Skip to main content

Advertisement

Log in

Polycystic Ovary Syndrome as a Paradigm for Prehypertension, Prediabetes, and Preobesity

  • Pathogenesis of Hypertension (W Elliott, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The polycystic ovary syndrome (PCOS) is a hyperandrogenic disorder affecting 5–10 % of premenopausal women. These patients gather multiple cardiovascular risk factors from early ages. Hence, PCOS is currently considered a paradigm of cardiometabolic disease. Research about its pathogenesis has grown over the last years, covering from the potential fetal developmental programming to the molecular basis of adipose tissue dysfunction, insulin resistance, inflammation, oxidative stress, sympathetic hyperactivity, and endothelial dysfunction. All these abnormalities put these patients at an increased risk of vascular events. Thus, practitioners attending these women must have a broad pathophysiological knowledge of PCOS. We here review recent scientific insights about its cardiometabolic phenotype focusing on the pathogenesis of obesity, type 2 diabetes mellitus, and hypertension. We emphasize that a diagnosis of PCOS, especially if accompanied by excess weight, must be followed by a complete and periodical cardiometabolic evaluation and by the aggressive management of the abnormalities identified, with the aim of preventing future cardiovascular morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sanchón R, Gambineri A, Alpañés M, Martínez-García MA, Pasquali R, Escobar-Morreale HF. Prevalence of functional disorders of androgen excess in unselected premenopausal women: a study in blood donors. Hum Reprod. 2012;27(4):1209–16.

    Article  PubMed  Google Scholar 

  2. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030. This comprehensive review summarizes the “state-of-the-art” of insulin resistance in patients with PCOS from their molecular-genetic basis in adipose tissue and peripheral tissues to their metabolic consequences.

    Article  CAS  PubMed  Google Scholar 

  3. Randeva HS, Tan BK, Weickert MO, Lois K, Nestler JE, Sattar N, et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev. 2012;33(5):812–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rosenfield RL. Adolescent anovulation: maturational mechanisms and implications. J Clin Endocrinol Metab. 2013;98(9):3572–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with the polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37.

    Article  CAS  PubMed  Google Scholar 

  6. Borruel S, Fernández-Durán E, Alpañés M, Martí D, Alvarez-Blasco F, Luque-Ramírez M, et al. Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS). J Clin Endocrinol Metab. 2013;98(3):1254–63. This study shows as men and women with PCOS have increased amount of total body fat compared with non-hyperandrogenic women, specially at intraperitoneal and mesenteric levels, in accordance with a masculinized body fat distribution in PCOS.

    Article  CAS  PubMed  Google Scholar 

  7. Mumm H, Kamper-Jørgensen M, Nybo Andersen AM, Glintborg D, Andersen M. Birth weight and polycystic ovary syndrome in adult life: a register-based study on 523,757 Danish women born 1973–1991. Fertil Steril. 2013;99(3):777–82.

    Article  PubMed  Google Scholar 

  8. Ibáñez L, López-Bermejo A, Díaz M, Marcos MV. Endocrinology and gynecology of girls and women with low birth weight. Fetal Diagn Ther. 2011;30(4):243–9.

    Article  PubMed  Google Scholar 

  9. Glueck CJ, Morrison JA, Daniels S, Wang P, Stroop D. Sex hormone binding globulin, oligomenorrhea, polycystic ovary syndrome, and childhood insulin at 14 years of age predict metabolic syndrome and class III obesity at 24 years. J Pediatr. 2011;159(2):308–13.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Krentz AJ, von Mühlen D, Barrett-Connor E. Adipocytokine profiles in a putative novel postmenopausal polycystic ovary syndrome (PCOS) phenotype parallel those in premenopausal PCOS: the Rancho Bernardo Study. Metabolism. 2012;61(9):1238–41.

    Article  CAS  PubMed  Google Scholar 

  11. Luque-Ramírez M, Martínez-García MA, Montes-Nieto R, Fernández-Durán E, Insenser M, Alpañés M, et al. Sexual dimorphism in adipose tissue function as evidenced by circulating adipokine concentrations in the fasting state and after an oral glucose challenge. Hum Reprod. 2013;28(7):1908–18.

    Article  PubMed  Google Scholar 

  12. Escobar-Morreale HF, Villuendas G, Botella-Carretero JI, Álvarez-Blasco F, Sanchón R, Luque-Ramírez M, et al. Adiponectin and resistin in PCOS: a clinical, biochemical and molecular genetic study. Hum Reprod. 2006;21(9):2257–65.

    Article  CAS  PubMed  Google Scholar 

  13. Luque-Ramírez M, Álvarez-Blasco F, Escobar-Morreale HF. Antiandrogenic contraceptives increase serum adiponectin in obese polycystic ovary syndrome patients. Obesity (Silver Spring). 2008;17(1):3–9.

    Article  Google Scholar 

  14. Comim FV, Hardy K, Franks S. Adiponectin and its receptor in the ovary: further evidence for a link between obesity and hyperandrogenism in polycystic ovary syndrome. PLoS ONE. 2013;8(11):e80416.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Martínez-García MA, Montes-Nieto R, Fernández-Durán E, Insenser M, Luque-Ramírez M, Escobar-Morreale HF. Evidence for masculinization of adipokine gene expression in visceral and subcutaneous adipose tissue of obese women with polycystic ovary syndrome (PCOS). J Clin Endocrinol Metab. 2012;98(2):E388–96.

    Article  Google Scholar 

  16. Baranova A, Tran TP, Afendy A, Wang L, Shamsaddini A, Mehta R, et al. Molecular signature of adipose tissue in patients with both non-alcoholic fatty liver disease (NAFLD) and polycystic ovarian syndrome (PCOS). J Transl Med. 2013;11:113.

    Article  Google Scholar 

  17. Chazenbalk G, Singh P, Irge D, Shah A, Abbott DH, Dumesic DA. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids. 2013;78(9):920–6. This study reveals that androgen exposure to human multipotent stem cells isolated from subcutaneous abdominal tissue of women impairs their commitment to preadipocytes and reduces adipocyte differentiation through an androgen receptor action limiting adipose tissue expandability.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Amengual-Cladera E, Lladó I, Proenza AM, Gianotti M. High-fat diet feeding induces a depot-dependent response on the pro-inflammatory state and mitochondrial function of gonadal white adipose tissue. Br J Nutr. 2013;109(3):413–24.

    Article  CAS  PubMed  Google Scholar 

  19. Murdolo G, Bartolini D, Tortoioli C, Piroddi M, Iuliano L, Galli F. Lipokines and oxysterols: novel adipose-derived lipid hormones linking adipose dysfunction and insulin resistance. Free Radic Biol Med. 2013;65:811–20.

    Article  CAS  PubMed  Google Scholar 

  20. Mora M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19(3):268–88.

    Article  Google Scholar 

  21. Escobar-Morreale HF, Luque-Ramírez M, González F. Circulating inflammatory markers in polycystic ovary syndrome: a systematic review and metaanalysis. Fertil Steril. 2011;95(3):1048–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mannerås-Holm L, Leonhardt H, Kullberg J, Jennische E, Odén A, Holm G, et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J Clin Endocrinol Metab. 2011;96(2):E304–11.

    Article  PubMed  Google Scholar 

  23. Escobar-Morreale HF, Millán JL. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol Metab. 2007;18(7):266–72.

    Article  CAS  PubMed  Google Scholar 

  24. Padmanabhan V, Veiga-Lopez A. Animal models of the polycystic ovary syndrome phenotype. Steroids. 2013;78(8):734–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Escobar-Morreale HF, Luque-Ramírez M, San Millan JL. The molecular-genetic basis of functional hyperandrogenism and polycystic ovary syndrome. Endocr Rev. 2005;26(2):251–82.

    Article  CAS  PubMed  Google Scholar 

  26. Palomba S, Marotta R, Di Cello A, Russo T, Falbo A, Orio F, et al. Pervasive developmental disorders in children of hyperandrogenic women with polycystic women with polycystic ovary syndrome: a longitudinal case-control study. Clin Endocrinol (Oxf). 2012;77(6):898–4. Second trimester amniotic-free testosterone concentrations in female fetuses of women with PCOS are elevated compared with those of non-hyperandrogenic pregnant women supporting the role of prenatal genetically-determined androgen excess from fetal origin on the metabolic programming of susceptible female fetuses.

    Article  CAS  Google Scholar 

  27. Arusoglu G, Koksal G, Cinar N, Tapan S, Aksoy DY, Yildiz BO. Basal and meal-stimulated ghrelin, PYY, CCK levels and satiety in lean women with polycystic ovary syndrome: effect of low-dose oral contraceptive. J Clin Endocrinol Metab. 2013;98(11):4475–82.

    Article  CAS  PubMed  Google Scholar 

  28. Álvarez-Blasco F, Luque-Ramírez M, Escobar-Morreale HF. Diet composition and physical activity in overweight and obese premenopausal women with or without polycystic ovary syndrome. Gynecol Endocrinol. 2011;27(12):978–81.

    Article  PubMed  Google Scholar 

  29. Van Vugt DA, Krzemien A, Alsaadi H, Franks TC, Reid RL. Glucose-induced inhibition in the appetitive brain response to visual food cues in polycystic ovary syndrome patients. Brain Res. 2014;1558:44–56. Insulin-resistant women with PCOS have an impaired appetitive brain response as assessed by functional magnetic resonance imaging that may lead to greater non-homeostatic eating and a positive energy balance.

    Article  PubMed  Google Scholar 

  30. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;315(5826):889–94.

    Article  Google Scholar 

  31. Tan S, Scherag A, Janssen OE, Hahn S, Lahner H, Dietz T, et al. Large effects on body mass index and insulin resistance of fat mass and obesity associated gene (FTO) variants in patients with polycystic ovary syndrome (PCOS). BMC Med Genet. 2010;11:12.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ewens KG, Jones MR, Ankener W, Stewart DR, Urbanek M, Dunaif A, et al. FTO and MC4R gene variants are associated with obesity in polycystic ovary syndrome. PLoS ONE. 2011;6(1):e16390.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Van der Klaauw AA, von dem Hagen EA, Keogh JM, Henning E, O’Rahilly S, Lawrence AD et al. Obesity-associated melanocortin-4 receptor mutations are associated with changes in the brain response to food cues. J Clin Endocrinol Metab. 2014 Jul 25 (Epub ahead of print). doi:10.1210/jc.2014-1651.

  34. Nohara K, Waraich RS, Liu S, Ferron M, Waget A, Meyers MS, et al. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. Am J Physiol Endocrinol Metab. 2013;304(12):E1321–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Moghetti P, Tosi F, Bonin C, Di Sarra D, Fiers T, Kaufman J-M, et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(4):E628–37.

    Article  CAS  PubMed  Google Scholar 

  36. Stepto NK, Cassar S, Joham AE, Hutchinson SK, Harrison CL, Goldstein RF, et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum Reprod. 2013;28(3):777–84.

    Article  CAS  PubMed  Google Scholar 

  37. Luque-Ramírez M, Alpañés M, Escobar-Morreale HF. The determinants of insulin sensitivity, beta-cell function, and glucose tolerance are different in patients with polycystic ovary syndrome and in women who do not have hyperandrogenism. Fertil Steril. 2010;94(6):2214–21.

    Article  PubMed  Google Scholar 

  38. Escobar-Morreale HF, Samino S, Insenser M, Vinaixa M, Luque-Ramírez M, Lasuncion MA, et al. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: plasma metabolomic approach using GC-MS. Clin Chem. 2012;58(6):999–1009.

    Article  CAS  PubMed  Google Scholar 

  39. González F, Sia CL, Shepard MK, Rote NS, Minium J. Inflammation in response to glucose ingestion is independent of excess abdominal adiposity in normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2012;97(11):4071–9.

    Article  PubMed Central  PubMed  Google Scholar 

  40. González F, Sia CL, Bearson DM, Blari HE. Hyperandrogenism induces a proinflammatory TNFα response to glucose ingestion in a receptor-dependent fashion. J Clin Endocrinol Metab. 2014;99(5):E848–54. Hyperandrogenemia in patients with PCOS induces activation and sensitization to glucose of mononuclear cells by means of androgen receptor action, and increases TNF-α release from these inflammatory cells.

    Article  PubMed  Google Scholar 

  41. Tepavčević S, Vojnović Milutinović D, Macut D, Žakula Z, Nikolić M, I. B-A et al. Dihydrotestosterone deteriorates cardiac insulin signaling and glucose transport in the rat model of polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2014;141:71–6.

  42. Huang ZH, Manickam B, Ryvkin V, Zhou XJ, Fantuzzi G, Mazzone T, et al. PCOS is associated with increased CD11c expression and crown-like structures in adipose tissue and increased central abdominal fat depots independent of obesity. J Clin Endocrinol Metab. 2013;98(1):E17–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Victor VM, Rocha M, Bañuls C, Alvarez A, de Pablo C, Sanchez-Serrano M, et al. Induction of oxidative stress and human leukocyte/endothelial cell interactions in polycystic ovary syndrome patients with insulin resistance. J Clin Endocrinol Metab. 2011;96(10):3115–22. Mitochondrial function and interactions between leukocytes and human umbilical vein endothelial cells from hyperandrogenic insulin-resistant women with PCOS are impaired. PCOS is associated to an increased adhesion of leukocytes to the endothelial surface and oxidative stress.

    Article  CAS  PubMed  Google Scholar 

  44. Hernandez-Mijares A, Rocha M, Rovira-Llopis S, Bañuls C, Bellod L, de Pablo C, et al. Human leukocyte/endothelial cell interactions and mitochondrial dysfunction in type 2 diabetic patients and their association with silent myocardial ischemia. Diabetes Care. 2013;36(6):1695–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Torchen LC, Fogel NR, Brickman WJ, Paparodis R, Dunaif A. Persistent apparent pancreatic β-cell defects in premenarchal PCOS relatives. J Clin Endocrinol Metab. 2014 Jul 16 (Epub ahead of print). doi:10.1210/jc.2014-1474.

  46. Kobaly K, Vellanki P, Sisk RK, Armstrong L, Young Lee J, Lee J et al. Parent-of-origin effects on glucose homeostasis in polycystic ovary syndrome. J Clin Endocrinol Metab. 2014;99(8):2961–6.

  47. Malin SK, Kirwan JP, Sia CL, González F. Glucose-stimulated oxidative stress in mononuclear cells is related to pancreatic β-cell dysfunction in polycystic ovary syndrome. J Clin Endocrinol Metab. 2014;99(1):322–9. Mononuclear cells from blood samples of normoglycemic women with PCOS show a higher production of reactive oxygen species than control women. β-Cell function in these women is inversely related to oxidative stress.

    Article  CAS  PubMed  Google Scholar 

  48. Escobar-Morreale HF. Iron metabolism and the polycystic ovary syndrome. Trends Endocrinol Metab. 2012;23(10):509–15.

    Article  CAS  PubMed  Google Scholar 

  49. Fernández-Real JM, Manco M. Effects of iron overload on chronic metabolic diseases. Lancet Diabetes Endocrinol. 2014;2(6):513–26.

    Article  PubMed  Google Scholar 

  50. Escobar-Morreale HF, Luque-Ramírez M, Álvarez-Blasco F, Botella-Carretero JI, Sancho J, San Millan JL. Body iron stores are increased in overweight and obese women with polycystic ovary syndrome. Diabetes Care. 2005;28(8):2042–4.

    Article  PubMed  Google Scholar 

  51. Luque-Ramírez M, Álvarez-Blasco F, Botella-Carretero JI, Sanchon R, San Millan JL, Escobar-Morreale HF. The increased body iron stores of obese women with polycystic ovary syndrome are a consequence of insulin resistance and hyperinsulinism, and do not result from reduced menstrual losses. Diabetes Care. 2007;30(9):2309–13.

    Article  PubMed  Google Scholar 

  52. Martínez-García MA, Luque-Ramírez M, San-Millán JL, Escobar-Morreale HF. Body iron stores and glucose intolerance in premenopausal women: role of hyperandrogenism, insulin resistance, and genomic variants related to inflammation, oxidative stress, and iron metabolism. Diabetes Care. 2009;32(8):1525–30.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Luque-Ramírez M, Álvarez-Blasco F, Alpañés M, Escobar-Morreale HF. Role of decreased circulating hepcidin concentrations in the iron excess of women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 2011;96(3):846–52. This study supports the influence of hepcidin dysregulation on the iron overload of patients with PCOS. The patients presenting with chronic oligomenorrhea showed a paradoxical decrease in circulating hepcidin levels related to the insulin resistance and androgen excess present in the syndrome.

    Article  PubMed  Google Scholar 

  54. Sam AH, Busbridge M, Amin A, Webber L, White D, Franks S, et al. Hepcidin levels in diabetes mellitus and polycystic ovary syndrome. Diabet Med. 2013;30(12):1495–9.

    Article  CAS  PubMed  Google Scholar 

  55. Flannery CA, Rackow B, Cong X, Duran E, Selen DJ, Burgert TS. Polycystic ovary syndrome in adolescence: impaired glucose tolerance across the spectrum of BMI. Pediatr Diabetes. 2013;14(1):42–9.

    Article  PubMed  Google Scholar 

  56. Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–63.

    Article  CAS  PubMed  Google Scholar 

  57. Gambineri A, Patton L, Altieri P, Pagotto U, Pizzi C, Manzoli L, et al. Polycystic ovary syndrome is a risk factor for type 2 diabetes: results from a long-term prospective study. Diabetes. 2012;61(9):2369–74. This prospective study of 255 young women with PCOS followed for at least 10 years reports an incidence rate of type 2 diabetes of 1.05 per 100 person-year and an age-standardized prevalence of diabetes at the end of follow-up of 39.3%, which is significantly higher than the general female population risk of a similar age.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Joham AE, Ranasinha S, Zoungas S, Moran L, Teede HJ. Gestational diabetes and type 2 diabetes in reproductive-aged women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2014;99(3):E447–52.

    CAS  PubMed  Google Scholar 

  59. Lim SS, Norman RJ, Davies MJ, Moran LJ. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev. 2013;14(2):95–109.

    Article  CAS  PubMed  Google Scholar 

  60. Escobar-Morreale HF. Surgical management of metabolic dysfunction in PCOS. Steroids. 2012;10(77):312–6.

    Article  Google Scholar 

  61. Louwers YV, Roest-Schalken ME, Kleefstra N, Roeters van Lennep J, van den Berg M, Fauser BC, et al. Excess mortality in mothers of patients with polycystic ovary syndrome. Hum Reprod. 2014;29(8):1780–6.

    Article  CAS  PubMed  Google Scholar 

  62. de Wilde MA, Veltman-Verhulst SM, Goverde AJ, Lambalk CB, Laven JS, Franx A, et al. Preconception predictors of gestational diabetes: a multicentre prospective cohort study on the predominant complication of pregnancy in polycystic ovary syndrome. Hum Reprod. 2014;29(6):1327–36.

    Article  PubMed  Google Scholar 

  63. Foroozanfard F, Moosavi SG, Mansouri F, Bazarganipour F. Obstetric and neonatal outcome in PCOS with gestational diabetes mellitus. J Family Reprod Health. 2014;8(1):7–12.

    PubMed Central  PubMed  Google Scholar 

  64. Palomba S, Falbo A, Russo T, Rivoli L, Orio M, Cosco AG, et al. The risk of a persistent glucose metabolism impairment after gestational diabetes mellitus is increased in patients with polycystic ovary syndrome. Diabetes Care. 2012;35(4):861–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Sanberg KHJ. Sex differences in primary hypertension. Biol Sex Differ. 2012;3(1):7.

    Article  Google Scholar 

  66. Luque-Ramírez M, Martí D, Fernández-Durán E, Alpañés M, Álvarez-Blasco F, Escobar-Morreale HF. Office blood pressure, ambulatory blood pressure monitoring, and echocardiographic abnormalities in women with polycystic ovary syndrome: role of obesity and androgen excess. Hypertension. 2014;63(3):624–9. A cross-sectional case-control study comparing, for the first time, office and ambulatory blood pressure monitoring between women with PCOS, non-hyperandrogenic women and young men. Obese women with PCOS had frequencies of undiagnosed hypertension similar to those of men with weight excess. Undiagnosed hypertension was related to increased left ventricular wall thickness suggesting early target organ damage.

    Article  PubMed  Google Scholar 

  67. Chen MJ, Yang WS, Yang JH, Chen CL, Ho HN, Yang YS. Relationship between androgen levels and blood pressure in young women with polycystic ovary syndrome. Hypertension. 2007;49(6):1442–7.

    Article  CAS  PubMed  Google Scholar 

  68. Wang L, Szklo M, Folsom AR, Cook NR, Gapstur NR, Ouyang P. Endogenous sex hormones, blood pressure change, and risk of hypertension in postmenopausal women: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2012;224(1):228–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Hu J, Tan S, Zhong Y. Effects of testosterone on renal function in salt-loaded rats. Am J Med Sci. 2011;342(1):38–43.

    Article  PubMed  Google Scholar 

  70. Luque-Ramírez M, Mendieta-Azcona C, Álvarez-Blasco F, Escobar-Morreale HF. Androgen excess is associated with the increased carotid intima-media thickness observed in young women with polycystic ovary syndrome. Hum Reprod. 2007;22(12):3197–203.

    Article  PubMed  Google Scholar 

  71. Armeni E, Stamatelopoulos K, Rizos D, Georgiopoulos G, Kazani M, Kazani A, et al. Arterial stiffness is increased in asymptomatic nondiabetic postmenopausal women with a polycystic ovary syndrome phenotype. J Hypertens. 2013;31(10):1998–2004.

    Article  CAS  PubMed  Google Scholar 

  72. Schmidt J, Landin-Wilhelmsen K, Brännström M, Dahlgren E. Cardiovascular disease and risk factors in PCOS women of postmenopausal age: a 21-year controlled follow-up study. J Clin Endocrinol Metab. 2011;96(12):3794–803.

    Article  CAS  PubMed  Google Scholar 

  73. Chinnathambi V, Yallampalli C, Sathishkumar K. Prenatal testosterone induces sex-specific dysfunction in endothelium-dependent relaxation pathways in adult male and female rats. Biol Reprod. 2013;89(4):97.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Sathishkumar K, Elkins R, Yallampalli U, Balakrishnan M, Yallampalli C. Fetal programming of adult hypertension in female rat offspring exposed to androgens in utero. Early Hum Dev. 2011;87(6):407–14.

  75. Bentley-Lewis R, Seely E, Dunaif A. Ovarian hypertension: polycystic ovary syndrome. Endocrinol Metab Clin N Am. 2011;40(2):433–49.

    Article  CAS  Google Scholar 

  76. Wenner MM, Taylor HS, Stachenfeld NS. Endothelin B receptor contribution to peripheral microvascular function in women with polycystic ovary syndrome. J Physiol. 2011;589(Pt 19):4671–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Wenner MM, Taylor HS, Stachenfeld NS. Androgens influence microvascular dilation in PCOS through ET-A and ET-B receptors. Am J Physiol Endocrinol Metab. 2013;305(7):E818–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Sprung VS, Cuthbertson DJ, Pugh CJ, Daousi C, Atkinson G, Aziz NF, et al. Nitric oxide-mediated cutaneous microvascular function is impaired in polycystic ovary syndrome but can be improved by exercise training. J Physiol. 2013;591(Pt 6):1475–87.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19(3):268–88.

    Article  CAS  PubMed  Google Scholar 

  80. Luque-Ramírez M, Mendieta-Azcona C, del Rey Sánchez JM, Matíes M, Escobar-Morreale HF. Effects of an antiandrogenic oral contraceptive pill compared with metformin on blood coagulation tests and endothelial function in women with the polycystic ovary syndrome: influence of obesity and smoking. Eur J Endocrinol. 2009;160(3):469–80.

    Article  PubMed  Google Scholar 

  81. Luna SL, Neuman S, Aguilera J, Brown DI, Lara HE. In vivo β-adrenergic blockade by propranolol prevents isoproterenol-induced polycystic ovary in adult rats. Horm Metab Res. 2012;44(9):676–81.

    Article  CAS  PubMed  Google Scholar 

  82. Lansdown A, Rees DA. The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target. Clin Endocrinol (Oxf). 2012;77(6):791–801.

    Article  CAS  Google Scholar 

  83. Luque-Ramírez M, Álvarez-Blasco F, Mendieta-Azcona C, Botella-Carretero JI, Escobar-Morreale HF. Obesity is the major determinant of the abnormalities in blood pressure found in young women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92(6):2141–8.

    Article  PubMed  Google Scholar 

  84. Tasali E, Chapotot F, Leproult R, Whitmore H, Ehrmann DA. Treatment of obstructive sleep apnea improves cardiometabolic function in young obese women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2011;96(2):365–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Johnstone EB, Davis G, Zane LT, Cedars MI, Huddleston HG. Age-related differences in the reproductive and metabolic implications of polycystic ovarian syndrome: findings in an obese, United States population. Gynecol Endocrinol. 2012;28(10):819–22.

    Article  CAS  PubMed  Google Scholar 

  86. Naver KV, Grinsted J, Larsen SO, Hedley PL, Jørgensen FS, Christiansen M, et al. Increased risk of preterm delivery and pre-eclampsia in women with polycystic ovary syndrome and hyperandrogenemia. BJOG. 2014;121(5):575–81.

    Article  CAS  PubMed  Google Scholar 

  87. Chinnathambi V, More AS, Hankins GD, Yallampalli C, Sathishkumar K. Gestational exposure to elevated testosterone levels induces hypertension via heightened vascular angiotensin II type 1 receptor signaling in rats. Biol Reprod. 2014;91(1):6.

    Article  PubMed  Google Scholar 

  88. Chinnathambi V, Balakrishnan M, Ramadoss J, Yallampalli C, Sathishkumar K. Testosterone alters maternal vascular adaptations: role of the endothelial NO system. Hypertension. 2013;61(3):647–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Merhi Z. Advanced glycation end products and their relevance in female reproduction. Hum Reprod. 2014;29(1):135–45.

    Article  CAS  PubMed  Google Scholar 

  90. Laresgoiti-Servitje E, Gomez-Lopez N. The pathophysiology of preeclampsia involves altered levels of angiogenic factors promoted by hypoxia and autoantibody-mediated mechanisms. Biol Reprod. 2012;87(2):36.

    Article  PubMed  Google Scholar 

  91. Huang QT, Wang SS, Zhang M, Huang LP, Tian JW, Yu YH, et al. Advanced oxidation protein products enhances soluble Fms-like tyrosine kinase 1 expression in trophoblasts: a possible link between oxidative stress and preeclampsia. Placenta. 2013;34(10):949–52.

    Article  CAS  PubMed  Google Scholar 

  92. Huang QT, Zhang M, Zhong M, Yu YH, Liang WZ, Hang LL, et al. Advanced glycation end products as an upstream molecule triggers ROS-induced sFlt-1 production in extravillous trophoblasts: a novel bridge between oxidative stress and preeclampsia. Placenta. 2013;34(12):1177–82.

    Article  PubMed  Google Scholar 

  93. Meyer ML, Malek AM, Wild RA, Korytkowski MT, Talbott EO. Carotid artery intima-media thickness in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(2):112–26.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Insenser M, Montes-Nieto R, Murri M, Escobar-Morreale HF. Proteomic and metabolomic approaches to the study of polycystic ovary syndrome. Mol Cell Endocrinol. 2013;370(1–2):65–77.

    Article  CAS  PubMed  Google Scholar 

  95. Montes-Nieto R, Insenser M, Martínez-García MÁ, Escobar-Morreale HF. A nontargeted proteomic study of the influence of androgen excess on human visceral and subcutaneous adipose tissue proteomes. J Clin Endocrinol Metab. 2013;98(3):E576–85.

    Article  CAS  PubMed  Google Scholar 

  96. Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, Gamboa GM, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013;62(7):2278–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Murri M, Insenser M, Fernández-Durán E, San-Millán JL, Escobar-Morreale HF. Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103, and miRNA-155 expression. J Clin Endocrinol Metab. 2013;98(11):E1835–44.

    Article  CAS  PubMed  Google Scholar 

  98. Inada A, Inada O, Fujii NL, Fujishima K, Inai T, Fujii H et al. β-Cell induction in vivo in severely diabetic male mice by changing the circulating levels and pattern of the ratios of estradiol to androgens. Endocrinology. 2013;155(10):3829–42.

  99. Mott MM, Kitos NR, Coviello AD. Practice patterns in screening for metabolic disease in women with PCOS of diverse race-ethnic backgrounds. Endocr Pract. 2014;20(9):855–63.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Manuel Luque-Ramirez and Héctor F. Escobar-Morreale report Grant PI1100357 from Instituto de Salud Carlos III, Spanish Ministry of Economy and Competitiveness, Madrid, Spain, Plan Nacional de I+D+I 2008–2011, Fondo Europeo de Desarrollo Regional (FEDER). CIBERDEM is also an initiative of Instituto de Salud Carlos III.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Luque-Ramírez.

Additional information

This article is part of the Topical Collection on Pathogenesis of Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luque-Ramírez, M., Escobar-Morreale, H.F. Polycystic Ovary Syndrome as a Paradigm for Prehypertension, Prediabetes, and Preobesity. Curr Hypertens Rep 16, 500 (2014). https://doi.org/10.1007/s11906-014-0500-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0500-6

Keywords

Navigation