Skip to main content

Advertisement

Log in

3+7 Combined Chemotherapy for Acute Myeloid Leukemia: Is It Time to Say Goodbye?

  • Leukemia (A Aguayo, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

With the recent approval of multiple new drugs for the treatment of acute myeloid leukemia (AML), the relevance of conventional treatment approaches, such as daunorubicin and cytarabine (“3+7”) induction chemotherapy, has been challenged. We review the AML risk stratification, the efficacy of the newly approved drugs, and the role of “3+7”.

Recent Findings

Treatment of AML is becoming more niched with specific subtypes more appropriately treated with gemtuzumab, midostaurin, and CPX-351. Although lower intensity therapies can yield high response rates, they are less efficient at preventing relapses. The only curative potential for poor-risk AML is still an allogeneic stem cell transplant.

Summary

The number of AML subtypes where 3+7 alone is an appropriate therapeutic option is shrinking. However, it remains the backbone for combination therapy with newer agents in patients suitable for intensive chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96(13):4075–83.

    Article  CAS  PubMed  Google Scholar 

  2. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354–65.

    Article  CAS  PubMed  Google Scholar 

  3. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. The ELN risk category for AML is used by most clinicians and in clinical trials.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. National Comprehensive Cancer Network. Acute myeloid leukemia (Version 1.2021). https://wwwnccnorg/professionals/physician_gls/pdf/amlpdf. Accessed Nov 28, 2020.

  5. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  6. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. This manuscript proposes a genetic based classifcation of AML (which correlates with prognosis).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bullinger L, Dohner K, Dohner H. Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol. 2017;35(9):934–46.

    Article  CAS  PubMed  Google Scholar 

  8. Yates JW, Wallace HJ Jr, Ellison RR, Holland JF. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep. 1973;57(4):485–8.

    CAS  PubMed  Google Scholar 

  9. Murphy T, Yee KWL. Cytarabine and daunorubicin for the treatment of acute myeloid leukemia. Expert Opin Pharmacother. 2017;18(16):1765–80. This manuscript provides a more in depth review of the 3+7 regimen.

    Article  CAS  PubMed  Google Scholar 

  10. Burnett AK, Russell NH, Hills RK, Kell J, Cavenagh J, Kjeldsen L, et al. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood. 2015;125(25):3878–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med. 2009;361(13):1249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JH, Joo YD, Kim H, Bae SH, Kim MK, Zang DY, et al. A randomized trial comparing standard versus high-dose daunorubicin induction in patients with acute myeloid leukemia. Blood. 2011;118(14):3832–41.

    Article  CAS  PubMed  Google Scholar 

  13. Buchner T, Hiddemann W, Wormann B, Loffler H, Gassmann W, Haferlach T, et al. Daunorubicin 60 instead of 30 mg/sqm improves response and survival in elderly patients with AML. Blood. 1997;90(supplement 1):583a.

    Google Scholar 

  14. Lowenberg B, Ossenkoppele GJ, van Putten W, Schouten HC, Graux C, Ferrant A, et al. High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med. 2009;361(13):1235–48.

    Article  PubMed  Google Scholar 

  15. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–92. This phase 3 study led to the approval of CPX-351 for t-AML, sAML and AML-MRC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castaigne S, Pautas C, Terre C, Raffoux E, Bordessoule D, Bastie JN, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet. 2012;379(9825):1508–16. This study led to the approval of gemtuzumab for CD33-positive favorable and intermediate cytogenetic risk AML.

    Article  CAS  PubMed  Google Scholar 

  17. Lambert J, Pautas C, Terre C, Raffoux E, Turlure P, Caillot D, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica. 2019;104(1):113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64. This study led to the approval of midostaurin for FLT3 mutated AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roboz GJ, DiNardo CD, Stein EM, de Botton S, Mims AS, Prince GT, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood. 2020;135(7):463–71 This subgroup analysis led to the FDA approval of ivosidenib in treatment-naïve IDH1 mutated AML patients, but it is not approved in Canada or Europe.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DiNardo CD, Pratz KW, Letai A, Jonas BA, Wei AH, Thirman M, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19(2):216–28.

    Article  CAS  PubMed  Google Scholar 

  21. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–29. Landmark phase 3 study comparing venetoclax and azacitidine to placebo and azacitidine in treatment-naïve AML patients.

  23. Wei AH, Strickland SA Jr, Hou JZ, Fiedler W, Lin TL, Walter RB, et al. Venetoclax Combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019;37(15):1277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei AH, Montesinos P, Ivanov V, DiNardo CD, Novak J, Laribi K, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020;135(24):2137–45. Landmark phase 3 study comparing venetoclax and low dose cytarabine to placebo and low dose cytarabine in treatment-naïve AML patients. It included patients who had previously received hypomethylating agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cortes JE, Heidel FH, Hellmann A, Fiedler W, Smith BD, Robak T, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2019;33(2):379–89. Phase 2 study comparing glasdegib and low dose cytarabine to low dose cytarabine in treatment-naïve AML patients. Led to FDA, EMA and Health Canada approval of glasdegib.

  26. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111(5):2776–84.

    Article  CAS  PubMed  Google Scholar 

  28. Linch DC, Hills RK, Burnett AK, Khwaja A, Gale RE. Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014;124(2):273–6.

    Article  CAS  PubMed  Google Scholar 

  29. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326–35.

    Article  CAS  PubMed  Google Scholar 

  30. Bezerra MF, Lima AS, Pique-Borras MR, Silveira DR, Coelho-Silva JL, Pereira-Martins DA, et al. Co-occurrence of DNMT3A, NPM1, FLT3 mutations identifies a subset of acute myeloid leukemia with adverse prognosis. Blood. 2020;135(11):870–5.

    Article  PubMed  Google Scholar 

  31. Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Gorlich D, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128(5):686–98.

    Article  CAS  PubMed  Google Scholar 

  32. Gaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, Hahn J, et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia. 2016;30(11):2160–8.

    Article  CAS  PubMed  Google Scholar 

  33. Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Rock J, Paschka P, et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol. 2011;29(10):1364–72.

    Article  PubMed  Google Scholar 

  34. Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood. 2009;114(26):5352–61.

    Article  CAS  PubMed  Google Scholar 

  35. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sasaki K, Kanagal-Shamanna R, Montalban-Bravo G, Assi R, Jabbour E, Ravandi F, et al. Impact of the variant allele frequency of ASXL1, DNMT3A, JAK2, TET2, TP53, and NPM1 on the outcomes of patients with newly diagnosed acute myeloid leukemia. Cancer. 2020;126(4):765–74.

    Article  CAS  PubMed  Google Scholar 

  37. Tsai CH, Hou HA, Tang JL, Liu CY, Lin CC, Chou WC, et al. Genetic alterations and their clinical implications in older patients with acute myeloid leukemia. Leukemia. 2016;30(7):1485–92.

    Article  CAS  PubMed  Google Scholar 

  38. Metzeler KH, Becker H, Maharry K, Radmacher MD, Kohlschmidt J, Mrozek K, et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011;118(26):6920–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V, et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013;27(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  40. Paschka P, Schlenk RF, Gaidzik VI, Herzig JK, Aulitzky T, Bullinger L, et al. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group. Haematologica. 2015;100(3):324–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pratcorona M, Abbas S, Sanders MA, Koenders JE, Kavelaars FG, Erpelinck-Verschueren CA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica. 2012;97(3):388–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kayser S, Dohner K, Krauter J, Kohne CH, Horst HA, Held G, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117(7):2137–45.

    Article  CAS  PubMed  Google Scholar 

  43. Morton LM, Dores GM, Schonfeld SJ, Linet MS, Sigel BS, Lam CJK, et al. Association of Chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol. 2019;5(3):318–25.

    Article  PubMed  Google Scholar 

  44. Granfeldt Ostgard LS, Medeiros BC, Sengelov H, Norgaard M, Andersen MK, Dufva IH, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol. 2015;33(31):3641–9.

    Article  PubMed  Google Scholar 

  45. Bello C, Yu D, Komrokji RS, Zhu W, Wetzstein GA, List AF, et al. Outcomes after induction chemotherapy in patients with acute myeloid leukemia arising from myelodysplastic syndrome. Cancer. 2011;117(7):1463–9.

    Article  PubMed  Google Scholar 

  46. Kennedy JA, Atenafu EG, Messner HA, Craddock KJ, Brandwein JM, Lipton JH, et al. Treatment outcomes following leukemic transformation in Philadelphia-negative myeloproliferative neoplasms. Blood. 2013;121(14):2725–33.

    Article  CAS  PubMed  Google Scholar 

  47. Yogarajah M, Tefferi A. Leukemic transformation in myeloproliferative neoplasms: a literature review on risk, characteristics, and outcome. Mayo Clin Proc. 2017;92(7):1118–28.

    Article  CAS  PubMed  Google Scholar 

  48. Tefferi A, Mudireddy M, Mannelli F, Begna KH, Patnaik MM, Hanson CA, et al. Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts. Leukemia. 2018;32(5):1200–10.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Montalban-Bravo G, Kanagal-Shamanna R, Class CA, Sasaki K, Ravandi F, Cortes JE, et al. Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol. 2020;95(6):612–22.

    Article  CAS  PubMed  Google Scholar 

  50. Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121(24):4854–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burnett AK, Hills RK, Milligan D, Kjeldsen L, Kell J, Russell NH, et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol. 2011;29(4):369–77.

    Article  CAS  PubMed  Google Scholar 

  52. Burnett AK, Russell NH, Hills RK, Kell J, Freeman S, Kjeldsen L, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J Clin Oncol. 2012;30(32):3924–31.

    Article  CAS  PubMed  Google Scholar 

  53. Delaunay J, Recher C, Pigneux A, Witz F, Vey N, Blanchet O, et al. Addition of gemtuzumab ozogamycin to chemotherapy improves event-free survival but not overall survival of AML patients with intermediate cytogenetics not eligible for allogeneic transplantation. Results of the GOELAMS AML 2006 IR study. Blood. 2011;118(21):79.

    Article  Google Scholar 

  54. Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15(9):986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Magwood-Golston JS, Kessler S, Bennett CL. Evaluation of gemtuzumab ozogamycin associated sinusoidal obstructive syndrome: Findings from an academic pharmacovigilance program review and a pharmaceutical sponsored registry. Leuk Res. 2016;44:61–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Battipaglia G, Labopin M, Candoni A, Fanin R, El Cheikh J, Blaise D, et al. Risk of sinusoidal obstruction syndrome in allogeneic stem cell transplantation after prior gemtuzumab ozogamicin treatment: a retrospective study from the acute leukemia working party of the EBMT. Bone Marrow Transplant. 2017;52(4):592–9.

    Article  CAS  PubMed  Google Scholar 

  57. Ho VT, Martin AS, Perez WS, Steinert P, Zhang MJ, Chirnomas D, et al. Prior gemtuzumab ozogamicin exposure in adults with acute myeloid leukemia does not increase hepatic veno-occlusive disease risk after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research analysis. Biol Blood Marrow Transplant. 2020;26(5):884–92.

    Article  CAS  PubMed  Google Scholar 

  58. Perl AE. Availability of FLT3 inhibitors: how do we use them? Blood. 2019;134(9):741–5.

    Article  CAS  PubMed  Google Scholar 

  59. Stone RM, Mandrekar S, Sanford BL, Geyer S, Bloomfield CD, Dohner K, et al. The multi-kinase inhibitor midostaurin (M) prolongs survival compared with placebo (P) in combination with daunorubicin (D)/cytarabine (C) induction (ind), high-dose C consolidation (consol), and as maintenance (maint) therapy in newly diagnosed acute myeloid leukemia (AML) patients (pts) age 18-60 with FLT3 mutations (muts): an international prospective randomized (rand) P-controlled double-blind trial (CALGB 10603/RATIFY [Alliance]). Blood. 2015:126.

  60. Schlenk RF, Weber D, Fiedler W, Salih HR, Wulf G, Salwender H, et al. Midostaurin added to chemotherapy and continued single-agent maintenance therapy in acute myeloid leukemia with FLT3-ITD. Blood. 2019;133(8):840–51.

    Article  CAS  PubMed  Google Scholar 

  61. Mayer LD, Harasym TO, Tardi PG, Harasym NL, Shew CR, Johnstone SA, et al. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Mol Cancer Ther. 2006;5(7):1854–63.

    Article  CAS  PubMed  Google Scholar 

  62. Feldman EJ, Lancet JE, Kolitz JE, Ritchie EK, Roboz GJ, List AF, et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J Clin Oncol. 2011;29(8):979–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldberg AD, Talati C, Desai P, Famulare C, Devlin SM, Farnoud N, et al. TP53 mutations predict poorer responses to CPX-351 in acute myeloid leukemia. Blood. 2018;132:1433.

    Article  Google Scholar 

  64. Madarang E, Lykon J, Nguyen N, Watts JM, Bradley TJ, Chandhok NS. Real world outcomes of liposomal daunorubicin and cytarabine versus 7+3 in patients with secondary acute myeloid leukemia. Blood. 2020;136:5–6.

    Article  Google Scholar 

  65. Kim GY, Koprivnikar JL, Testi R, McCabe T, Perry G, Marcotulli D, et al. Treatment with CPX-351 induces deep responses and TP53 mutation clearance in patients with t-AML and AML MRC, including younger patients and those with pre-existing MPNs: a real-world experience. Blood. 2020;136:49–50.

    Article  Google Scholar 

  66. Cortes JE, Lin T, Uy GL, Ryan RJ, Faderl S, Lancet JE. Quality-adjusted time without symptoms of disease and toxicity (Q-TWiST) analysis of CPX-351 versus 7+3 in older adults with newly diagnosed high-risk/secondary acute myeloid leukemia (AML). Blood. 2020;136:55–6.

    Article  Google Scholar 

  67. Uy GL, Newell LF, Lin T, Goldberg SL, Wieduwilt MJ, Ryan RJ, et al. Long-term outcomes of allogeneic hematopoietic cell transplantation in patients enrolled in CPX-351-301, a randomized phase 3 study of CPX-351 versus 7+3 in older adults with newly diagnosed, high-risk and/or secondary AML. Blood. 2020;136:44–5.

    Article  Google Scholar 

  68. Gaidzik VI, Mayr-Benedikter V, Weber D, Schrade A, Krauter J, Walz JS, et al. Higher dose of CPX-351 is associated with prolonged hematologic recovery: results from an interim safety analysis of the randomized, phase III AMLSG 30-18 trial. Blood. 2020;136:46–7.

    Article  Google Scholar 

  69. Pollyea DA, Tallman MS, de Botton S, Kantarjian HM, Collins R, Stein AS, et al. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia. Leukemia. 2019;33(11):2575–84.

    Article  CAS  PubMed  Google Scholar 

  70. Arslan S, Zhang J, Dhakal P, Moran J, Naidoo N, Lombardi J, et al. Outcomes of therapy with venetoclax combined with a hypomethylating agent in favorable-risk acute myeloid leukemia. Am J Hematol. 2020.

  71. Wolach O, Levi I, Canaani J, Tadmor T, Tavor S, Hellmann I, et al. First results from a nationwide prospective non-interventional study of venetoclax-based 1st line therapies in patients with acute myeloid leukemia (AML) - Revive study. Blood. 2020;136:27–8.

    Article  Google Scholar 

  72. DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, Brown FC, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020;135(11):791–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10(4):536–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maiti A, Rausch CR, Cortes JE, Pemmaraju N, Daver NG, Ravandi F, et al. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent with venetoclax regimens. Blood. 2019;134:738.

    Article  Google Scholar 

  75. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98.

    Article  CAS  PubMed  Google Scholar 

  76. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31. This Phase 1/2 study led to the FDA approval of enasidenib for treatment of IDH2-mutated, relapsed/refractory AML.

  77. Zeidner JF, Foster MC, Blackford AL, Litzow MR, Morris LE, Strickland SA, et al. Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7+3) in newly diagnosed acute myeloid leukemia. Haematologica. 2015;100(9):1172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burnett AK, Russell NH, Hills RK, Hunter AE, Kjeldsen L, Yin J, et al. Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol. 2013;31(27):3360–8.

    Article  CAS  PubMed  Google Scholar 

  79. Bhella SD, Atenafu EG, Schuh AC, Minden MD, Schimmer AD, Gupta V, et al. Front-line FLAG-IDA and Nove-HiDAC chemotherapy improves overall survival (OS) and complete remission rates (CR) for patients with secondary or therapy-related AML compared to 3&7. Blood. 2015;126(23):4893.

    Article  Google Scholar 

  80. Burnett AK, Milligan D, Prentice AG, Goldstone AH, McMullin MF, Hills RK, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007;109(6):1114–24.

    Article  CAS  PubMed  Google Scholar 

  81. Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kantarjian HM, Thomas XG, Dmoszynska A, Wierzbowska A, Mazur G, Mayer J, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol. 2012;30(21):2670–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28(4):562–9.

    Article  CAS  PubMed  Google Scholar 

  84. Mesa RA, Li CY, Ketterling RP, Schroeder GS, Knudson RA, Tefferi A. Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood. 2005;105(3):973–7.

    Article  CAS  PubMed  Google Scholar 

  85. Tadros M, Koehne G, Zahra T, Unzaga J, Shwin M, Chow N. Evaluating acute myeloid leukemia induction regimens in elderly patients with unfavorable risk cytogenetics that are candidates for intensive remission therapy. Blood. 2020;136:17.

    Article  Google Scholar 

  86. Salhotra A, Ngo D, Zhang J, Sandhu KS, Al Malki MM, Aribi A, et al. Clinical outcomes of patients with secondary acute myeloid leukemia (sAML) treated with hypomethylating agent plus venetoclax (HMA-Ven) or liposomal daunorubicin cytarabine (CPX-351). Blood. 2020;136:37–8.

    Article  Google Scholar 

  87. Kennedy VE, Hui G, Gaut D, Mittal V, Oliai C, Muffly LS, et al. Hypomethylating agents in combination with venetoclax as a bridge to allogeneic transplant in acute myeloid leukemia. Blood. 2020;136:32–3.

    Article  Google Scholar 

  88. Pollyea DA, Winters A, Jordan CT, Smith C, Gutman JA. Allogeneic transplant improves AML outcomes compared to maintenance venetoclax and azacitidine following response to initial venetoclax and azacitidine therapy. Blood. 2020;136:24.

    Article  Google Scholar 

  89. Gutman JA, Winters A, Amaya ML, McMahon CM, Schowinsky J, Abbott D, et al. Venetoclax and azacitidine for newly diagnosed non-elderly adult patients with acute myeloid leukemia and adverse risk features. Blood. 2020;136:9.

    Article  Google Scholar 

  90. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369(2):111–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen WL Yee.

Ethics declarations

Conflict of Interest

KWLY consulted for and/or received honorarium from Novartis, F. Hoffmann La Roche, Takeda, Pfizer, TaiHo, Bristol-Myers Squib/Celgene, Paladin, Astex, and Otsuka. Received research funding from Astex, Novartis, Forma Therapeutics, Jazz, Onconova, F. Hoffmann La Roche, Genentech, and Tolero. ACS has consulted for and/or received honoraria from and/or received research support from AbbVie, Agios, Amgen, Astellas, Celgene/BMS, GlycoMimetics, Jazz, Novartis, Paladin, Pfizer, and Teva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, K., Schuh, A.C. & Yee, K.W. 3+7 Combined Chemotherapy for Acute Myeloid Leukemia: Is It Time to Say Goodbye?. Curr Oncol Rep 23, 120 (2021). https://doi.org/10.1007/s11912-021-01108-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01108-9

Keywords

Navigation