Skip to main content

Advertisement

Log in

High-Dose Cytarabine (HD araC) in the Treatment of Leukemias: a Review

  • Acute Leukemias (E Feldman, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Cytarabine (araC) has served as the backbone of acute myeloid leukemia (AML) treatment for nearly forty years. High-dose cytarabine (HD araC) therapy resulted from a theoretical model developed in the 1970s that attempted to maximize the anti-leukemia effect of cytarabine. Since that time, HD araC has been utilized mostly in consolidation therapy for AML and in patients with relapsed or resistant AML. The development of araC and HD araC preceded our current understanding of AML biology–that it is a heterogeneous disease, not a single clinical entity. Thus, the optimal dose, schedule, and clinical setting for the use of cytarabine in hematologic malignancies remain uncertain. Research is now better defining the optimal use of HD araC based on leukemia cell karyotype and molecular signature. Here we review the pharmacodynamics of araC, the landmark studies that established the role of HD araC in AML, and research defining the role of HD araC based on the unique biologic properties of the leukemia cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hiddemann W. Cytosine arabinoside in the treatment of acute myeloid leukemia: the role and place high-dose regiments. Ann Hematol. 1991;62(4):119–28.

    Article  PubMed  CAS  Google Scholar 

  2. Plagemann PGW, Marz R, Wohlhueter RM. Transport and metabolism of deoxycytidine and 1-β-D-Arabinofuranosylcytosine into cultured Novikoff rat hepatoma cells, relationship to phosphyorylation, and regulation of trisphosphate synthesis. Cancer Res. 1978;38:978–89.

    PubMed  CAS  Google Scholar 

  3. Ho DHW. Distribution of kinase and deaminase of 1-β-D-Arabinofuranosylcytosine in tissues of man and mouse. Cancer Res. 1973;33:2816–20.

    PubMed  CAS  Google Scholar 

  4. Steuart CD, Burke PJ. Cytidine deaminase and the development of resistance to arabinosyl cytosine. Nat New Biol. 1971;233(38):109–10.

    PubMed  CAS  Google Scholar 

  5. Mayer RJ, Davis RB, Schiffer CA, et al. Intensive Postremission Chemotherapy in Adults with Acute Myeloid Leukemia. N Engl J Med. 1994;331:896–3.

    Article  PubMed  CAS  Google Scholar 

  6. Plunkett W, Liliemark JO, Adams TM, et al. Saturation of 1-beta-D-arabinofuranosylcytosine 5'-triphosphate accumulation in leukemia cells during high-dose 1-beta-D-arabinofuranosylcytosine therapy. Cancer Res. 1987;47:3005–11.

    PubMed  CAS  Google Scholar 

  7. Preisler HD, Rustum Y, Priore RL. Relationship between leukemic cell retention of cytosine arabinoside triphosphate and the duration of remission in patients with acute non-lymphocytic leukemia. Eur J Cancer Clin Oncol. 1985;21(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  8. Rustum YM, Raymakers RA. 1-Beta-arabinofuranosylcytosine in therapy of leukemia: preclinical and clinical overview. Pharmacol Ther. 1992;56(3):307–21.

    Article  PubMed  CAS  Google Scholar 

  9. Bloomfield CD, Lawrence D, Byrd JC, et al. Frequency of Prolonged Remission Duration after High-Dose Cytarabine Intensification in Acute Myeloid Leukemia Varies by Cytogenetic Subtype. Cancer Res. 1998;58:4173–9.

    PubMed  CAS  Google Scholar 

  10. Damaraju VL, Damaraju S, Young JD, et al. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene. 2003;22:7524–36.

    Article  PubMed  CAS  Google Scholar 

  11. Cai J, Damaraju VL, Groulx N, et al. Two distinct molecular mechanisms underlying Cytarabine resistance in Human Leukemic Cells. Cancer Res. 2008;68:2349–57.

    Article  PubMed  CAS  Google Scholar 

  12. Lowenberg B, Downing JR, Burnett A. Acute Myeloid Leukemia. N Engl J Med. 1999;341:1051–62.

    Article  PubMed  CAS  Google Scholar 

  13. Champlin R, Gajewski J, Nimer S, et al. Postremission chemotherapy for adults with acute myelogenous leukemia: improved survival with high-dose cytarabine and daunorubicin consolidation treatment. J Clin Oncol. 1990;8(7):1199–6.

    PubMed  CAS  Google Scholar 

  14. Wolff SN, Marion J, Stein RS, et al. High-dose cytosine arabinoside and daunorubicin as consolidation therapy for acute nonlymphocytic leukemia in first remission: a pilot study. Blood. 1985;65:1407–11.

    PubMed  CAS  Google Scholar 

  15. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36.

    Article  PubMed  CAS  Google Scholar 

  16. • Grimwade D, Hills RK, Moorman AV. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354–65. This large series of AML patients treated in MRC trials establishes the prognosis for patients with infrequently occurring cytogenetic abnormalities. And can help to guide therapy choices for patients with these infrequent genetic aberattions.

    Article  PubMed  CAS  Google Scholar 

  17. Marcucci G, Mrozek K, Ruppert AS. Prognostic Factors and Outcome of Core Binding Factor Acute Myeloid Leukemia Patients With t(8;21) Differ From Those of Patients With inv(16): A Cancer and Leukemia Group B Study. J Clin Oncol. 2005;23(24):5705–17.

    Article  PubMed  Google Scholar 

  18. Schlenk RF, Döhner K, Krauter J, et al. Mutations and Treatment Outcome in Cytogenetically Normal Acute Myeloid Leukemia. N Engl J Med. 2008;358:1909–18.

    Article  PubMed  CAS  Google Scholar 

  19. Koreth J, Schlenk R, Kopecky KJ, et al. Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia in First Complete Remission. JAMA. 2009;301(22):2349–61.

    Article  PubMed  CAS  Google Scholar 

  20. Schlenk RF, Benner A, Krauter J, et al. Individual Patient Data–Based Meta-Analysis of Patients Aged 16 to 60 Years With Core Binding Factor Acute Myeloid Leukemia: A Survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2004;22(18):3741–50.

    Article  PubMed  CAS  Google Scholar 

  21. Byrd JC, Dodge RK, Carroll A. Patients With t(8;21)(q22;q22) and Acute Myeloid Leukemia Have Superior Failure-Free and Overall Survival When Repetitive Cycles of High-Dose Cytarabine Are Administered. J Clin Oncol. 1999;17(12):3767–75.

    PubMed  CAS  Google Scholar 

  22. Byrd JC, Ruppert AS, Mrozek K. Repetitive Cycles of High-Dose Cytarabine Benefit Patients With Acute Myeloid Leukemia and inv(16)(p13q22) or t(16;16)(p13;q22): Results from CALGB 8461. J Clin Oncol. 2004;22(6):1087–94.

    Article  PubMed  CAS  Google Scholar 

  23. Miyawaki S, Ohtake S, Fujisawa S, et al. A randomized comparison of 4 courses of standard-dose multiagent chemotherapy versus 3 courses of high-dose cytarabine alone in postremission therapy for acute myeloid leukemia in adults: the JALSG AML201 Study. Blood. 2011;117(8):2366–72.

    Article  PubMed  CAS  Google Scholar 

  24. Cairoli R, Beghini A, Grillo G. Prognostic impact of c-KIT mutations in core binding factor leukemias: An Italian retrospective study. Blood. 2006;107(9):3463–8.

    Article  PubMed  CAS  Google Scholar 

  25. Schnittger S, Kohl TM, Haferlach T. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood. 2006;107(5):1791–9.

    Article  PubMed  CAS  Google Scholar 

  26. Care RS, Vale PJM, Goodeve AC, et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol. 2003;121:775–7.

    Article  PubMed  CAS  Google Scholar 

  27. Farag SS, Ruppert AS, Mrozek K, et al. Outcome of Induction and Postremission Therapy in Younger Adults With Acute Myeloid Leukemia With Normal Karyotype: A Cancer and Leukemia Group B Study. J Clin Oncol. 2005;23(3):482–93.

    Article  PubMed  CAS  Google Scholar 

  28. Thomas X, Elhamri M, Raffoux E, et al. Comparison of high-dose cytarabine and timed-sequential chemotherapy as consolidation for younger adults with AML in first remission: the ALFA-9802 study. Blood. 2001;118(7):1754–62.

    Article  Google Scholar 

  29. Neubauer A, Maharry K, Mrozek K, et al. Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: a Cancer and Leukemia Group B study. J Clin Oncol. 2008;26(28):4603–9.

    Article  PubMed  CAS  Google Scholar 

  30. Schiller GJ. Treatment of resistant disease. Leukemia. 1998;12(s1):s20–4.

    PubMed  CAS  Google Scholar 

  31. Kurosawa S, Yamaguchi T, Miyawaki S, et al. Prognostic factors and outcomes of adult patients with acute myeloid leukemia after first relapse. Haematologica. 2010;95(11):1857–64.

    Article  PubMed  Google Scholar 

  32. Momparler RL. A Model for the Chemotherapy of Acute Leukemia with 1-β-D-Arabinofuranosylcytosine. Cancer Res. 1974;34:1775–87.

    PubMed  CAS  Google Scholar 

  33. Rudnick SA, Cadman EC, Capizzi RL, et al. High-dose cytarabine (HDARAC) in refractory acute leukemia. Cancer. 1979;44:1189–93.

    Article  PubMed  CAS  Google Scholar 

  34. Herzig RH, Wolff SN, Lazarus HM, et al. High-dose cytosine arabinoside therapy for refractory leukemia. Blood. 1983;62:361–9.

    PubMed  CAS  Google Scholar 

  35. Early AP, Preisler HD, Slocum H, et al. A Pilot Study of High-Dose 1-β-D-Arabinofuranosylcytosine for Acute Leukemia and Refractory Lymphoma: Clinical Response and Pharmacology. Cancer Res. 1982;42:1587–4.

    PubMed  CAS  Google Scholar 

  36. Kantarjian HM, Keating MJ, Walters RS, et al. The characteristics and outcome of patients with late relapse acute myelogenous leukemia. J Clin Oncol. 1998;6(2):232–8.

    Google Scholar 

  37. Wiernik PH, Banks PL, Case DC, et al. Cytarabine plus idarubicin or daunorubicin as induction and consolidation therapy for previously untreated adult patients with acute myeloid leukemia. Blood. 1992;79(2):313–9.

    PubMed  CAS  Google Scholar 

  38. Herzig RH, Lazarus HM, Wolff SN, et al. High-Dose Cytosine Arabinoside Therapy With and Without Anthracycline Antibiotics for Remission Reinduction of Acute Nonlymphoblastic Leukemia. J Clin Oncol. 1985;3(7):992–6.

    PubMed  CAS  Google Scholar 

  39. Gandhi V, Estey E, Keating MJ, et al. Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol. 1993;11(1):116–24.

    PubMed  CAS  Google Scholar 

  40. Gandhi V, Estey E, Keating MJ, et al. Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: pharmacokinetic, pharmacodynamic, and molecular interactions. Blood. 1996;87:256–64.

    PubMed  CAS  Google Scholar 

  41. te Boekhorst PA, Lowenberg B, Sonneveld P. Hematopoietic growth factor stimulation and cytarabine cytotoxicity in vitro: effects in untreated and relapsed or primary refractory acute myeloid leukemia cells. Leukemia. 1994;89(9):1480–6.

    Google Scholar 

  42. Robak T, Wrezesien-Kus A, Lech-Maranda E, et al. Combination regimen of cladribine (2-chlorodeoxyadenosine), cytarabine and G-CSF (CLAG) as induction therapy for patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma. 2000;39(1–2):121–9.

    Article  PubMed  CAS  Google Scholar 

  43. Pastore D, Specchia G, Carluccio P, et al. FLAG-IDA in the treatment of refractory/relapsed acute myeloid leukemia: single-center experience. Ann Hematol. 2003;82:231–5.

    PubMed  CAS  Google Scholar 

  44. Wierzbowska A, Robak T, Pluta A, et al. Cladribine combined with high doses of arabinoside cytosine, mitoxantrone, and G-CSF (CLAG-M) is a highly effective salvage regimen in patients with refractory and relapsed acute myeloid leukemia of the poor risk: a final report of the Polish Adult Leukemia Group. Eur J Haematol. 2008;80(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  45. Cooper T, Ayres M, Nowak B, et al. Biochemical modulation of cytarabine triphosphate by clofarabine. Cancer Chemother Pharamacol. 2005;55:361–8.

    Article  CAS  Google Scholar 

  46. Xie KC, Plunkett W. Deoxynucleotide pool depletion and sustained inhibition of ribonucleotide reductase and DNA synthesis after treatment of human lymphoblastoid cells with 2-chloro-9(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) adenine. Cancer Res. 1996;56:3030–7.

    PubMed  CAS  Google Scholar 

  47. • Becker PS, Kantarjian HM, Appelbaum FR, et al. Clofarabine with high dose cytarabine and granulocyte colony-stimulaing factor (G-CSF) priming for relapsed and refractory acute myeloid leukaemia. Br J Hematol. 2011;155:1822–9. Phase I/II study demonstrating clofarabine and HD araC and G-CSF is highly active in resistant disease and has activity regardless of age and cytogenetic risk.

    Article  Google Scholar 

  48. • Tse E, Leung AYH, Sim J, et al. Clofarabine and high-dose cytosine arabinoside in the treatment of refractory or relapsed acute myeloid leukaemia. Ann Hematol. 2011;90:1277–81. Small study demonstrating efficacy and safety of clofarabine with HD araC in treating resistant AML.

    Article  PubMed  CAS  Google Scholar 

  49. • Faderl S, Wetzler M, Rizzieri D, et al. Clofarabine plus cytarabine compared to cytarabine alone in older patients with relapased or refractory (R/R) acute myelogenous leukemia (AML): Results from the phase III CLASSIC 1 trial. J Clin Oncol. 2011;29 (suppl;abstr 6503) Phase III trial demonstrates clofarabine and HD araC improves remission rates and event free survival in elderly patients with résistant AML. These three studies highlight a clofarabine + HD arac as an effective salvage regimen for many patients with resistant AML.

  50. Chevallier P, Prebet T, Pigneux A, et al. Influence of NPM1 and FLT3-ITD status on outcome in relapsed/refractory AML patients receiving salvage therapy including gemtuzumab ozogamicin. Leukemia. 2010;24:467–9.

    Article  PubMed  CAS  Google Scholar 

  51. Giebel S, Krawczyk-Kulis M, Adamczyk-Cioch M, et al. Prophylaxis and therapy of central nervous system involvement in adult acute lymphoblastic leukemia: recommendations of the Polish Adult Leukemia Group. Pol Arch Med Wewn. 2008;118:356–60.

    PubMed  Google Scholar 

  52. Cortes J, O’Brien SM, Pierece S, et al. The value of High-Dose Systemic Chemotherapy and Intrathecal Therapy for Central Nervous System Prophylaxis in Different Risk Groups of Adult Acute Lymphoblastic Leukemia. Blood. 1995;86(6):2091–7.

    PubMed  CAS  Google Scholar 

  53. Wolk RW, Masse SR, Conklin R, et al. The incidence of central nervous system leukemia in adults with acute leukemia. Cancer. 1974;33:863–9.

    Article  PubMed  CAS  Google Scholar 

  54. Stewart DJ, Keating MJ, McCredick KB, et al. Natural history of central nervous system acute leukemia in adults. Cancer. 1981;47(1):184–96.

    Article  PubMed  CAS  Google Scholar 

  55. Ho DHW, Frei III E. Clinical pharmacology of 1-β-D-Arabinofuranosylcytosine. Clin Pharmacol Ther. 1971;12:944–54.

    PubMed  CAS  Google Scholar 

  56. Breithaupt H, Pralle H, Eckhardt T, et al. Clinical Results and Pharmacokinetics of High-Dose Cytosine Arabinoside (HD ARA-C). Cancer. 1982;50:1248–57.

    Article  PubMed  CAS  Google Scholar 

  57. Slevin ML, Piall EM, Aherne GW, et al. Effect of Dose and Schedule on Pharmacokinetics of High-Dose Cytosine Arabinoside in Plasma and Cerebrospinal Fluid. J Clin Oncol. 1983;1(9):546–51.

    PubMed  CAS  Google Scholar 

  58. Frick J, Ritch PS, Hansen R, et al. Successful Treatment of Meningeal Leukemia Using Systemic High-Dose Cytosine Arabinoside. J Clinical Oncol. 1984;2(5):365–8.

    CAS  Google Scholar 

  59. Amadori S, Papa G, Avvisati G, et al. Sequential Combination of Systemic High-Dose Ara-C and Asparginase for the Treatment of Central Nervous System Leukemia and Lymphoma. J Clinical Oncol. 1984;2(2):98–101.

    CAS  Google Scholar 

  60. Morra E, Lazzarino M, Inverardi D, et al. Systemic High-Dose Ara-C for the Treatment of Meningeal Leukemia in Adult Acute Lymphoblastic Leukemia and Non-Hodgkin’s Lymphoma. J Clinical Oncol. 1986;4(4):1207–11.

    CAS  Google Scholar 

  61. te Loo DMWM. van der Does-van den Berg A, van Wering ER, et al. Prognostic Significance of Blasts in the Cerebrospinal Fluid Without Pleiocytosis or a Traumatic Lumbar Puncture in Children With Acute Lymphoblastic Leukemia: Experience of the Dutch Childhood Oncology Group. J Clinical Oncol. 2006;24(15):2332–6.

    Article  Google Scholar 

  62. Gajjar A, Harrison PL, Sandlund JT, et al. Traumatic lumbar puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood. 2000;96:3381–4.

    PubMed  CAS  Google Scholar 

  63. Schiller G, Gajewski J, Territo M, et al. Long-term outcome of high-dose cytarabine-based consolidation chemotherapy for adults with acute myelogenous leukemia. Blood. 1992;80:2977–82.

    PubMed  CAS  Google Scholar 

  64. Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.

    Article  PubMed  CAS  Google Scholar 

  65. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or Chemotherapy for Non-Small-Cell Lung Cancer with Mutated EGFR. New Eng J Med. 2010;362:2380–8.

    Article  PubMed  CAS  Google Scholar 

  66. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in Combination With Paclitaxel and Carboplatin in Advanced Non-Small-Cell Lung Cancer: A Phase III Trial – INTACT 2. J Clin Oncol. 2004;22(5):785–94.

    Article  PubMed  CAS  Google Scholar 

  67. Herbst RS, Prager D, Hermann K, et al. TRIBUTE: A Phase III Trial of Erlotinib Hydrochloride (OSI-774) Combined With Carboplatin and Paclitaxel Chemotherapy in Advanced Non–Small-Cell Lung Cancer. J Clin Oncol. 2005;23(25):5892–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Schiller.

Additional information

This paper reviews the pharmacodynamics of cytarabine, as well as many of the preclinical studies that led to the use of cytarabine in the treatment of acute leukemia. In this manuscript, we detail common clinical uses of cytarabine in induction and consolidation therapy for newly diagnosed AML and its use in the treatment of resistant/relapsed AML. We also discuss a less common use – the treatment of central nervous system leukemia. There is also a focus on reviewing how leukemia cell karotype and molecular changes impact response to dose-intensified treatment with cytarabine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reese, N.D., Schiller, G.J. High-Dose Cytarabine (HD araC) in the Treatment of Leukemias: a Review. Curr Hematol Malig Rep 8, 141–148 (2013). https://doi.org/10.1007/s11899-013-0156-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0156-3

Keywords

Navigation