Skip to main content
Log in

Natriuretic Peptide Receptors (NPRs) as a Potential Target for the Treatment of Heart Failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Heart failure is defined as a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or ejection of blood. The natriuretic peptide is known to exert its biological action on the kidney, heart, blood vessels, renin–angiotensin system, autonomous nervous system, and central nervous system. The natriuretic peptide–natriuretic receptor system plays an important role in the regulation of blood pressure and body fluid volume through its pleiotropic effects.

Recent Findings

The clinical and animal studies suggest that natriuretic peptide–natriuretic receptors are important targets for the treatment of heart failure and other cardiovascular diseases. Even though attempts targeting natriuretic peptide receptors are underway for heart failure treatment, they seem insufficient despite the receptor systems’ potential. This review summarizes natriuretic peptide–natriuretic receptor system’s physiological actions and potential target for the treatment of heart failure.

Summary

Natriuretic peptides play multiple roles in different parts of the body, almost all of the activities related to this receptor system appear to have the potential to be harnessed to treat heart failure or symptoms associated with heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data related to this article can be obtained from the author up on request.

References

Papers of particular interest, published recently, have been highlighted as: •• Of importance

  1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128(16):240–327.

    Google Scholar 

  2. Caraballo C, Desai NR, Mulder H, Alhanti B, Wilson FP, Fiuzat M, et al. Clinical Implications of the New York Heart Association Classification. J Am Heart Assoc. 2019;8(23):e014240. https://doi.org/10.1161/JAHA.119.014240

  3. Tanai E, Frantz S. Pathophysiology of heart failure. Compr Physiol. 2015;6(1):187–214.

    Article  PubMed  Google Scholar 

  4. Lopes LR, Elliott PM. Genetics of heart failure. Biochim Biophys Acta - Mol Basis Dis. 2013;1832(12):2451–61.

    Article  CAS  Google Scholar 

  5. Cook C, Cole G, Asaria P, Jabbour R, Francis DP. The annual global economic burden of heart failure. Int J Cardiol. 2014;171(3):368–76.

    Article  PubMed  Google Scholar 

  6. Shah N, Madanieh R, Alkan M, Dogar MU, Kosmas CE, Vittorio TJ. A perspective on diuretic resistance in chronic congestive heart failure. Ther Adv Cardiovasc Dis. 2017;11(10):271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Bruyne LKM. Mechanisms and management of diuretic resistance in congestive heart failure. Postgrad Med J. 2003;79(931):268–71.

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981;28(1):89–94.

    Article  PubMed  Google Scholar 

  9. van der Laarse A, Weijers E, Adipranoto J, Manger Cats V, Bruschke AV. Atrial natriuretic factor: a versatile hormone produced by the heart. Ned Tijdschr Geneeskd. 1987;131(9):353–8.

    PubMed  Google Scholar 

  10. Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. cGMP Gener Eff Ther Implic. 2009;341–66.

  11. Kangawa K, Tawaragi Y, Oikawa S, Mizuno A, Sakuragawa Y, Nakazato H, et al. Identification of rat γ atrial natriuretic polypeptide and characterization of the cDNA encoding its precursor. Nature. 1984;312(5990):152–5.

    Article  CAS  PubMed  Google Scholar 

  12. Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci. 2000;97(15):8525–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma N, Wang Y, Roe BA, Harrison RG. Purification of an L-asparaginase-atrial natriuretic peptide fusion protein expressed in Escherichia coli. Biotechnol Bioeng. 1995;47:483–91.

    Article  CAS  PubMed  Google Scholar 

  14. John SW, Veress AT, Honrath U, Chong CK, Peng L, Smithies O, et al. Blood pressure and fluid-electrolyte balance in mice with reduced or absent ANP. Am J Physiol. 1996;271(1 Pt 2):R109–14.

    CAS  PubMed  Google Scholar 

  15. Sudoh T, Minamino N, Kangawa K, Matsuo H. Brain natriuretic peptide-32: N-terminal six amino acid extended form of brain natriuretic peptide identified in porcine brain. Biochem Biophys Res Commun. 1988;155(2):726–32.

    Article  CAS  PubMed  Google Scholar 

  16. Schellenberger U, Rear JO, Guzzetta A, Jue RA, Protter AA, Pollitt NS. The precursor to B-type natriuretic peptide is an O-linked glycoprotein. Arch Biochem Biophys. 2006;451:160–6.

    Article  CAS  PubMed  Google Scholar 

  17. Schlueter N, De Sterke A, Willmes DM, Spranger J, Jordan J, Birkenfeld AL. Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol Ther. 2014;144(1):12–27.

    Article  CAS  PubMed  Google Scholar 

  18. Ogawa Y, Nakao K, Nakagawa O, Komatsu Y, Hosoda K, Suga S, et al. Human C-type natriuretic peptide. Hypertension. 1992;19(6_pt_2):809–13

  19. Wu C, Wu F, Pan J, Morser J, Wu Q. Furin-mediated processing of pro-C-type natriuretic peptide. J Biol Chem. 2003;278(28):25847–52.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol. 2002;3(10):753–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci. 2015;130(2):57–77.

    Article  Google Scholar 

  22. Cuocolo A, Volpe M, Melee AF, Celentano L, Neumann RD, Trimarco B, et al. Effects of atrial natriuretic peptide on glomerular filtration rate in essential hypertension: a radionuclide study. Eur J Nucl Med. 1991;18(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  23. Winaver J, Burnett JC, Tyce GM, Dousa TP. ANP inhibits Na(+)-H+ antiport in proximal tubular brush border membrane: role of dopamine. Kidney Int. 1990;38(6):1133–40.

    Article  CAS  PubMed  Google Scholar 

  24. Rabelink TJ, Koomans HA, Van de Stolpe A, Bijlsma JA, Dorhout Mees EJ. Effects of atrial natriuretic peptide on distal tubule function in humans. Kidney Int. 1990;37(3):996–1001.

    Article  CAS  PubMed  Google Scholar 

  25. Inoue T, Nonoguchi H, Tomita K. Physiological effects of vasopressin and atrial natriuretic peptide in the collecting duct. Cardiovasc Res. 2001;51(3):470–80.

    Article  CAS  PubMed  Google Scholar 

  26. Vukicevic T, Schulz M, Faust D, Klussmann E. The trafficking of the water channel aquaporin-2 in renal principal cells-a potential target for pharmacological intervention in cardiovascular diseases. Front Pharmacol. 2016;7(FEB):1–27.

    Google Scholar 

  27. Johnston CI, Hodsman GP, Harrison RW, Mendelsohn FAO, Tsunoda K. Regulation of cardiac preload by atrial natriuretic peptide in congestive cardiac failure. Am J Med. 1988;84(3 SUPPL. 1):105–11.

    Article  CAS  PubMed  Google Scholar 

  28. Seta K, Hayashi T, Sugawara A, Kasuno K, Watanabe S, Sumi Y, et al. Atrial natriuretic peptide as a preload depressor in acute renal failure secondary to congestive heart failure. Ren Fail. 1998;20(5):717–23.

    Article  CAS  PubMed  Google Scholar 

  29. Pouta A, Karinen J, Vuolteenaho O, Laatikainen T. Pre-eclampsia: The effect of intravenous fluid preload on atrial natriuretic peptide secretion during caesarean section under spinal anaesthesia. Acta Anaesthesiol Scand. 1996;40(10):1203–9.

    Article  CAS  PubMed  Google Scholar 

  30. Henkel DM, Glockner J, Miller WL. Association of myocardial fibrosis, B-type natriuretic peptide, and cardiac magnetic resonance parameters of remodeling in chronic ischemic cardiomyopathy. Am J Cardiol. 2012;109(3):390–4.

    Article  CAS  PubMed  Google Scholar 

  31. Kögler H, Schott P, Toischer K, Milting H, Van PN, Kohlhaas M, et al. Relevance of brain natriuretic peptide in preload-dependent regulation of cardiac sarcoplasmic reticulum Ca2+ ATPase expression. Circulation. 2006;113:2724–32.

    Article  PubMed  Google Scholar 

  32. Sangaralingham SJ, Martin FL, Huntley BK, McKie PM, Ichiki T, Harders GE, et al. 575 Cenderitide: a novel designer natriuretic peptide therapeutic strategy for the prevention of adverse cardiac fibrosis and diastolic dysfunction induced by mild renal insufficiency. Can J Cardiol. 2012;28(5):S313–4.

    Article  Google Scholar 

  33. Phelan D, Watson C, Ledwidge M, Baugh J, McDonald K. Stretched induced B-type natriuretic peptide alters human cardiac fibroblast response to transforming growth factor beta and may be protective against myocardial fibrosis. J Am Coll Cardiol. 2011;57(14):E363.

    Article  Google Scholar 

  34. Watson CJ, Phelan D, Xu M, Collier P, Neary R, Smolenski A, et al. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-β mediated fibrosis. Fibrogenesis Tissue Repair. 2012;5(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hirakawa K, Yamamuro M, Uemura T, Takashio S, Kaikita K, Utsunomiya D, et al. Correlation between microvascular dysfunction and B-type natriuretic peptide levels in non-ischemic heart failure patients with cardiac fibrosis. Int J Cardiol. 2017;228:881–5.

    Article  PubMed  Google Scholar 

  36. Nakao K, Kuwahara K, Nishikimi T, Nakagawa Y, Kinoshita H, Minami T, et al. Contributes to blood pressure regulation by maintaining endothelial integrity. Hypertension. 2017;69(2):286–96.

    Article  CAS  PubMed  Google Scholar 

  37. Bolli P, Müller FB, Linder L, Raine AE, Resink TJ, Erne P, et al. The vasodilating effect of atrial natriuretic peptide in normotensive and hypertensive humans. J Cardiovasc Pharmacol. 1989;13:S75–9.

    Article  PubMed  Google Scholar 

  38. von Lueder TG, Sangaralingham SJ, Wang BH, Kompa AR, Atar D, Burnett JCJ, et al. Renin-angiotensin blockade combined with natriuretic peptide system augmentation: novel therapeutic concepts to combat heart failure. Circ Heart Fail. 2013;6(3):594–605. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000289.

    Article  Google Scholar 

  39. Allen MJ, Ang VTY, Bennett ED, Jenkins JS. Atrial natriuretic peptide inhibits osmolality-induced arginine vasopressin release in man. Clin Sci. 1988;75(1):35–9.

    Article  CAS  Google Scholar 

  40. Inoue M, Kimura T, Ota K, Shoji M, Sato K, Ohta M, et al. Effect of atrial natriuretic peptide on the vasopressin response to osmotic and hemorrhagic stimuli in dogs. J Neuroendocrinol. 1990;2(6):903–9. https://doi.org/10.1111/j.1365-2826.1990.tb00658.x.

    Article  CAS  PubMed  Google Scholar 

  41. Akamatsu N, Inenaga K, Yamashita H. Inhibitory effects of natriuretic peptides on vasopressin neurons mediated through cGMP and cGMP-dependent protein kinase in vitro. J Neuroendocrinol. 1993;5(5):517–22.

    Article  CAS  PubMed  Google Scholar 

  42. Manzanares J, Lookingland KJ, Moore KE. Atrial natriuretic peptide-induced suppression of basal and dehydration-induced vasopressin secretion is not mediated by hypothalamic tuberohypophysial or tuberoinfundibular dopaminergic neurons. Brain Res. 1990;527:103–8.

    Article  CAS  PubMed  Google Scholar 

  43. Lee J, Malvin RL, Claybaugh JR, Huang BS. Atrial natriuretic factor inhibits vasopressin secretion in conscious sheep. Proc Soc Exp Biol Med. 1987;185(3):272–6.

    Article  CAS  PubMed  Google Scholar 

  44. Januszewicz P, Thibault G, Garcia R, Gutkowska J, Genest J, Cantin M. Effect of synthetic atrial natriuretic factor on arginine vasopressin release by the rat hypothalamo-neurohypophysial complex in organ culture. Biochem Biophys Res Commun. 1986;134(2):652–8.

    Article  CAS  PubMed  Google Scholar 

  45. Atchison DJ, Ackermann U. The interaction between atrial natriuretic peptide and cardiac parasympathetic function. J Auton Nerv Syst. 1993;42:81–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kasama S, Toyama T, Kumakura H, Takayama Y, Ishikawa T. Effects of intravenous atrial natriuretic peptide on cardiac sympathetic nerve activity in patients with decompensated congestive heart failure. J Nucl Med. 2018;45(7):1108–14.

    Google Scholar 

  47. Rocca HPB, Kaye DM, Woods RL, Hastings J, Esler MD. Effects of intravenous brain natriuretic peptide on regional sympathetic activity in patients with chronic heart failure as compared with healthy control subjects. J Am Coll Cardiol. 2001;37(5):1221–7.

    Article  CAS  Google Scholar 

  48. Buttgereit J, Shanks J, Li D, Hao G, Athwal A, Langenickel TH, et al. C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function. Cardiovasc Res. 2016;112(3):637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahinrad S, de Craen AJ, Yasar S, van Heemst D, Sabayan B. Natriuretic peptides in the central nervous system: novel targets for cognitive impairment. Neurosci Biobehav Rev. 2016;(68):148–56.

  50. Yamada T, Nakao K, Itoh H, Shirakami G, Kangawa K, Minamino N, et al. Intracerebroventricular injection of brain natriuretic peptide inhibits vasopressin secretion in conscious rats. Neurosci Lett. 1988;95:223–8.

    Article  CAS  PubMed  Google Scholar 

  51. Shirakami G, Itoh H, Suga S, Komatsu Y, Hama N, Mori K, et al. Central action of C-type natriuretic peptide on vasopressin secretion in conscious rats. Neurosci Lett. 1993;159(1–2):25–8.

    Article  CAS  PubMed  Google Scholar 

  52. Ramos HR, Birkenfeld AL, De Bold AJ. Cardiac natriuretic peptides and obesity : perspectives from an endocrinologist and a cardiologist. Endocr Connect. 2015;4(3):R25–36.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Silberbach M, Roberts CT. Natriuretic peptide signaling molecular and cellular pathways to growth regulation. Cell Signal. 2001;13(4):221–31.

    Article  CAS  PubMed  Google Scholar 

  54. Chinkers M, Garbers DL. The protein kinase domain of the ANP receptor is required for signaling. Science. 1989;245(4924):1392–4.

    Article  CAS  PubMed  Google Scholar 

  55. Kurose H, Inagami T, Ui M. Participation of adenosine S-triphosphate in the activation of membrane-bound guanylate cyclase by the atria1 natriuretic factor. FEBS Lett. 1987;219(2):375–9.

    Article  CAS  PubMed  Google Scholar 

  56. Goraczniak RM, Duda T, Sharma RK. A structural motif that defines the ATP-regulatory module of guanylate cyclase in atrial natriuretic factor signalling. Biochem J. 1992;282:533–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vanderheyden M, Bartunek J, Goethals M. Brain and other natriuretic peptides : molecular aspects. Eur J Heart Fail. 2004;6(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  58. Ogawa H, Qiu Y, Ogata CM, Misono KS. Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain. Rotation mechanism for transmembrane signal transduction. J Biol Chem. 2004;279(27):28625–31.

    Article  CAS  PubMed  Google Scholar 

  59. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, et al. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science. 1991;252(5002):120–3.

    Article  CAS  PubMed  Google Scholar 

  60. Schulz S, Singh S, Ann R, et al. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell. 1989;58(6):1155–62.

    Article  CAS  PubMed  Google Scholar 

  61. Suzuki T, Yamazaki T, Yazaki Y. The role of the natriuretic peptides in the cardiovascular system. Cardiovasc Res. 2001;51(3):489–94.

    Article  CAS  PubMed  Google Scholar 

  62. Pandey KN. Biology of natriuretic peptides and their receptors. Peptides. 2005;26:901–32.

    Article  CAS  PubMed  Google Scholar 

  63. Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. Cardiovasc Res. 2006;69(2):318–28.

    Article  CAS  PubMed  Google Scholar 

  64. Palazzuoli A, Antonelli G. Natriuretic peptides in heart failure : where we are, where we are going. Intern Emerg Med. 2011;6(4):381–3.

    Article  Google Scholar 

  65. Cowley CG, Bradley JD, Shaddy RE. B-type natriuretic peptide levels in congenital heart disease. Pediatr Cardiol. 2004;25(4):336–40.

    Article  CAS  PubMed  Google Scholar 

  66. Liu Y, Wei LQ. Increases in B-type natriuretic peptide for detecting weaning-induced heart failure. Intensive Care Med. 2012;38(1):172–3.

    Article  PubMed  Google Scholar 

  67. Oral I, Mistrík J, Náplava R. Clinical status and B-type natriuretic peptide levels in patients with heart failure at hospital discharge. Herz. 2007;7:583–8.

    Article  Google Scholar 

  68. Torres-Courchoud I, Chen HH. B-type natriuretic peptide and acute heart failure: fluid homeostasis, biomarker and therapeutics. Rev Clin Esp. 2016;216(7):393–8. https://doi.org/10.1016/j.rce.2016.01.009.

    Article  CAS  PubMed  Google Scholar 

  69. Zhao D, Vellaichamy E, Somanna NK, Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A gene disruption causes increased adrenal angiotensin II and aldosterone levels. Am J Physiol Renal Physiol. 2007;293(1):F121–7.

    Article  CAS  PubMed  Google Scholar 

  70. Balietti P, Cocci G, Bordicchia M. Cardiac natriuretic peptides, hypertension and cardiovascular risk. High Blood Press Cardiovasc Prev. 2017;24(2):115–26.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nakagawa Y, Nishikimi T, Kuwahara K, et al. MiR30-GALNT1/2 axis-mediated glycosylation contributes to the increased secretion of inactive human prohormone for brain natriuretic peptide (proBNP) from failing hearts. J Am Heart Assoc. 2017;6(2):pii-e003601.

    Article  Google Scholar 

  72. Dinas PC, Nintou E, Psychou D,et al. Association of fat mass profile with natriuretic peptide receptor alpha in subcutaneous adipose tissue of medication-free healthy men: a cross-sectional study. F1000Research. 2018;7(0):327. Available from: https://f1000research.com/articles/7-327/v1

  73. Abraham WT, Lowes BD, Ferguson DA, et al. Systemic hemodynamic, neurohormonal, and renal effects of a steady-state infusion of human brain natriuretic peptide in patients with hemodynamically decompensated heart failure. J Card Fail. 1998;4(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  74. Yancy CW. Treatment with B-type natriuretic peptide for chronic decompensated heart failure : insights learned from the follow-up serial infusion of nesiritide ( FUSION ) trial. Heart Fail Rev. 2004;9(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  75. Lee NS, Daniels LB. Current understanding of the compensatory actions of cardiac natriuretic peptides in cardiac failure: a clinical perspective. Card Fail Rev. 2016;2(1):14–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Publication Committee for the VMAC Investigators (Vasodilatation in the Management of Acute CHF). Intravenous nesiritide vs nitroglycerin for treatment of decompensated. JAMA. 2002;287(12):1531–40.

  77. Peacock WF 4th, Holland R, Gyarmathy R, et al. Observation unit treatment of heart failure with nesiritide: results from the proaction trial. J Emerg Med. 2005;29(3):243–52.

    Article  PubMed  Google Scholar 

  78. Fitzgerald RL, Cremo R, Gardetto N, Chiu A, Clopton P, Bhalla V, et al. Effect of nesiritide in combination with standard therapy on serum concentrations of natriuretic peptides in patients admitted for decompensated congestive heart failure. Am Heart J. 2005;150(3):471–7.

    Article  CAS  PubMed  Google Scholar 

  79. Mazur J, Ngo TNM, Phan HT, Pham K, Nguyen TT, Vu HM, et al. Effects of nesiritide, serelaxin, and ularitide in acute heart failure: meta-analysis of randomized controlled trials. J Am Coll Cardiol. 2021;77(18):739. https://doi.org/10.1016/S0735-1097(21)02098-2.

    Article  Google Scholar 

  80. Saito Y, Nakao K, Nishimura K, et al. Clinical application of atrial natriuretic polypeptide in patients with congestive heart failure : beneficial effects on left ventricular function. Circulation. 1987;76(1):115–24.

    Article  CAS  PubMed  Google Scholar 

  81. Hayashi M, Tsutamoto T, Wada A, et al. Intravenous atrial natriuretic peptide prevents left ventricular remodeling in patients with first anterior acute myocardial infarction. J Am Coll Cardiol. 2001;37(7):1820–6.

    Article  CAS  PubMed  Google Scholar 

  82. Mori Y, Kamada T, Ochiai R. Reduction in the incidence of acute kidney injury after aortic arch surgery with low-dose atrial natriuretic peptide a randomised controlled trial. Eur J Anaesthesiol. 2014;31(7):381–7. https://doi.org/10.1097/EJA.0000000000000035.

    Article  CAS  PubMed  Google Scholar 

  83. Nojiri T, Hosoda H, Kimura T, et al. Atrial natriuretic peptide protects against cisplatin-induced acute kidney injury. Cancer Chemother Pharmacol. 2015;75(1):123–9. https://doi.org/10.1007/s00280-014-2624-4.

    Article  CAS  PubMed  Google Scholar 

  84. •• Nogi K, Ueda T, Matsue Y, Nogi M, Ishihara S, Nakada Y, et al. Effect of carperitide on the 1 year prognosis of patients with acute decompensated heart failure. ESC Hear Fail. 2022;9(2):1061–70. https://doi.org/10.1002/ehf2.13770. This study is among the most recent, observed the effect of different dose scale, and indicated that patients who received “low dose” carperitide showed improvement in the signs of heart failure. Adverse outcomes reported from other studies might be attributed to failure of dose stratification among patients, as the “right dose” for natriuretic peptide needs further trials.

    Article  Google Scholar 

  85. Li T, Cheng H-J, Ohte N, Hasegawa H, Morimoto A, Herrington DM, et al. C-type natriuretic peptide improves left ventricular functional performance at rest and restores normal exercise responses after heart failure. J Pharmacol Exp Ther. 2016;357(3):545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moyes AJ, Chu SM, Aubdool AA, Dukinfield MS, Margulies KB, Bedi KC, et al. C-type natriuretic peptide co-ordinates cardiac structure and function. Eur Heart J. 2020;41(9):1006–20.

    Article  CAS  PubMed  Google Scholar 

  87. Bubb KJ, Aubdool AA, Moyes AJ, Lewis S, Drayton JP, Tang O, et al. Endothelial C-type natriuretic peptide is a critical regulator of angiogenesis and vascular remodeling. Circulation. 2019;139(13):1612–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li J, Zhuo N, Zhang J, Sun Q, Si J, Wang K, et al. The loading of C-type natriuretic peptides improved hemocompatibility and vascular regeneration of electrospun poly (ε-caprolactone) grafts. Acta Biomater. 2022;151:304–16.

    Article  CAS  PubMed  Google Scholar 

  89. •• Breinholt VM, Mygind PH, Christoffersen ED, Zhang Y, Ota S, Will Charlton R, et al. Phase 1 safety, tolerability, pharmacokinetics and pharmacodynamics results of a long-acting C-type natriuretic peptide prodrug, TransCon CNP. Br J Clin Pharmacol. 2022;88(11):4763–72. https://doi.org/10.1111/bcp.15369. This Phase I clinical trial report emphasizes on safety of pharmacokinetic compatibility of C type natriuretic peptide. They reported marked safety and compatibility of CNP product. Eventhough they are proposing CNP for achondroplasia, their early clinical trial appears to have an important implication for heart failure novel therapeutic trials.

    Article  CAS  PubMed  Google Scholar 

  90. McKie PM, Sangaralingham SJ, Burnett JC. CD-NP: an innovative designer natriuretic peptide activator of particulate guanylyl cyclase receptors for cardiorenal disease. Curr Heart Fail Rep. 2010;7(3):93–9.

    Article  CAS  PubMed  Google Scholar 

  91. Ichiki T, Dzhoyashvili N, Burnett JC. Natriuretic peptide based therapeutics for heart failure: Cenderitide: a novel first-in-class designer natriuretic peptide. Int J Cardiol. 2018;2017:2–7. https://doi.org/10.1016/j.ijcard.2018.06.002.

    Article  Google Scholar 

  92. Ichiki T, Schirger J, Wanek JR, Scott C, Sangaralingham J, Chen HH, et al. Cenderitide: a novel therapeutic to increase endogenous cardiac natriuretic peptides in heart failure. J Am Coll Cardiol. 2020;75(11_Supplement_1):788.

    Article  Google Scholar 

  93. Lisy O, Huntley BK, Mccormick DJ, et al. Design, synthesis, and actions of a novel chimeric natriuretic peptide :CD-NP. J Am Coll Cardiol. 2008;52(1):60–8. https://doi.org/10.1016/j.jacc.2008.02.077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ichiki T, Schirger JA, Huntley BK, Brozovich FV, Maleszewski JJ, Sandberg SM, et al. Journal of Molecular and Cellular Cardiology Cardiac fibrosis in end-stage human heart failure and the cardiac natriuretic peptide guanylyl cyclase system : regulation and therapeutic implications. J Mol Cell Cardiol. 2014;75:199–205. https://doi.org/10.1016/j.yjmcc.2014.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Martin FL, Sangaralingham SJ, Huntley BK, et al. CD-NP : a novel engineered dual guanylyl cyclase activator with anti-fibrotic actions in the heart. Plos One. 2012;7(12):e52422. https://doi.org/10.1371/journal.pone.0052422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ichiki T, Huntley BK, Sangaralingham SJ, Burnett JC Jr. Pro-atrial natriuretic peptide: a novel guanylyl cyclase-a receptor activator that goes beyond atrial and B-type natriuretic peptides. JACC Heart Fail. 2015;3(9):715–23. https://doi.org/10.1016/j.jchf.2015.03.015.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Potter LR. Natriuretic peptide metabolism, clearance and degradation. FEBS J. 2011;278(11):1808–17. https://doi.org/10.1111/j.1742-4658.2011.08082.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mangiafico S, Costello-boerrigter LC, Andersen IA, et al. Neutral endopeptidase inhibition and the natriuretic peptide system : an evolving strategy in cardiovascular therapeutics. Eur Heart J. 2013;886–93. https://doi.org/10.1093/eurheartj/ehs262

  99. Ralat LA, Guo Q, Ren M, et al. Insulin-degrading enzyme modulates the natriuretic. J Biol Chem. 2011;286(6):4670–9.

    Article  CAS  PubMed  Google Scholar 

  100. Díez J. Chronic heart failure as a state of reduced effectiveness of the natriuretic peptide system : implications for therapy. Eur J Heart Fail. 2017;19(2):167–76. https://doi.org/10.1002/ejhf.656.

    Article  CAS  PubMed  Google Scholar 

  101. Goltsman I, Ovcharenko E, Hoffman A, et al. Rosiglitazone improves the natriuretic response to atrial natriuretic peptide in rats with experimental congestive heart failure : possible involvement of a post-guanylate cyclase mechanism. BMC Pharmacol. 2011;11(Suppl 1):P29. https://doi.org/10.1186/1471-2210-11-S1-P29. (Published online 2011 Aug 1).

    Article  PubMed Central  Google Scholar 

  102. Schulz-Knappe P, Forssmann K, Herbst F, et al. Isolation and structural analysis of “urodilatin”, a new peptide of the cardiodilatin-(ANP)-family, extracted from human urine. Klin Wochenschr. 1988;66(17):752–9.

    Article  CAS  PubMed  Google Scholar 

  103. Meyer M, Wiebe K, Wahlers T, et al. Urodilatin (INN:ularitide) as a new drug for the therapy of acute renal failure following cardiac surgery. Clin Exp Pharmacol Physiol. 1997;24(5):374–6.

    Article  CAS  PubMed  Google Scholar 

  104. Schulz-Knappe P, Honrath U, Forssmann WG, Sonnenberg H. Endogenous natriuretic peptides :effect on collecting duct function in rat kidney. Am J Physiol. 1990;259(3 Pt 2):F415–8.

    CAS  PubMed  Google Scholar 

  105. Hildebrandt DA, Mizelle HL, Brands MW, Hall JE. Comparison of renal actions of urodilatin and atrial natriuretic peptide. Am J Physiol Regul Integr Comp Physiol. 1992;262(3):R395–9.

    Article  CAS  Google Scholar 

  106. Langenfeld H, Schneider B, Grimm W, et al. The six-minute walk-an adequate exercise test for pacemaker patients? Pacing Clin Electrophysiol. 1990;13(12):1761–5.

    Article  CAS  PubMed  Google Scholar 

  107. Packer M, Holcomb R, Abraham WT, et al. Rationale for and design of the TRUE-AHF trial : the effects of ularitide on the short-term clinical course and long-term mortality of patients with acute heart failure. Eur J Heart Fail. 2017;19(5):673–81. https://doi.org/10.1002/ejhf.698.

    Article  CAS  PubMed  Google Scholar 

  108. •• Packer M, O’Connor C, McMurray JJ, Wittes J, Abraham WT, Anker SD, Dickstein K, Filippatos G, Holcomb R, Krum H, Maggioni AP. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med. 2017;376(20):1956–64. https://doi.org/10.1056/NEJMoa1601895. In this trial, in addition to standard care, 2157 patients with acute heart failure received continuous intravenous infusions of ularitide at a dosage of 15 ng per kilogram of body weight per minute or a matched placebo for 48 h. Even though ularitide had physiological benefits (without changing cardiac troponin levels), short-term therapy had no impact on a clinical composite end goal or lowered long-term cardiovascular mortality.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author wants to extend sincere gratitude to Addis Ababa University, School of Pharmacy, and Madda Walabu University for fund supports related to this review.

Author information

Authors and Affiliations

Authors

Contributions

ATB—conceptualized the title and prepared the manuscript.

Corresponding author

Correspondence to Adamu T. Bekele.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekele, A.T. Natriuretic Peptide Receptors (NPRs) as a Potential Target for the Treatment of Heart Failure. Curr Heart Fail Rep 20, 429–440 (2023). https://doi.org/10.1007/s11897-023-00628-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-023-00628-8

Keywords

Navigation