BMC Infect Dis. 2016;16(1):607.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Macheras E, Konjek J, Roux AL, Thiberge JM, Bastian S, Leão SC, et al. Multilocus sequence typing scheme for the Mycobacterium abscessus complex. Res Microbiol. 2014;165(2):82–90.

    Article  CAS  PubMed  Google Scholar 

  62. Dinah Binta Aziz JWPT, Low JL, Wu M-L, Gengenbacher M. Rifabutin is active against Mycobacterium abscessus complex. Antimicrob Agents Chemother. 2017;61(6)

  63. McShane PJ, Glassroth J. Pulmonary disease due to nontuberculous mycobacteria current state and new insights. Chest. 2015;148(6):1517–27. https://doi.org/10.1378/chest.15-0458.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Naselli A, Losurdo G, Avanzini S, et al. Management of nontuberculous mycobacterial lymphadenitis in a tertiary care children’s hospital: A 20 year experience. J Pediatr Surg. 2016;8180(98):56–63. https://doi.org/10.1016/j.jpedsurg.2016.08.005.

    Google Scholar 

  65. Broda A, Jebbari H, Beaton K, Mitchell S, Drobniewski F. Comparative drug resistance of Mycobacterium abscessus and M. chelonae isolates from patients with and without cystic fibrosis in the United Kingdom. J Clin Microbiol. 2013;51(1):217–23. https://doi.org/10.1128/JCM.02260-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown-Elliott BA, Killingley J, Vasireddy S, Bridge L, Wallace RJ. In vitro comparison of ertapenem, meropenem, and imipenem against isolates of rapidly growing mycobacteria and nocardia by use of broth microdilution and etest. J Clin Microbiol. 2016;54(6):1586–92. https://doi.org/10.1128/JCM.00298-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ferro BE, Meletiadis J, Wattenberg M, et al. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother. 2016;60(2):1097–105. https://doi.org/10.1128/AAC.02615-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang Z, Lu J, Liu M, et al. In vitro activity of clarithromycin in combination with other antimicrobial agents against Mycobacterium abscessus and Mycobacterium massiliense. Int J Antimicrob Agents. 2017;49(3):383–6. https://doi.org/10.1016/j.ijantimicag.2016.12.003.

    Article  CAS  PubMed  Google Scholar 

  69. Rolla M, D’Andrilli A, Rendina EA, Diso D, Venuta F. Cystic fibrosis and the thoracic surgeon. Eur J Cardiothorac Surg. 2011;39(5):716–25. https://doi.org/10.1016/j.ejcts.2010.07.024.

    Article  PubMed  Google Scholar 

  70. Novosad SA, Beekmann SE, Polgreen PM, Mackey K, Winthrop KL. Treatment of mycobacterium abscessus infection. Emerg Infect Dis. 2016;22(3):511–4. https://doi.org/10.3201/eid2203.150828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dubée V, Bernut A, Cortes M, et al. β-Lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother. 2014;70(4):1051–8. https://doi.org/10.1093/jac/dku510.

    PubMed  Google Scholar 

  72. Lefebvre AL, Le Moigne V, Bernut A, et al. Inhibition of the β-lactamase BlaMab by avibactam improves the in vitro and in vivo efficacy of imipenem against Mycobacterium abscessus. Antimicrob Agents Chemother. 2017;61(4):e02440–16. https://doi.org/10.1128/AAC.02440-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brown-Elliott BA, Wallace RJ. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J Clin Microbiol. 2017;55(6):1747–54. https://doi.org/10.1128/JCM.00274-17.

    Article  PubMed  Google Scholar 

  74. Abdalla MY, Switzer BL, Goss CH, Aitken ML, Singh PK, Britigan BE. Gallium compounds exhibit potential as new therapeutic agents against Mycobacterium abscessus. Antimicrob Agents Chemother. 2015;59(8):4826–34. https://doi.org/10.1128/AAC.00331-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Choi GE, Min KN, Won CJ, Jeon K, Shin SJ, Koh WJ. Activities of moxifloxacin in combination with macrolides against clinical isolates of Mycobacterium abscessus and Mycobacterium massiliense. Antimicrob Agents Chemother. 2012;56(7):3549–55. https://doi.org/10.1128/AAC.00685-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee SH, Yoo HK, Kim SH, et al. The drug resistance profile of mycobacterium abscessus group strains from korea. Ann Lab Med. 2014;34(1):31–7. https://doi.org/10.3343/alm.2014.34.1.31.

    Article  PubMed  Google Scholar 

  77. Namkoong H, Morimoto K, Nishimura T, et al. Clinical efficacy and safety of multidrug therapy including thrice weekly intravenous amikacin administration for Mycobacterium abscessus pulmonary disease in outpatient settings: a case series. BMC Infect Dis. 2016;16(1):396. https://doi.org/10.1186/s12879-016-1689-6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Thee S, Garcia-Prats AJ, Draper HR, et al. Pharmacokinetics and Safety of Moxifloxacin in Children With Multidrug-Resistant Tuberculosis. Clin Infect Dis. 2015;60(4):549–56. https://doi.org/10.1093/cid/ciu868.

    Article  PubMed  CAS  Google Scholar 

  79. Lavollay M, Dubée V, Heym B, et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect. 2014;20(5):7–10. https://doi.org/10.1111/1469-0691.12405.

    Article  Google Scholar 

  80. Singh S, Bouzinbi N, Chaturvedi V, Godreuil S, Kremer L. In vitro evaluation of a new drug combination against clinical isolates belonging to the Mycobacterium abscessus complex. Clin Microbiol Infect. 2014;20(12):O1124–7. https://doi.org/10.1111/1469-0691.12780.

    Article  CAS  PubMed  Google Scholar 

  81. Philley JV, DeGroote MA, Honda JR, et al. Treatment of Non-Tuberculous Mycobacterial Lung Disease. Curr Treat Options Infect Dis. 2016;8(4):275–96. https://doi.org/10.1007/s40506-016-0086-4.

    Article  PubMed  Google Scholar 

  82. Ferro BE, Srivastava S, Deshpande D, et al. Tigecycline Is Highly Efficacious In Mycobacterium abscessus Pulmonary Disease. Antimicrob Agents Chemother. 2016;60(February):AAC.03112-15. https://doi.org/10.1128/AAC.03112-15

  83. Iosifidis E, Violaki A, Michalopoulou E, et al. Use of Tigecycline in Pediatric Patients With Infections Predominantly Due to Extensively Drug-Resistant Gram-Negative Bacteria. J Pediatric Infect Dis Soc. 2017;6(2):123–8. https://doi.org/10.1093/jpids/piw009.

    PubMed  Google Scholar 

  84. Li YM, Tong XL, Xu HT, Ju Y, Cai M, Wang C. Prevalence and Antimicrobial Susceptibility of Mycobacterium abscessus in a General Hospital. China. Biomed Environ Sci. 2016;29(2):85–90. https://doi.org/10.3967/bes2016.009.

    PubMed  Google Scholar 

  85. Kim SY, Kim CK, Bae IK, et al. The drug susceptibility profile and inducible resistance to macrolides of mycobacterium abscessus and mycobacterium massiliense in Korea. Diagn Microbiol Infect Dis. 2015;81(2):107–11. https://doi.org/10.1016/j.diagmicrobio.2014.10.007.

    Article  CAS  PubMed  Google Scholar 

  86. Nie W, Duan H, Huang H, Lu Y, Bi D, Chu N. Species identification of Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii using rpoB and hsp65, and susceptibility testing to eight antibiotics. Int J Infect Dis. 2014;25:170–4. https://doi.org/10.1016/j.ijid.2014.02.014.

    Article  CAS  PubMed  Google Scholar 

  87. Cowman S, Burns K, Benson S, Wilson R, Loebinger MR. The antimicrobial susceptibility of non-tuberculous mycobacteria. J Infect. 2016;72(3):324–31. https://doi.org/10.1016/j.jinf.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  88. Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus complex infections in humans. Emerg Infect Dis. 2015;21(9):1638–46. https://doi.org/10.3201/eid2109.141634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Kline.

Ethics declarations

Conflict of Interest

Drs. Sabin, Ferrieri, and Kline declare no conflicts of interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

This article is part of the Topical Collection on Pediatric Infectious Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabin, A.P., Ferrieri, P. & Kline, S. Mycobacterium abscessus Complex Infections in Children: A Review. Curr Infect Dis Rep 19, 46 (2017). https://doi.org/10.1007/s11908-017-0597-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-017-0597-2

Keywords

Navigation