Skip to main content

Advertisement

Log in

Driving CAR-Based T-Cell Therapy to Success

  • Chronic Leukemias (S O'Brien, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

T cells that have been genetically modified, activated, and propagated ex vivo can be infused to control tumor progression in patients who are refractory to conventional treatments. Early-phase clinical trials demonstrate that the tumor-associated antigen (TAA) CD19 can be therapeutically engaged through the enforced expression of a chimeric antigen receptor (CAR) on clinical-grade T cells. Advances in vector design, the architecture of the CAR molecule especially as associated with T-cell co-stimulatory pathways, and understanding of the tumor microenvironment, play significant roles in the successful treatment of medically fragile patients. However, some recipients of CAR+ T cells demonstrate incomplete responses. Understanding the potential for treatment failure provides a pathway to improve the potency of adoptive transfer of CAR+ T cells. High throughput single-cell analyses to understand the complexity of the inoculum coupled with animal models may provide insight into the therapeutic potential of genetically modified T cells. This review focusses on recent advances regarding the human application of CD19-specific CAR+ T cells and explores how their success for hematologic cancers can provide a framework for investigational treatment of solid tumor malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121:1822–6. Clinical trial showed that second generation CAR performed better in terms of in vivo expansion and persistence than first generation CAR in a competitive repopulation experiment.

  2. Jena B, Dotti G, Cooper LJ. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood. 2010;116:1035–44.

    Article  CAS  PubMed  Google Scholar 

  3. Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC, et al. Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther. 2007;15:981–8.

    Article  CAS  PubMed  Google Scholar 

  4. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17:1453–64.

    Article  CAS  PubMed  Google Scholar 

  5. Hombach A, Wieczarkowiecz A, Marquardt T, Heuser C, Usai L, Pohl C, et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol. 2001;167:6123–31.

    Google Scholar 

  6. Hudecek M, Lupo-Stanghellini M-T, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res. 2013;19:3153–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, et al. TanCAR: a novel bispecific Chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucl Acids. 2013;2:e105-e.

    Article  Google Scholar 

  8. Choi BD, Gedeon PC, Kuan C-T, Sanchez-Perez L, Archer GE, Bigner DD, et al. Rational design and generation of recombinant control reagents for bispecific antibodies through CDR mutagenesis. J Immunol Methods. 2013;395:14–20.

    Article  CAS  PubMed  Google Scholar 

  9. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18. First clinical report to describe antigen escape and emergence of CD19neg variants in response to CAR-mediated T-cell therapy.

  10. Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood. 2013;121:1165–74.

    Article  CAS  PubMed  Google Scholar 

  11. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a Chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843–51. Case report of a serious adverse event attributed to the use of a third generation CAR that resulted in the death of a patient.

  12. Lamers CHJ, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21:904–12.

    Article  CAS  PubMed  Google Scholar 

  13. Di Stasi A, Tey S-K, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365:1673–83.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, et al. Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther. 2011;22:1575–86.

    Article  CAS  PubMed  Google Scholar 

  15. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31:71-+. A report that showed CARs could combine signaling to target tumors positive for two different antigens.

  16. Lanitis E, Poussin M, Klattenhoff AW, Song D, Sandaltzopoulos R, June CH, et al. Chimeric Antigen Receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res. 2013;1:43–53.

    Article  Google Scholar 

  17. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33. Adoptive transfer of autologous second generation CAR + T cells were shown to cause complete regression of CD19 + CLL due to their persistence and functioning as serial killers.

  18. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther. 2010;18:666–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116:4099–102.

    Article  CAS  PubMed  Google Scholar 

  20. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood. 2006;108:3890–7.

    Article  CAS  PubMed  Google Scholar 

  21. Cooper LJ, Topp MS, Serrano LM, Gonzalez S, Chang WC, Naranjo A, et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood. 2003;101:1637–44.

    Article  CAS  PubMed  Google Scholar 

  22. Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010;16:1245–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hombach A, Hombach AA, Abken H. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc 'spacer' domain in the extracellular moiety of chimeric antigen receptors avoids 'off-target' activation and unintended initiation of an innate immune response. Gene Ther. 2010;17:1206–13.

    Article  CAS  PubMed  Google Scholar 

  24. Armour KL, Clark MR, Hadley AG, Williamson LM. Recombinant human IgG molecules lacking Fc gamma receptor I binding and monocyte triggering activities. Eur J Immunol. 1999;29:2613–24.

    Article  CAS  PubMed  Google Scholar 

  25. Reddy MP, Kinney CAS, Chaikin MA, Payne A, Fishman-Lobell J, Tsui P, et al. Elimination of Fc receptor-dependent effector functions of a modified IgG4 monoclonal antibody to human CD4. J Immunol. 2000;164:1925–33.

    CAS  PubMed  Google Scholar 

  26. Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8:226–34.

    Article  CAS  PubMed  Google Scholar 

  27. Davila ML, Brentjens R, Wang X, Riviere I, Sadelain M. How do CARs work? Early insights from recent clinical studies targeting CD19. Oncoimmunology. 2012;1:1577–83.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39:49–60.

    Article  CAS  PubMed  Google Scholar 

  29. Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10:267–76.

    Article  CAS  PubMed  Google Scholar 

  30. Maiti SN, Huls H, Singh H, Dawson M, Figliola M, Olivares S, et al. Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother. 2013;36:112–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jena B, Maiti S, Huls H, Singh H, Lee DA, Champlin RE, et al. Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials. Plos One. 2013;8:e57838.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kochenderfer JN, Dudley ME, Carpentor RO, Kassim SH. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013;122(25):4129–39.

    Google Scholar 

  33. Davila ML, Kloss CC, Gunset G, Sadelain M. CD19 CAR-targeted T cells induce long-term remission and B cell aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. Plos One. 2013;8:e61338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Restifo NP, Gattinoni L. Lineage relationship of effector and memory T cells. Curr Opin Immunol. 2013;25:556–63.

    Article  CAS  PubMed  Google Scholar 

  35. Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12:671–84.

    Article  CAS  PubMed  Google Scholar 

  36. Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 2013;121:573–84. This study showed that a memory stem-cell like CD8+ T cell population could be generated from naïve precursor cells in vitro and this has translational appeal.

    Article  CAS  PubMed  Google Scholar 

  37. Gattinoni L, Restifo NP. Moving T memory stem cells to the clinic. Blood. 2013;121:567–8.

    Article  CAS  PubMed  Google Scholar 

  38. Izhak L, Ambrosino E, Kato S, Parish ST, O'Konek JJ, Weber H, et al. Delicate balance among three types of T cells in concurrent regulation of tumor immunity. Cancer Res. 2013;73:1514–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.

    Article  CAS  PubMed  Google Scholar 

  40. Shin JH, Park HB, Oh YM, Lim DP, Lee JE, Seo HH, et al. Positive conversion of negative signaling of CTLA4 potentiates antitumor efficacy of adoptive T-cell therapy in murine tumor models. Blood. 2012;119:5678–87.

    Article  CAS  PubMed  Google Scholar 

  41. Prosser ME, Brown CE, Shami AF, Forman SJ, Jensen MC. Tumor PD-L1 co-stimulates primary human CD8(+) cytotoxic T cells modified to express a PD1:CD28 chimeric receptor. Mol Immunol. 2012;51:263–72.

    Article  CAS  PubMed  Google Scholar 

  42. Ankri C, Shamalov K, Horovitz-Fried M, Mauer S, Cohen CJ. Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity. J Immunol. 2013;191:4121–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119:2709–20.

    Article  CAS  PubMed  Google Scholar 

  44. Hackett PB, Largaespada DA, Cooper LJ. A transposon and transposase system for human application. Mol Ther. 2010;18:674–83.

    Article  CAS  PubMed  Google Scholar 

  45. Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H, et al. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res. 2008;68:2961–71. Non-viral vectors such as the transposon based Sleeping Beauty system were shown as alternatives to commonly used viral vectors such as gammaretrovirus or lentivirus for genetic modification of T cells.

  46. Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE, et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal, antigen and receptor for Wnt5a. Proc Natl Acad Sci U S A. 2008;105:3047–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Zhang S, Chen L, Wang-Rodriguez J, Zhang L, Cui B, Frankel W, et al. The onco-embryonic antigen ROR1 is expressed by a variety of human cancers. Am J Pathol. 2012;181:1903–10.

    Article  CAS  PubMed  Google Scholar 

  48. Hinrichs CS, Restifo NP. Reassessing target antigens for adoptive T-cell therapy. Nat Biotechnol. 2013;31:999–1008.

    Article  CAS  PubMed  Google Scholar 

  49. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14:1264–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. O'Connor CM, Sheppard S, Hartline CA, Huls H, Johnson M, Palla SL, et al. Adoptive T-cell therapy improves treatment of canine non-Hodgkin lymphoma post chemotherapy. Sci Rep. 2012;2:249.

    Google Scholar 

  51. Liadi I, Roszik J, Romain G, Cooper LJN, Varadarajan N. Quantitative high-throughput single-cell cytotoxicity assay for T cells. J Vis Exp: JoVE. 2013:e50058-e.

  52. Varadarajan N, Kwon DS, Law KM, Ogunniyi AO, Anahtar MN, Richter JM, et al. Rapid, efficient functional characterization and recovery of HIV-specific human CD8(+) T cells using microengraving. Proc Natl Acad Sci U S A. 2012;109:3885–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Dominguez MH, Chattopadhyay PK, Ma S, Lamoreaux L, McDavid A, Finak G, et al. Highly multiplexed quantitation of gene expression on single cells. J Immunol Methods. 2013;391:133–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Bipulendu Jena, Dr. Judy S Moyes, and Helen Huls each declare no potential conflicts of interest relevant to this article.

Dr. Laurence J. N. Cooper has been a consultant for American Stem Cells, Inc., GE Healthcare, Ferring Pharmaceuticals, Inc., and Bristol-Myers Squibb. Dr. Cooper has received multiple grants from foundations in the state of Texas and Federal to support research. Dr. Cooper received honoraria and payment for the development of education presentations including service on speakers’ bureaus from Miltenyi Biotec. Dr. Cooper received travel/accommodations expenses covered or reimbursed by Lonza.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence J. N. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jena, B., Moyes, J.S., Huls, H. et al. Driving CAR-Based T-Cell Therapy to Success. Curr Hematol Malig Rep 9, 50–56 (2014). https://doi.org/10.1007/s11899-013-0197-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0197-7

Keywords

Navigation