Skip to main content

Advertisement

Log in

Genetic and Epigenetic Associations of NAFLD: Focus on Clinical Decision Making

  • Fatty Liver Disease (S Harrison and J George, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) afflicts more than one third of the population in affluent societies, paralleling the dramatic escalation in global obesity prevalence. NAFLD is thus a leading cause for end-stage liver disease, cancer, and liver transplantation and an estimated 20 million patients worldwide will eventually die of their liver disease Rinella and Charlton (Hepatology 2016;64:19–22). Furthermore, NAFLD increases the risk of type 2 diabetes and cardiovascular disease. NAFLD comprises a complex disease phenotype ranging from simple steatosis, through to steatohepatitis, fibrosis, and ultimately, cirrhosis and hepatocellular carcinoma. NAFLD is also characterized by considerable inter-individual variability in disease spectrum and outcomes. Thus, NAFLD best resembles a complex disease trait resulting from the dynamic interaction of environmental factors (e.g., caloric intake and composition, energy expenditure, the microbiome) acting on a susceptible polygenic host background. Genome-wide association studies (GWAS) and candidate gene studies have enriched our understanding of genetic factors contributing to the known inter-individual variation in NAFLD phenotypes including hepatic steatosis, inflammation, and fibrosis. The role of other types of genetic variations and epigenetics are also now being unraveled. In this review, we summarize current knowledge about genetic and epigenetic associations of NAFLD and its potential clinical implications and future challenges in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Rinella M, Charlton M. The globalization of nonalcoholic fatty liver disease: prevalence and impact on world health. Hepatology. 2016;64:19–22.

    Article  PubMed  Google Scholar 

  2. Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic Steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148:547–55.

    Article  PubMed  Google Scholar 

  3. Armstrong MJ, Adams LA, Canbay A, Syn WK. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology. 2014;59:1174–97.

    Article  CAS  PubMed  Google Scholar 

  4. Serfaty L, Lemoine M. Definition and natural history of metabolic steatosis: clinical aspects of NAFLD, NASH and cirrhosis. Diabetes Metab. 2008;34:634–7.

    Article  CAS  PubMed  Google Scholar 

  5. Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol. 2015;13:643–54.

    Article  PubMed  Google Scholar 

  6. Eslam M, George J. Genetic and epigenetic mechanisms of NASH. Hepatol Int. 2016;10:394–406.

    Article  PubMed  Google Scholar 

  7. Loomba R, Schork N, Chen CH, Bettencourt R, Bhatt A, Ang B, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology. 2015;149:1784–93.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schwimmer JB, Celedon MA, Lavine JE, Salem R, Campbell N, Schork NJ, et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology. 2009;136:1585–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Willner IR, Waters B, Patil SR, Reuben A, Morelli J, Riely CA. Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease. Am J Gastroenterol. 2001;96:2957–61.

    Article  CAS  PubMed  Google Scholar 

  10. Mohanty SR, Troy TN, Huo D, O'Brien BL, Jensen DM, Hart J. Influence of ethnicity on histological differences in non-alcoholic fatty liver disease. J Hepatol. 2009;50:797–804.

    Article  PubMed  Google Scholar 

  11. Schneider AL, Lazo M, Selvin E, Clark JM. Racial differences in nonalcoholic fatty liver disease in the U.S. population. Obesity (Silver Spring). 2014;22:292–9.

    Article  Google Scholar 

  12. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–95.

    Article  PubMed  Google Scholar 

  13. Bambha K, Belt P, Abraham M, Wilson LA, Pabst M, Ferrell L, et al. Ethnicity and nonalcoholic fatty liver disease. Hepatology. 2012;55:769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tabibian JH, Lazo M, Durazo FA, Yeh HC, Tong MJ, Clark JM. Nonalcoholic fatty liver disease across ethno-racial groups: do Asian-American adults represent a new at-risk population? J Gastroenterol Hepatol. 2011;26:501–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. •• Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5. A landmark GWAS describes the discovery of PNPLA3, the most roubst risk varint for NAFLD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011;7:e1001324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Speliotes EK, Butler JL, Palmer CD, Voight BF, Consortium G, Consortium MI, et al. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology. 2010;52:904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trepo E, Nahon P, Bontempi G, Valenti L, Falleti E, Nischalke HD, et al. Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: evidence from a meta-analysis of individual participant data. Hepatology. 2014;59:2170–7.

    Article  CAS  PubMed  Google Scholar 

  19. Eslam M, Mangia A, Berg T, Chan HL, Irving WL, Dore GJ, et al. Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and metabolic liver disease phenotypes. Hepatology. 2016;64(1):34–46.

    Article  CAS  PubMed  Google Scholar 

  20. Kitamoto T, Kitamoto A, Yoneda M, Hyogo H, Ochi H, Nakamura T, et al. Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan. Hum Genet. 2013;132:783–92.

    Article  CAS  PubMed  Google Scholar 

  21. Xu RF, Tao AY, Zhang SS, Deng YB, Chen GZ. Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis. Sci Rep. 2015;5:9284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nobili V, Liccardo D, Bedogni G, Salvatori G, Gnani D, Bersani I, et al. Influence of dietary pattern, physical activity, and I148M PNPLA3 on steatosis severity in at-risk adolescents. Genes Nutr. 2014;9:392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Davis JN, Le KA, Walker RW, Vikman S, Metz DS, Weigensberg MJ, et al. Increased hepatic fat in overweight Hispanic youth influenced by interaction between genetic variation in PNPLA3 and high dietary carbohydrate and sugar consumption. Am J Clin Nutr. 2010;92:1522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Santoro N, Savoye M, Kim G, Marotto K, Shaw MM, Pierpont B, et al. Hepatic fat accumulation is modulated by the interaction between the rs738409 variant in the PNPLA3 gene and the dietary Omega6/Omega3 PUFA intake. PLoS One. 2012;7:e37827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marzuillo P, Grandone A, Perrone L, del Giudice EM. Weight loss allows the dissection of the interaction between abdominal fat and PNPLA3 (adiponutrin) in the liver damage of obese children. J Hepatol. 2013;59:1143–4.

    Article  PubMed  Google Scholar 

  26. Romeo S, Sentinelli F, Dash S, Yeo GSH, Savage DB, Leonetti F, et al. Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent. Int J Obes. 2010;34:190–4.

    Article  CAS  Google Scholar 

  27. Dongiovanni P, Petta S, Mannisto V, Mancina RM, Pipitone R, Karja V, et al. Statin use and non-alcoholic steatohepatitis in at risk individuals. J Hepatol. 2015;63:705–12.

    Article  CAS  PubMed  Google Scholar 

  28. Nishioji K, Mochizuki N, Kobayashi M, Kamaguchi M, Sumida Y, Nishimura T, et al. The impact of PNPLA3 rs738409 genetic polymorphism and weight Gain >= 10 kg after age 20 on non-alcoholic fatty liver disease in non-obese japanese individuals. PLoS One. 2015;10(10):e0140427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Stender S, Kozlitina J, Nordestgaard BG, Tybjaerg-Hansen A, Hobbs HH, Cohen JC. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet. 2017;49:842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang Y, Cohen JC, Hobbs HH. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J Biol Chem. 2011;286:37085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pingitore P, Pirazzi C, Mancina RM, Motta BM, Indiveri C, Pujia A, et al. Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim Biophys Acta. 2014;841(4):574–80.

    Article  CAS  Google Scholar 

  32. Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K, Mancina RM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet. 2014;23:4077–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. BasuRay S, Smagris E, Cohen J, Hobbs HH. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology. 2017;66(4):1111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smagris E, BasuRay S, Li J, Huang Y, Lai KM, Gromada J, et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology. 2015;61:108–18.

    Article  CAS  PubMed  Google Scholar 

  35. Santoro N, Kursawe R, D'Adamo E, Dykas DJ, Zhang CK, Bale AE, et al. A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents. Hepatology. 2010;52:1281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang Y, He S, Li JZ, Seo YK, Osborne TF, Cohen JC, et al. A Feed-forward loop amplifies nutritional regulation of PNPLA3. Proc Natl Acad Sci U S A. 2010;107:7892–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu YL, Reeves HL, Burt AD, Tiniakos D, McPherson S, Leathart JB, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5:4309.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dongiovanni P, Petta S, Maglio C, Fracanzani AL, Pipitone R, Mozzi E, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology. 2015;61:506–14.

    Article  CAS  PubMed  Google Scholar 

  39. •• Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjaerg-Hansen A, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46:352–6. The first work to discover a variant in the TM6SF2 loci as a risk varint for NAFLD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holmen OL, Zhang H, Fan Y, Hovelson DH, Schmidt EM, Zhou W, et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet. 2014;46:345–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luukkonen PK, Zhou Y, Nidhina Haridas PA, Dwivedi OP, Hyotylainen T, Ali A, et al. Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD. J Hepatol. 2017;67:128–36.

    Article  CAS  PubMed  Google Scholar 

  42. Kim DS, Jackson AU, Li YK, Stringham HM, Kuusisto J, Kangas AJ, et al. Novel association of TM6SF2 rs58542926 genotype with increased serum tyrosine levels and decreased apolipoprotein B-100 particles in Finns. J Lipid Res. 2017;58(7):1471–81.

    Article  CAS  PubMed  Google Scholar 

  43. Fan Y, Lu H, Guo Y, Zhu T, Garcia-Barrio MT, Jiang Z, et al. Hepatic transmembrane 6 superfamily member 2 regulates cholesterol metabolism in mice. Gastroenterology. 2016;150:1208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smagris E, Gilyard S, BasuRay S, Cohen JC, Hobbs HH. Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J Biol Chem. 2016;291:10659–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Petta S, Miele L, Bugianesi E, Camma C, Rosso C, Boccia S, et al. Glucokinase regulatory protein gene polymorphism affects liver fibrosis in non-alcoholic fatty liver disease. PLoS One. 2014;9:e87523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, Orho-Melander M, et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet. 2009;18:4081–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. •• Buch S, Stickel F, Trepo E, Way M, Herrmann A, Nischalke HD, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet. 2015;47:1443–8. The first work to discover a variant in the MBOAT7 loci as a risk variant for alcohol-related cirrhosis.

    Article  CAS  PubMed  Google Scholar 

  48. Mancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, Rametta R, et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology. 2016;150:1219–1230.e1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Luukkonen PK, Zhou Y, Hyotylainen T, Leivonen M, Arola J, Orho-Melander M, et al. The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol. 2016;65:1263–5.

    Article  CAS  PubMed  Google Scholar 

  50. Thabet K, Asimakopoulos A, Shojaei M, Romero-Gomez M, Mangia A, Irving WL, et al. MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C. Nat Commun. 2016;7:12757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thabet K, Chan HL, Petta S, Mangia A, Berg T, Boonstra A, et al. The membrane-bound O-acyltransferase domain-containing 7 variant rs641738 increases inflammation and fibrosis in chronic hepatitis B. Hepatology. 2017;65(6):1840–50.

    Article  CAS  PubMed  Google Scholar 

  52. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41:1100–4.

    Article  CAS  PubMed  Google Scholar 

  53. •• Eslam M, Hashem AM, Leung R, Romero-Gomez M, Berg T, Dore GJ, et al. Interferon-lambda rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease. Nat Commun. 2015;6:6422. The first work to discover a ‘core’ risk variant that correlates with fibrosis progression independent of disease etiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Petta S, Grimaudo S, Camma C, Cabibi D, Di Marco V, Licata G, et al. IL28B and PNPLA3 polymorphisms affect histological liver damage in patients with non-alcoholic fatty liver disease. J Hepatol. 2012;56:1356–62.

    Article  CAS  PubMed  Google Scholar 

  55. •• Eslam M, McLeod D, Kelaeng KS, Mangia A, Berg T, Thabet K, et al. IFN-lambda3, not IFN-lambda4, likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis. Nat Genet. 2017;49:795–800. This work describes the discovery of the caustive protein for this genetic area assocaition.

    Article  CAS  PubMed  Google Scholar 

  56. Angulo P, Lindor KD. Non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2002;17(Suppl):S186–90.

    Article  PubMed  Google Scholar 

  57. Kim H, Haluzik M, Asghar Z, Yau D, Joseph JW, Fernandez AM, et al. Peroxisome proliferator-activated receptor-alpha agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. Diabetes. 2003;52:1770–8.

    Article  CAS  PubMed  Google Scholar 

  58. Chen S, Li Y, Li S, Yu CA. Val227Ala substitution in the peroxisome proliferator activated receptor alpha (PPAR alpha) gene associated with non-alcoholic fatty liver disease and decreased waist circumference and waist-to-hip ratio. J Gastroenterol Hepatol. 2008;23:1415–8.

    Article  CAS  PubMed  Google Scholar 

  59. Dongiovanni P, Rametta R, Fracanzani AL, Benedan L, Borroni V, Maggioni P, et al. Lack of association between peroxisome proliferator-activated receptors alpha and gamma2 polymorphisms and progressive liver damage in patients with non-alcoholic fatty liver disease: a case control study. BMC Gastroenterol. 2010;10:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Valenti L, Motta BM, Alisi A, Sartorelli R, Buonaiuto G, Dongiovanni P, et al. LPIN1 rs13412852 polymorphism in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2012;54:588–93.

    Article  CAS  PubMed  Google Scholar 

  61. Fawcett KA, Grimsey N, Loos RJ, Wheeler E, Daly A, Soos M, et al. Evaluating the role of LPIN1 variation in insulin resistance, body weight, and human lipodystrophy in U.K. populations. Diabetes. 2008;57:2527–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Auinger A, Valenti L, Pfeuffer M, Helwig U, Herrmann J, Fracanzani AL, et al. A promoter polymorphism in the liver-specific fatty acid transport protein 5 is associated with features of the metabolic syndrome and steatosis. Horm Metab Res. 2010;42:854–9.

    Article  CAS  PubMed  Google Scholar 

  63. Petta S, Valenti L, Svegliati-Baroni G, Ruscica M, Pipitone RM, Dongiovanni P, et al. Fibronectin type III domain-containing protein 5 rs3480 A>G polymorphism, irisin, and liver fibrosis in patients with nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2017;102(8):2660–9.

    Article  PubMed  Google Scholar 

  64. Gupta AC, Misra R, Sakhuja P, Singh Y, Basir SF, Sarin SK. Association of adiponectin gene functional polymorphisms (−11377C/G and +45T/G) with nonalcoholic fatty liver disease. Gene. 2012;496:63–7.

    Article  CAS  PubMed  Google Scholar 

  65. Zain SM, Mohamed Z, Mahadeva S, Cheah PL, Rampal S, Chin KF, et al. Impact of leptin receptor gene variants on risk of non-alcoholic fatty liver disease and its interaction with adiponutrin gene. J Gastroenterol Hepatol. 2013;28:873–9.

    Article  CAS  PubMed  Google Scholar 

  66. Al Sayegh F, Almahmeed W, Al Humood S, Marashi M, Bahr A, Al Mahdi H, et al. Global risk profile verification in patients with venous thromboembolism (GRIP VTE) in 5 Gulf countries. Clin Appl Thromb Hemost. 2009;15:289–96.

    Article  PubMed  Google Scholar 

  67. Anstee QM, Darlay R, Leathart JB, Clement J, Clement K, Aithal GP, et al. Genome-wide association analysis confirms importance of PNPLA3 and identifies novel variants associated with histologically progressive steatohepatitis in NAFLD. Hepatology. 2012;56:265a–6a.

    Google Scholar 

  68. Dongiovanni P, Valenti L, Rametta R, Daly AK, Nobili V, Mozzi E, et al. Genetic variants regulating insulin receptor signaling are associated with the severity of liver damage in patients with nonalcoholic fatty liver disease. Gut. 2010;59:267–73.

    Article  CAS  PubMed  Google Scholar 

  69. Carulli L, Canedi I, Rondinella S, Lombardini S, Ganazzi D, Fargion S, et al. Genetic polymorphisms in non-alcoholic fatty liver disease: interleukin-6-174G/C polymorphism is associated with non-alcoholic steatohepatitis. Dig Liver Dis. 2009;41:823–8.

    Article  CAS  PubMed  Google Scholar 

  70. Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, Shiratori K. Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol. 2007;46:1104–10.

    Article  CAS  PubMed  Google Scholar 

  71. Nozaki Y, Saibara T, Nemoto Y, Ono M, Akisawa N, Iwasaki S, et al. Polymorphisms of interleukin-1 beta and beta 3-adrenergic receptor in Japanese patients with nonalcoholic steatohepatitis. Alcohol Clin Exp Res. 2004;28:106S–10S.

    CAS  PubMed  Google Scholar 

  72. Braunersreuther V, Viviani GL, Mach F, Montecucco F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J Gastroenterol. 2012;18:727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kiziltas S, Ata P, Colak Y, Mesci B, Senates E, Enc F, et al. TLR4 gene polymorphism in patients with nonalcoholic fatty liver disease in comparison to healthy controls. Metab Syndr Relat Disord. 2014;12:165–70.

    Article  CAS  PubMed  Google Scholar 

  74. Miele L, Beale G, Patman G, Nobili V, Leathart J, Grieco A, et al. The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology. 2008;135:282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Patin E, Kutalik Z, Guergnon J, Bibert S, Nalpas B, Jouanguy E, et al. Genome-wide association study identifies variants associated with progression of liver fibrosis from HCV infection. Gastroenterology. 2012;143:1244–52. e1241–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Petta S, Valenti L, Marra F, Grimaudo S, Tripodo C, Bugianesi E, et al. MERTK rs4374383 polymorphism affects the severity of fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2016;64:682–90.

    Article  CAS  PubMed  Google Scholar 

  77. Redon R, Pena NG, Crescencio FR. Leaching in metal nanoparticle catalysis. Recent Pat Nanotechnol. 2014;8:31–51.

    Article  CAS  PubMed  Google Scholar 

  78. Zain SM, Mohamed R, Cooper DN, Razali R, Rampal S, Mahadeva S, et al. Genome-wide analysis of copy number variation identifies candidate gene loci associated with the progression of non-alcoholic fatty liver disease. PLoS One. 2014;9:e95604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10:330–44.

    Article  CAS  PubMed  Google Scholar 

  80. Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, et al. Child health, developmental plasticity, and epigenetic programming. Endocr Rev. 2011;32:159–224.

    Article  CAS  PubMed  Google Scholar 

  81. Nobili V, Marcellini M, Marchesini G, Vanni E, Manco M, Villani A, et al. Intrauterine growth retardation, insulin resistance, and nonalcoholic fatty liver disease in children. Diabetes Care. 2007;30:2638–40.

    Article  PubMed  Google Scholar 

  82. Donma MM, Donma O. Low birth weight: a possible risk factor also for liver diseases in adult life? Med Hypotheses. 2003;61:435–8.

    Article  CAS  PubMed  Google Scholar 

  83. Thompson MD, Cismowski MJ, Trask AJ, Lallier SW, Graf AE, Rogers LK, et al. Enhanced steatosis and fibrosis in liver of adult offspring exposed to maternal high-fat diet. Gene Expr. 2016;17(1):47–59.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Burgueno AL, Cabrerizo R, Mansilla NG, Sookoian S, Pirola CJ. Maternal high-fat intake during pregnancy programs metabolic-syndrome-related phenotypes through liver mitochondrial DNA copy number and transcriptional activity of liver PPARGC1A. J Nutr Biochem. 2013;24:6–13.

    Article  CAS  PubMed  Google Scholar 

  85. Sheldon RD, Nicole Blaize A, Fletcher JA, Pearson KJ, Donkin SS, Newcomer SC, et al. Gestational exercise protects adult male offspring from high-fat diet-induced hepatic steatosis. J Hepatol. 2016;64:171–8.

    Article  PubMed  Google Scholar 

  86. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 2010;6:e1000952.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1:8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li YY. Genetic and epigenetic variants influencing the development of nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18:6546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ahrens M, Ammerpohl O, von Schonfels W, Kolarova J, Bens S, Itzel T, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18:296–302.

    Article  CAS  PubMed  Google Scholar 

  90. Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Deminice R, da Silva RP, Lamarre SG, Kelly KB, Jacobs RL, Brosnan ME, et al. Betaine supplementation prevents fatty liver induced by a high-fat diet: effects on one-carbon metabolism. Amino Acids. 2015;47:839–46.

    Article  CAS  PubMed  Google Scholar 

  92. Sookoian S, Puri P, Castano GO, Scian R, Mirshahi F, Sanyal AJ, et al. Nonalcoholic steatohepatitis is associated with a state of betaine-insufficiency. Liver Int. 2017;37:611–9.

    Article  CAS  PubMed  Google Scholar 

  93. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci U S A. 2014;111:15538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sookoian S, Rosselli MS, Gemma C, Burgueno AL, Fernandez Gianotti T, Castano GO, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52:1992–2000.

    Article  CAS  PubMed  Google Scholar 

  95. Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Imajo K, Saito S, et al. Targeted-bisulfite sequence analysis of the methylation of CpG islands in genes encoding PNPLA3, SAMM50, and PARVB of patients with non-alcoholic fatty liver disease. J Hepatol. 2015;63:494–502.

    Article  CAS  PubMed  Google Scholar 

  96. Donati B, Motta BM, Pingitore P, Meroni M, Pietrelli A, Alisi A, et al. The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage. Hepatology. 2016;63:787–98.

    Article  CAS  PubMed  Google Scholar 

  97. Sorm F, Piskala A, Cihak A, Vesely J. 5-Azacytidine, a new, highly effective cancerostatic. Experientia. 1964;20:202–3.

    Article  CAS  PubMed  Google Scholar 

  98. Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP, et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol. 2009;182:259–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen ZJ, Pikaard CS. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 1997;11:2124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Colak Y, Yesil A, Mutlu HH, Caklili OT, Ulasoglu C, Senates E, et al. A potential treatment of non-alcoholic fatty liver disease with SIRT1 activators. J Gastrointestin Liver Dis. 2014;23:311–9.

    PubMed  Google Scholar 

  101. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–2.

    Article  CAS  PubMed  Google Scholar 

  102. Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer. 2009;9:123–8.

    Article  CAS  PubMed  Google Scholar 

  103. Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem. 2005;280:20589–95.

    Article  CAS  PubMed  Google Scholar 

  104. Schroeder TM, Westendorf JJ. Histone deacetylase inhibitors promote osteoblast maturation. J Bone Miner Res. 2005;20:2254–63.

    Article  CAS  PubMed  Google Scholar 

  105. Mukhopadhyay P, Horvath B, Rajesh M, Varga ZV, Gariani K, Ryu D, et al. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J Hepatol. 2017;66:589–600.

    Article  CAS  PubMed  Google Scholar 

  106. Huang K, Du M, Tan X, Yang L, Li X, Jiang Y, et al. PARP1-mediated PPARalpha poly(ADP-ribosyl)ation suppresses fatty acid oxidation in non-alcoholic fatty liver disease. J Hepatol. 2017;66:962–77.

    Article  CAS  PubMed  Google Scholar 

  107. Gariani K, Ryu D, Menzies KJ, Yi HS, Stein S, Zhang H, et al. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J Hepatol. 2017;66:132–41.

    Article  CAS  PubMed  Google Scholar 

  108. Cao Y, Xue Y, Xue L, Jiang X, Wang X, Zhang Z, et al. Hepatic menin recruits SIRT1 to control liver steatosis through histone deacetylation. J Hepatol. 2013;59:1299–306.

    Article  CAS  PubMed  Google Scholar 

  109. Tough DF, Tak PP, Tarakhovsky A, Prinjha RK. Epigenetic drug discovery: breaking through the immune barrier. Nat Rev Drug Discov. 2016;15:835–53.

    Article  CAS  PubMed  Google Scholar 

  110. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  111. Ferreira DM, Simao AL, Rodrigues CM, Castro RE. Revisiting the metabolic syndrome and paving the way for microRNAs in non-alcoholic fatty liver disease. FEBS J. 2014;281:2503–24.

    Article  CAS  PubMed  Google Scholar 

  112. Gallego-Duran R, Romero-Gomez M. Epigenetic mechanisms in non-alcoholic fatty liver disease: an emerging field. World J Hepatol. 2015;7:2497–502.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs. Nature. 2005;438:685–9.

    Article  PubMed  CAS  Google Scholar 

  114. Miyaaki H, Ichikawa T, Kamo Y, Taura N, Honda T, Shibata H, et al. Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int. 2014;34:e302–7.

    Article  CAS  PubMed  Google Scholar 

  115. Loyer X, Paradis V, Henique C, Vion AC, Colnot N, Guerin CL, et al. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARalpha expression. Gut. 2016;65:1882–94.

    Article  PubMed  Google Scholar 

  116. Baffy G. MicroRNAs in nonalcoholic fatty liver disease. J Clin Med. 2015;4:1977–88.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Atanasovska B, Rensen SS, van der Sijde MR, Marsman G, Kumar V, Jonkers I, et al. A liver-specific long noncoding RNA with a role in cell viability is elevated in human nonalcoholic steatohepatitis. Hepatology. 2017;66(3):794–808.

    Article  CAS  PubMed  Google Scholar 

  118. Eslam M, George J. Genome-wide association studies and hepatitis C: harvesting the benefits of the genomic revolution. Semin Liver Dis. 2015;35:402–20.

    Article  PubMed  Google Scholar 

  119. Eslam M, Hashem AM, Romero-Gomez M, Berg T, Dore GJ, Mangia A, et al. FibroGENE: a gene-based model for staging liver fibrosis. J Hepatol. 2016;64:390–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Mohammed Eslam and Jacob George are supported by the Robert W. Storr Bequest to the Sydney Medical Foundation, University of Sydney; a National Health and Medical Research Council of Australia (NHMRC) Program Grant (1053206) and Project grants (APP1107178 and APP1108422).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Jacob George.

Ethics declarations

Conflict of Interest

Mayada Metwally and Mohammed Eslam each declare no potential conflicts of interest.

Jacob George is a section editor for Current Hepatology Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Fatty Liver Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metwally, M., Eslam, M. & George, J. Genetic and Epigenetic Associations of NAFLD: Focus on Clinical Decision Making. Curr Hepatology Rep 16, 335–345 (2017). https://doi.org/10.1007/s11901-017-0372-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-017-0372-8

Keywords

Navigation