Skip to main content

Advertisement

Log in

Do Heart Failure Biomarkers Influence Heart Failure Treatment Response?

  • Review
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Heart failure (HF) is one of the leading causes of cardiac morbidity and mortality around the world. Our evolving understanding of the cellular and molecular pathways of HF has led to the identification and evaluation of a growing number of HF biomarkers. Natriuretic peptides remain the best studied and understood HF biomarkers, with demonstrated clinical utility in the diagnosis and prognostication of HF. Less commonly understood is the utility of HF biomarkers for guiding and monitoring treatment response. In this review, we outline the current HF biomarker landscape and identify novel biomarkers that have potential to influence HF treatment response.

Recent Findings

An increasing number of biomarkers have been identified through the study of HF mechanisms. While these biomarkers hold promise, they have not yet been proven to be effective in guiding HF therapy.

Summary

A more developed understanding of HF mechanisms has resulted in an increased number of available pharmacologic HF therapies. In the past, biomarkers have been useful for the diagnosis and prognostication of HF. Future evaluation on their use to guide pharmacologic therapy is ongoing, and there is promise that biomarker-guided therapy will allow clinicians to begin personalizing treatment for their HF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chair SY, Chan JYW, Waye MMY, Liu T, Law BMH, Chien WT. Exploration of potential genetic biomarkers for heart failure: a systematic review. Int J Environ Res Public Health. 2021;18(11):5904. https://doi.org/10.3390/ijerph18115904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dokainish H, Teo K, Zhu J, et al. Heart failure in Africa, Asia, the Middle East and South America: the INTER-CHF study. Int J Cardiol. 2016;204:133–41. https://doi.org/10.1016/j.ijcard.2015.11.183

    Article  PubMed  Google Scholar 

  3. Roger VL. Epidemiology of heart failure: a contemporary perspective. Circ Res. 2021;128(10):1421–34. https://doi.org/10.1161/CIRCRESAHA.121.318172

    Article  CAS  PubMed  Google Scholar 

  4. Sarhene M, Wang Y, Wei J, et al. Biomarkers in heart failure: the past, current and future. Heart Fail Rev. 2019;24(6):867–903. https://doi.org/10.1007/s10741-019-09807-z

    Article  PubMed  Google Scholar 

  5. GBD 2013 Mortality and causes of death collaborators. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015;385(9963):117–71. https://doi.org/10.1016/S0140-6736(14)61682-2

    Article  Google Scholar 

  6. Ponikowski P, Anker SD, AlHabib KF, et al. Heart failure: preventing disease and death worldwide: Addressing heart failure. ESC Heart Fail. 2014;1(1):4–25. https://doi.org/10.1002/ehf2.12005

    Article  PubMed  Google Scholar 

  7. Emdin M, Vittorini S, Passino C, Clerico A. Old and new biomarkers of heart failure. Eur J Heart Fail. 2009;11(4):331–5. https://doi.org/10.1093/eurjhf/hfp035

    Article  CAS  PubMed  Google Scholar 

  8. Pellikka PA, She L, Holly TA, et al. Variability in ejection fraction measured By echocardiography, gated single-photon emission computed tomography, and cardiac magnetic resonance in patients with coronary artery disease and left ventricular dysfunction. JAMA Netw Open. 2018;1(4):e181456. https://doi.org/10.1001/jamanetworkopen.2018.1456

    Article  PubMed  PubMed Central  Google Scholar 

  9. Triposkiadis F, Butler J, Abboud FM, et al. The continuous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J. 2019;40(26):2155–63. https://doi.org/10.1093/eurheartj/ehz158

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Bold AJ. Atrial natriuretic factor: a hormone produced by the heart. Science. 1985;230(4727):767–70. https://doi.org/10.1126/science.2932797

    Article  PubMed  Google Scholar 

  11. Mukoyama M, Nakao K, Saito Y, et al. Increased human brain natriuretic peptide in congestive heart failure. N Engl J Med. 1990;323(11):757–8. https://doi.org/10.1056/NEJM199009133231114

    Article  CAS  PubMed  Google Scholar 

  12. Kuwahara K, Nakao K. Regulation and significance of atrial and brain natriuretic peptides as cardiac hormones. Endocr J. 2010;57(7):555–65. https://doi.org/10.1507/endocrj.K10E-150

    Article  CAS  PubMed  Google Scholar 

  13. Houben AJHM, Zander K, Leeuw PW. Vascular and renal actions of brain natriuretic peptide in man: physiology and pharmacology. Fundam Clin Pharmacol. 2005;19(4):411–9. https://doi.org/10.1111/j.1472-8206.2005.00336.x

    Article  CAS  PubMed  Google Scholar 

  14. Nakagawa O, Ogawa Y, Itoh H, et al. Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an. J Clin Invest. 1995;96(3):1280–7. https://doi.org/10.1172/JCI118162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. Cardiovasc Res. 2006;69(2):318–28. https://doi.org/10.1016/j.cardiores.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  16. Yoshimura M, Yasue H, Ogawa H. Pathophysiological significance and clinical application of ANP and BNP in patients with heart failure. Can J Physiol Pharmacol. 2001;79(8):730–5.

    Article  CAS  PubMed  Google Scholar 

  17. McCullough PA, Hollander JE, Nowak RM, et al. Uncovering heart failure in patients with a history of pulmonary disease: rationale for the early use of B-type natriuretic peptide in the emergency department. Acad Emerg Med. 2003;10(3):198–204. https://doi.org/10.1197/aemj.10.3.198

    Article  PubMed  Google Scholar 

  18. McCullough PA, Nowak RM, McCord J, et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure. Circulation. 2002;106(4):416–22. https://doi.org/10.1161/01.CIR.0000025242.79963.4C

    Article  PubMed  Google Scholar 

  19. Januzzi JL, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency department (PRIDE) study. Am J Cardiol. 2005;95(8):948–54. https://doi.org/10.1016/j.amjcard.2004.12.032

    Article  CAS  PubMed  Google Scholar 

  20. Mueller T, Gegenhuber A, Poelz W, Haltmayer M. Head-to-head comparison of the diagnostic utility of BNP and NT-proBNP in symptomatic and asymptomatic structural heart disease. Clin Chim Acta. 2004;341(1):41–8. https://doi.org/10.1016/j.cccn.2003.10.027

    Article  CAS  PubMed  Google Scholar 

  21. Rørth R, Jhund PS, Yilmaz MB, et al. Comparison of BNP and NT-proBNP in patients with heart failure and reduced ejection fraction. Circ Heart Fail. 2020;13(2):e006541. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006541

    Article  CAS  PubMed  Google Scholar 

  22. Pfister R, Scholz M, Wielckens K, Erdmann E, Schneider CA. Use of NT-proBNP in routine testing and comparison to BNP. Eur J Heart Fail. 2004;6(3):289–93. https://doi.org/10.1016/j.ejheart.2003.12.012

    Article  CAS  PubMed  Google Scholar 

  23. Brenden CK, Hollander JE, Guss D, et al. Gray zone BNP levels in heart failure patients in the emergency department: results from the rapid emergency department heart failure outpatient trial (REDHOT) multicenter study. Am Heart J. 2006;151(5):1006–11. https://doi.org/10.1016/j.ahj.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  24. Januzzi JL, Chen-Tournoux AA, Moe G. Amino-terminal pro–B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms. Am J Cardiol. 2008;101(3, Supplement):S29–38. https://doi.org/10.1016/j.amjcard.2007.11.017

    Article  CAS  Google Scholar 

  25. Hildebrandt P, Collinson PO, Doughty RN, et al. Age-dependent values of N-terminal pro-B-type natriuretic peptide are superior to a single cut-point for ruling out suspected systolic dysfunction in primary care†. Eur Heart J. 2010;31(15):1881–9. https://doi.org/10.1093/eurheartj/ehq163

    Article  CAS  PubMed  Google Scholar 

  26. Zaphiriou A, Robb S, Murray-Thomas T, et al. The diagnostic accuracy of plasma BNP and NTproBNP in patients referred from primary care with suspected heart failure: results of the UK natriuretic peptide study. Eur J Heart Fail. 2005;7(4):537–41. https://doi.org/10.1016/j.ejheart.2005.01.022

    Article  CAS  PubMed  Google Scholar 

  27. Fonarow GC, Peacock WF, Horwich TB, et al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am J Cardiol. 2008;101(2):231–7. https://doi.org/10.1016/j.amjcard.2007.07.066

    Article  CAS  PubMed  Google Scholar 

  28. Kociol RD, Horton JR, Fonarow GC, et al. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes. Circ Heart Fail. 2011;4(5):628–36. https://doi.org/10.1161/CIRCHEARTFAILURE.111.962290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kagiyama N, Kitai T, Hayashida A, et al. Prognostic value of BNP reduction during hospitalization in patients with acute heart failure. J Card Fail. 2019;25(9):712–21. https://doi.org/10.1016/j.cardfail.2019.04.004

    Article  PubMed  Google Scholar 

  30. Patel AN, Southern WN. BNP-response to acute heart failure treatment identifies high-risk population. Heart Lung Circ. 2020;29(3):354–60. https://doi.org/10.1016/j.hlc.2019.02.004. This study highlights the prognostic value of NT-proBNP and identifies a specific HF population that may benefit from therapies to reduce risk of 180-day mortality.

    Article  PubMed  Google Scholar 

  31. Latini R, Masson S, Anand I, et al. The comparative prognostic value of plasma neurohormones at baseline in patients with heart failure enrolled in Val-HeFT. Eur Heart J. 2004;25(4):292–9. https://doi.org/10.1016/j.ehj.2003.10.030

    Article  CAS  PubMed  Google Scholar 

  32. Hendricks S, Dykun I, Balcer B, Totzeck M, Rassaf T, Mahabadi AA. Higher BNP/NT-pro BNP levels stratify prognosis equally well in patients with and without heart failure: a meta-analysis. ESC Heart Fail. 2022;9(5):3198–209. https://doi.org/10.1002/ehf2.14019

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen H, Chhor M, Rayner BS, McGrath K, McClements L. Evaluation of the diagnostic accuracy of current biomarkers in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Arch Cardiovasc Dis. 2021;114(12):793–804. https://doi.org/10.1016/j.acvd.2021.10.007

    Article  PubMed  Google Scholar 

  34. Salzano A, Israr MZ, Yazaki Y, et al. Combined use of trimethylamine N-oxide with BNP for risk stratification in heart failure with preserved ejection fraction: findings from the DIAMONDHFpEF study. Eur J Prev Cardiol. 2020;27(19):2159–62. https://doi.org/10.1177/2047487319870355

    Article  PubMed  Google Scholar 

  35. Liu X, Abudukeremu A, Yu P, et al. Usefulness of B-type natriuretic peptide for predicting the risk of stroke in patients with heart failure with preserved ejection fraction. J Am Heart Assoc. 2022;11(15):e024302. https://doi.org/10.1161/JAHA.121.024302. This study highlights the use of BNP for predicting the risk of stroke.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Omland T, Sabatine MS, Jablonski KA, et al. Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: the PEACE trial. J Am Coll Cardiol. 2007;50(3):205–14. https://doi.org/10.1016/j.jacc.2007.03.038

    Article  CAS  PubMed  Google Scholar 

  37. deFilippi CR, Christenson RH, Gottdiener JS, Kop WJ, Seliger SL. Dynamic cardiovascular risk assessment in elderly people: the role of repeated N-terminal pro–B-type natriuretic peptide testing. J Am Coll Cardiol. 2010;55(5):441–50. https://doi.org/10.1016/j.jacc.2009.07.069

    Article  CAS  PubMed  Google Scholar 

  38. Huelsmann M, Neuhold S, Resl M, et al. PONTIAC (NT-proBNP Selected PreventiOn of cardiac eveNts in a populaTion of dIabetic patients without A history of Cardiac disease): a prospective randomized controlled trial. J Am Coll Cardiol. 2013;62(15):1365–72. https://doi.org/10.1016/j.jacc.2013.05.069

    Article  PubMed  Google Scholar 

  39. Murdoch DR, McDonagh TA, Byrne J, et al. Titration of vasodilator therapy in chronic heart failure according to plasma brain natriuretic peptide concentration: randomized comparison of the hemodynamic and neuroendocrine effects of tailored versus empirical therapy. Am Heart J. 1999;138(6):1126–32. https://doi.org/10.1016/S0002-8703(99)70079-7

    Article  CAS  PubMed  Google Scholar 

  40. Troughton RW, Frampton CM, Yandle TG, Espine EA, Nicholls MG, Richards AM. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. The Lancet. 2000;355(9210):1126–30. https://doi.org/10.1016/S0140-6736(00)02060-2

    Article  CAS  Google Scholar 

  41. Jourdain P, Jondeau G, Funck F, et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP multicenter study. J Am Coll Cardiol. 2007;49(16):1733–9. https://doi.org/10.1016/j.jacc.2006.10.081

    Article  CAS  PubMed  Google Scholar 

  42. Lainchbury JG, Troughton RW, Strangman KM, et al. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol. 2009;55(1):53–60. https://doi.org/10.1016/j.jacc.2009.02.095

    Article  CAS  PubMed  Google Scholar 

  43. Berger R, Moertl D, Peter S, et al. N-terminal pro–B-type natriuretic peptide–guided, intensive patient management in addition to multidisciplinary care in chronic heart failure. J Am Coll Cardiol. 2010;55(7):645–53. https://doi.org/10.1016/j.jacc.2009.08.078

    Article  CAS  PubMed  Google Scholar 

  44. Porapakkham P, Porapakkham P, Zimmet H, Billah B, Krum H. B-type natriuretic peptide–guided heart failure therapy: a meta-analysis. Arch Intern Med. 2010;170(6):507–14. https://doi.org/10.1001/archinternmed.2010.35

    Article  CAS  PubMed  Google Scholar 

  45. Januzzi JL, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro–B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58(18):1881–9. https://doi.org/10.1016/j.jacc.2011.03.072

    Article  CAS  PubMed  Google Scholar 

  46. Eurlings LWM, van Pol PEJ, Kok WE, et al. Management of chronic heart failure guided by individual N-terminal pro–B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) Study. J Am Coll Cardiol. 2010;56(25):2090–100. https://doi.org/10.1016/j.jacc.2010.07.030

    Article  CAS  PubMed  Google Scholar 

  47. Shah MR, Califf RM, Nohria A, et al. The STARBRITE trial: a randomized, pilot study of B-type natriuretic peptide–guided therapy in patients with advanced heart failure. J Card Fail. 2011;17(8):613–21. https://doi.org/10.1016/j.cardfail.2011.04.012

    Article  PubMed  Google Scholar 

  48. Stienen S, Salah K, Moons AH, et al. NT-proBNP (N-terminal pro-B-type natriuretic peptide)-guided therapy in acute decompensated heart failure: PRIMA II randomized controlled trial (can NT-proBNP-guided therapy during hospital admission for acute decompensated heart failure reduce mortality and readmissions?). Circulation. 2018;137(16):1671–83. https://doi.org/10.1161/CIRCULATIONAHA.117.029882

    Article  CAS  PubMed  Google Scholar 

  49. Karlström P, Alehagen U, Boman K, Dahlström U, Group on behalf of the U study. Brain natriuretic peptide-guided treatment does not improve morbidity and mortality in extensively treated patients with chronic heart failure: responders to treatment have a significantly better outcome. Eur J Heart Fail. 2011;13(10):1096–103. https://doi.org/10.1093/eurjhf/hfr078

    Article  CAS  PubMed  Google Scholar 

  50. Persson H, Erntell H, Eriksson B, Johansson G, Swedberg K, Dahlström U. Improved pharmacological therapy of chronic heart failure in primary care: a randomized study of NT-proBNP guided management of heart failure – SIGNAL-HF (Swedish Intervention study – Guidelines and NT-proBNP AnaLysis in Heart Failure). Eur J Heart Fail. 2010;12(12):1300–8. https://doi.org/10.1093/eurjhf/hfq169

    Article  CAS  PubMed  Google Scholar 

  51. Ibrahim NE, Januzzi JL. The future of biomarker-guided therapy for heart failure after the guiding evidence-based therapy using biomarker intensified treatment in heart failure (GUIDE-IT) Study. Curr Heart Fail Rep. 2018;15(2):37–43. https://doi.org/10.1007/s11897-018-0381-0

    Article  CAS  PubMed  Google Scholar 

  52. Januzzi JL, Ahmad T, Mulder H, et al. Natriuretic peptide response and outcomes in chronic heart failure with reduced ejection fraction. J Am Coll Cardiol. 2019;74(9):1205–17. https://doi.org/10.1016/j.jacc.2019.06.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Veldhuisen DJ, Genth-Zotz S, Brouwer J, et al. High- versus low-dose ACE inhibition in chronic heart failure: a double-blind, placebo-controlled study of imidapril. J Am Coll Cardiol. 1998;32(7):1811–8. https://doi.org/10.1016/S0735-1097(98)00464-1

    Article  PubMed  Google Scholar 

  54. Rosenberg J, Gustafsson F, Remme WJ, Riegger GAJ, Hildebrandt PR. Effect of beta-blockade and ACE inhibition on B-type natriuretic peptides in stable patients with systolic heart failure. Cardiovasc Drugs Ther. 2008;22(4):305–11. https://doi.org/10.1007/s10557-008-6099-6

    Article  CAS  PubMed  Google Scholar 

  55. Latini R, Masson S, Anand I, et al. Effects of valsartan on circulating brain natriuretic peptide and norepinephrine in symptomatic chronic heart failure. Circulation. 2002;106(19):2454–8. https://doi.org/10.1161/01.CIR.0000036747.68104.AC

    Article  CAS  PubMed  Google Scholar 

  56. Lee YS, Kim KS, Lee JB, et al. Effect of valsartan on N-terminal pro-brain natriuretic peptide in patient with stable chronic heart failure: comparison with enalapril. Korean Circ J. 2011;41(2):61–7. https://doi.org/10.4070/kcj.2011.41.2.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. White M, Lepage S, Lavoie J, et al. Effects of combined candesartan and ACE inhibitors on BNP, markers of inflammation and oxidative stress, and glucose regulation in patients with symptomatic heart failure. J Card Fail. 2007;13(2):86–94. https://doi.org/10.1016/j.cardfail.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  58. Packer M, McMurray JJV, Desai AS, et al. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015;131(1):54–61. https://doi.org/10.1161/CIRCULATIONAHA.114.013748

    Article  CAS  PubMed  Google Scholar 

  59. Du H, Li X, Zhao W, Jiang N. The difference between sacubitril valsartan and valsartan on vascular endothelial function, APN, MMP-9, and BNP Levels in Patients with Hypertension and Chronic Heart Failure. J Healthc Eng. 2022;2022:e9494981. https://doi.org/10.1155/2022/9494981

    Article  Google Scholar 

  60. Rousseau MF, Gurné O, Duprez D, et al. Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. J Am Coll Cardiol. 2002;40(9):1596–601. https://doi.org/10.1016/S0735-1097(02)02382-3

    Article  CAS  PubMed  Google Scholar 

  61. Boccanelli A, Mureddu GF, Cacciatore G, et al. Anti-remodelling effect of canrenone in patients with mild chronic heart failure (AREA IN-CHF study): final results. Eur J Heart Fail. 2009;11(1):68–76. https://doi.org/10.1093/eurjhf/hfn015

    Article  CAS  PubMed  Google Scholar 

  62. Beck-da-Silva L, de Bold A, Fraser M, Williams K, Haddad H. BNP-guided therapy not better than expert’s clinical assessment for β-blocker titration in patients with heart failure. Congest Heart Fail. 2005;11(5):248–55. https://doi.org/10.1111/j.1527-5299.2005.04239.x

    Article  CAS  PubMed  Google Scholar 

  63. Nakaoka H, Kitahara Y, Amano M, et al. Effect of beta-adrenergic receptor blockade on atrial natriuretic peptide in essential hypertension. Hypertension. 1987;10(2):221–5. https://doi.org/10.1161/01.HYP.10.2.221

    Article  CAS  PubMed  Google Scholar 

  64. Jensen J, Omar M, Kistorp C, et al. Twelve weeks of treatment with empagliflozin in patients with heart failure and reduced ejection fraction: A double-blinded, randomized, and placebo-controlled trial. Am Heart J. 2020;228:47–56. https://doi.org/10.1016/j.ahj.2020.07.011. This study did not show a reduction in NT-proBNP levels with the use of empagliflozin, highlighting possible limitations in using SGLT2i to guide HF therapy when using BNP as a biomarker.

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka A, Hisauchi I, Taguchi I, et al. Effects of canagliflozin in patients with type 2 diabetes and chronic heart failure: a randomized trial (CANDLE). ESC Heart Fail. 2020;7(4):1585–94. https://doi.org/10.1002/ehf2.12707. This study did not show reduction in NT-proBNP levels with the use of canagliflozin, highlighting possible limitations in using SGLT2i to guide HF therapy when using BNP as a biomarker.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Teerlink JR, Diaz R, Felker GM, et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med. 2021;384(2):105–16. https://doi.org/10.1056/NEJMoa2025797

    Article  CAS  PubMed  Google Scholar 

  67. Teerlink JR, Felker GM, McMurray JJV, et al. Acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure. J Am Coll Cardiol. 2016;67(12):1444–55. https://doi.org/10.1016/j.jacc.2016.01.031

    Article  CAS  PubMed  Google Scholar 

  68. Ezekowitz JA, O’Connor CM, Troughton RW, et al. N-terminal pro-B-type natriuretic peptide and clinical outcomes. JACC Heart Fail. 2020;8(11):931–9. https://doi.org/10.1016/j.jchf.2020.08.008.

    Article  PubMed  Google Scholar 

  69. The Consensus Trial Study Group*. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med. 1987;316(23):1429–35. https://doi.org/10.1056/NEJM198706043162301

  70. Hunt SA, Abraham WT, Chin MH, et al. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53(15):e1–e90. https://doi.org/10.1016/j.jacc.2008.11.013

    Article  PubMed  Google Scholar 

  71. Jaffe AS, Apple FS, Mebazaa A, Vodovar N. Unraveling N-terminal pro–B-type natriuretic peptide: another piece to a very complex puzzle in heart failure patients. Clin Chem. 2015;61(8):1016–8. https://doi.org/10.1373/clinchem.2015.243626

    Article  CAS  PubMed  Google Scholar 

  72. Maisel A, Mueller C, Nowak R, et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (biomarkers in acute heart failure) Trial. J Am Coll Cardiol. 2010;55(19):2062–76. https://doi.org/10.1016/j.jacc.2010.02.025

    Article  CAS  PubMed  Google Scholar 

  73. Darche FF, Baumgärtner C, Biener M, et al. Comparative accuracy of NT-proBNP and MR-proANP for the diagnosis of acute heart failure in dyspnoeic patients. ESC Heart Fail. 2017;4(3):232–40. https://doi.org/10.1002/ehf2.12150

    Article  PubMed  PubMed Central  Google Scholar 

  74. Seronde MF, Gayat E, Logeart D, et al. Comparison of the diagnostic and prognostic values of B-type and atrial-type natriuretic peptides in acute heart failure. Int J Cardiol. 2013;168(4):3404–11. https://doi.org/10.1016/j.ijcard.2013.04.164

    Article  PubMed  Google Scholar 

  75. Potocki M, Breidthardt T, Reichlin T, et al. Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in the diagnosis of heart failure. J Intern Med. 2010;267(1):119–29. https://doi.org/10.1111/j.1365-2796.2009.02135.x

    Article  CAS  PubMed  Google Scholar 

  76. Chen Y, Wen Z, Peng L, et al. Diagnostic value of MR-proANP for heart failure in patients with acute dyspnea: a meta-analysis. Acta Cardiol. 2020;75(1):68–74. https://doi.org/10.1080/00015385.2018.1550887

    Article  PubMed  Google Scholar 

  77. Moertl D, Berger R, Struck J, et al. Comparison of midregional pro-atrial and B-type natriuretic peptides in chronic heart failure: influencing factors, detection of left ventricular systolic dysfunction, and prediction of death. J Am Coll Cardiol. 2009;53(19):1783–90. https://doi.org/10.1016/j.jacc.2009.01.057

    Article  CAS  PubMed  Google Scholar 

  78. von Haehling S, Jankowska EA, Morgenthaler NG, et al. Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in predicting survival in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(20):1973–80. https://doi.org/10.1016/j.jacc.2007.08.012

    Article  CAS  Google Scholar 

  79. Kriechbaum SD, Birmes J, Wiedenroth CB, et al. Exercise MR-proANP unmasks latent right heart failure in CTEPH. J Heart Lung Transplant. 2022;41(12):1819–30. https://doi.org/10.1016/j.healun.2022.08.017

    Article  PubMed  Google Scholar 

  80. Chow SL, Maisel AS, Anand I, et al. Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement from the American Heart Association. Circulation. 2017;135(22):e1054–91. https://doi.org/10.1161/CIR.0000000000000490

    Article  CAS  PubMed  Google Scholar 

  81. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. Epstein FH, ed. N Engl J Med. 1999;341(8):577–85. https://doi.org/10.1056/NEJM199908193410806

    Article  CAS  PubMed  Google Scholar 

  82. Armstrong PW, Stopps TP, Ford SE, de Bold AJ. Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation. 1986;74(5):1075–84. https://doi.org/10.1161/01.CIR.74.5.1075

    Article  CAS  PubMed  Google Scholar 

  83. Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. a substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation. 1990;82(5):1724–9. https://doi.org/10.1161/01.CIR.82.5.1724

    Article  CAS  PubMed  Google Scholar 

  84. Sullivan RD, Mehta RM, Tripathi R, Reed GL, Gladysheva IP. Renin activity in heart failure with reduced systolic function—New Insights. Int J Mol Sci. 2019;20(13):3182. https://doi.org/10.3390/ijms20133182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vergaro G, Emdin M, Iervasi A, et al. Prognostic value of plasma renin activity in heart failure. Am J Cardiol. 2011;108(2):246–51. https://doi.org/10.1016/j.amjcard.2011.03.034

    Article  CAS  PubMed  Google Scholar 

  86. Vaduganathan M, Cheema B, Cleveland E, et al. Plasma renin activity, response to aliskiren, and clinical outcomes in patients hospitalized for heart failure: the ASTRONAUT trial. Eur J Heart Fail. 2018;20(4):677–86. https://doi.org/10.1002/ejhf.973

    Article  CAS  PubMed  Google Scholar 

  87. Park BE, Yang DH, Kim HJ, et al. Incremental predictive value of plasma renin activity as a prognostic biomarker in patients with heart failure. J Korean Med Sci. 2020;35(42) https://doi.org/10.3346/jkms.2020.35.e351. This study highlights the potential of plasma renin activity for HF prognostication, independent of NT-proBNP levels or left ventricular ejection fraction.

  88. Rachwan RJ, Butler J, Collins SP, et al. Is plasma renin activity associated with worse outcomes in acute heart failure? A secondary analysis from the BLAST-AHF trial. Eur J Heart Fail. 2019;21(12):1561–70. https://doi.org/10.1002/ejhf.1607

    Article  CAS  PubMed  Google Scholar 

  89. Gheorghiade M, Böhm M, Greene SJ, et al. Effect of aliskiren on postdischarge mortality and heart failure readmissions among patients hospitalized for heart failure: the ASTRONAUT tandomized trial. JAMA. 2013;309(11):1125–35. https://doi.org/10.1001/jama.2013.1954

    Article  CAS  PubMed  Google Scholar 

  90. McMurray JJV, Krum H, Abraham WT, et al. Aliskiren, enalapril, or aliskiren and enalapril in heart failure. N Engl J Med. 2016;374(16):1521–32. https://doi.org/10.1056/NEJMoa1514859

    Article  CAS  PubMed  Google Scholar 

  91. Liu H, Luo H, Wang S, Zhang C, Hao J, Gao C. Aliskiren for heart failure: a systematic review and meta-analysis of randomized controlled trials. Oncotarget. 2017;8(50):88189–98. https://doi.org/10.18632/oncotarget.21112

    Article  PubMed  PubMed Central  Google Scholar 

  92. van Kimmenade RRJ, Januzzi JL Jr. Emerging biomarkers in heart failure. Clin Chem. 2012;58(1):127–38. https://doi.org/10.1373/clinchem.2011.165720

    Article  CAS  PubMed  Google Scholar 

  93. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol. 2005;95(9, Supplement 1):8–13. https://doi.org/10.1016/j.amjcard.2005.03.003

    Article  CAS  Google Scholar 

  94. Maisel A, Xue Y, Shah K, et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin. Circ Heart Fail. 2011;4(5):613–20. https://doi.org/10.1161/CIRCHEARTFAILURE.110.960096

    Article  CAS  PubMed  Google Scholar 

  95. Ibrahim NE, Januzzi JL Jr. Beyond natriuretic peptides for diagnosis and management of heart failure. Clin Chem. 2017;63(1):211–22. https://doi.org/10.1373/clinchem.2016.259564

    Article  CAS  PubMed  Google Scholar 

  96. Zhong Y, Wang R, Yan L, Lin M, Liu X, You T. Copeptin in heart failure: review and meta-analysis. Clin Chim Acta. 2017;475:36–43. https://doi.org/10.1016/j.cca.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  97. Vishram-Nielsen JK, Gustafsson F. Vasopressin and vasopressin antagonists in heart failure. Handb Exp Pharmacol. 2017;243:307–28. https://doi.org/10.1007/164_2017_28

    Article  CAS  PubMed  Google Scholar 

  98. Konstam MA, Gheorghiade M, Burnett JC, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure the EVEREST outcome trial. JAMA. 2007;297(12):1319–31. https://doi.org/10.1001/jama.297.12.1319

    Article  CAS  PubMed  Google Scholar 

  99. Ibrahim NE, Januzzi JL. Established and emerging roles of biomarkers in heart failure. Circ Res. 2018;123(5):614–29. https://doi.org/10.1161/CIRCRESAHA.118.312706

    Article  CAS  PubMed  Google Scholar 

  100. Tang WHW, Shrestha K, Martin MG, et al. Clinical significance of endogenous vasoactive neurohormones in chronic systolic heart failure. J Card Fail. 2010;16(8):635–40. https://doi.org/10.1016/j.cardfail.2010.03.011

    Article  CAS  PubMed  Google Scholar 

  101. Jankowich M, Choudhary G. Endothelin-1 levels and cardiovascular events. Trends Cardiovasc Med. 2020;30(1):1–8. https://doi.org/10.1016/j.tcm.2019.01.007. This study highlights the potential of ET-1 levels for HF prognostication.

    Article  CAS  PubMed  Google Scholar 

  102. Teerlink JR. Endothelins: pathophysiology and treatment implications in chronic heart failure. Curr Heart Fail Rep. 2005;2(4):191–7. https://doi.org/10.1007/BF02696649

    Article  CAS  PubMed  Google Scholar 

  103. Francis GS, Cohn JN, Johnson G, Rector TS, Goldman S, Simon A. Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group. Circulation. 1993;87(6 Suppl):VI40–8.

    CAS  PubMed  Google Scholar 

  104. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23. https://doi.org/10.1056/NEJM198409273111303

    Article  CAS  PubMed  Google Scholar 

  105. Cabassi A, de Champlain J, Maggiore U, et al. Prealbumin improves death risk prediction of BNP-added Seattle heart failure model: results from a pilot study in elderly chronic heart failure patients. Int J Cardiol. 2013;168(4):3334–9. https://doi.org/10.1016/j.ijcard.2013.04.039

    Article  PubMed  Google Scholar 

  106. Castiglione V, Aimo A, Vergaro G, Saccaro L, Passino C, Emdin M. Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev. 2022;27(2):625–43. https://doi.org/10.1007/s10741-021-10105-w

    Article  CAS  PubMed  Google Scholar 

  107. Kitamura K. Reprint of “adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma”. Biochem Biophys Res Commun. 2012;425(3):548–55. https://doi.org/10.1016/j.bbrc.2012.08.022

    Article  CAS  PubMed  Google Scholar 

  108. Pourafkari L, Tajlil A, Nader ND. Biomarkers in diagnosing and treatment of acute heart failure. Biomark Med. 2019;13(14):1235–49. https://doi.org/10.2217/bmm-2019-0134

    Article  CAS  PubMed  Google Scholar 

  109. Nagaya N, Satoh T, Nishikimi T, et al. Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation. 2000;101(5):498–503. https://doi.org/10.1161/01.CIR.101.5.498

    Article  CAS  PubMed  Google Scholar 

  110. Shah RV, Truong QA, Gaggin HK, Pfannkuche J, Hartmann O, Januzzi JL Jr. Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. Eur Heart J. 2012;33(17):2197–205. https://doi.org/10.1093/eurheartj/ehs136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Richards AM, Doughty R, Nicholls MG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. J Am Coll Cardiol. 2001;37(7):1781–7. https://doi.org/10.1016/S0735-1097(01)01269-4

    Article  CAS  PubMed  Google Scholar 

  112. Packer M, Januzzi JL, Ferreira JP, et al. Concentration-dependent clinical and prognostic importance of high-sensitivity cardiac troponin T in heart failure and a reduced ejection fraction and the influence of empagliflozin: the EMPEROR-Reduced trial. Eur J Heart Fail. 2021;23(9):1529–38. https://doi.org/10.1002/ejhf.2256. This study highlights the largest benefit of empagliflozin use in patients with higher high-sensitivity troponin levels, suggesting the possibility of using troponin as a therapeutic biomarker when treating HF with an SGLT2 inhibitor.

    Article  CAS  PubMed  Google Scholar 

  113. Kociol RD, Pang PS, Gheorghiade M, Fonarow GC, O’Connor CM, Felker GM. Troponin elevation in heart failure. J Am Coll Cardiol. 2010;56(14):1071–8. https://doi.org/10.1016/j.jacc.2010.06.016

    Article  CAS  PubMed  Google Scholar 

  114. La Vecchia L, Mezzena G, Ometto R, et al. Detectable serum troponin I in patients with heart failure of nonmyocardial ischemic origin. Am J Cardiol. 1997;80(1):88–90.

    Article  PubMed  Google Scholar 

  115. Perna ER, Macin SM, Canella JPC, et al. Ongoing myocardial injury in stable severe heart failure. Circulation. 2004;110(16):2376–82. https://doi.org/10.1161/01.CIR.0000145158.33801.F3

    Article  PubMed  Google Scholar 

  116. Santhanakrishnan R, Chong JPC, Ng TP, et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2012;14(12):1338–47. https://doi.org/10.1093/eurjhf/hfs130

    Article  CAS  PubMed  Google Scholar 

  117. Horwich TB, Patel J, MacLellan WR, Fonarow GC. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108(7):833–8. https://doi.org/10.1161/01.CIR.0000084543.79097.34

    Article  CAS  PubMed  Google Scholar 

  118. Howlett JG, Sharma N, Alemayehu WG, et al. Circulating troponin and further left ventricular ejection fraction improvement in patients with previously recovered left ventricular ejection fraction. ESC Heart Fail. 2020;7(5):2725–33. https://doi.org/10.1002/ehf2.12863. This study finds increased high-sensitivity troponin levels in patients with worse ventricular function and higher likelihood of LVEF deterioration, suggesting the prognostic value of high-sensitivity troponin levels.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Florea VG, Rector TS, Anand IS, Cohn JN. Heart failure with improved ejection fraction: clinical characteristics, correlates of recovery, and survival. Circ Heart Fail. 2016;9(7):e003123. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003123

    Article  PubMed  Google Scholar 

  120. Gohar A, Chong JPC, Liew OW, et al. The prognostic value of highly sensitive cardiac troponin assays for adverse events in men and women with stable heart failure and a preserved vs. reduced ejection fraction. Eur J Heart Fail. 2017;19(12):1638–47. https://doi.org/10.1002/ejhf.911

    Article  CAS  PubMed  Google Scholar 

  121. Pandey A, Golwala H, Sheng S, et al. Factors associated with and prognostic implications of cardiac troponin elevation in decompensated heart failure with preserved ejection fraction: findings from the American Heart Association get with the guidelines–heart failure program. JAMA Cardiol. 2017;2(2):136–45. https://doi.org/10.1001/jamacardio.2016.4726

    Article  PubMed  Google Scholar 

  122. Aimo A, Januzzi JL, Vergaro G, et al. High-sensitivity troponin T, NT-proBNP and glomerular filtration rate: a multimarker strategy for risk stratification in chronic heart failure. Int J Cardiol. 2019;277:166–72. https://doi.org/10.1016/j.ijcard.2018.10.079

    Article  PubMed  Google Scholar 

  123. Aimo A, Januzzi JL, Vergaro G, et al. Prognostic value of high-sensitivity troponin T in chronic heart failure: an individual patient data meta-analysis. Circulation. 2018;137(3):286–97. https://doi.org/10.1161/CIRCULATIONAHA.117.031560

    Article  CAS  PubMed  Google Scholar 

  124. Latini R, Masson S, Anand IS, et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation. 2007;116(11):1242–9. https://doi.org/10.1161/CIRCULATIONAHA.106.655076

    Article  CAS  PubMed  Google Scholar 

  125. Lim FY, Yap J, Gao F, Teo LL, Lam CSP, Yeo KK. Correlation of the New York Heart Association classification and the cardiopulmonary exercise test: a systematic review. Int J Cardiol. 2018;263:88–93. https://doi.org/10.1016/j.ijcard.2018.04.021

    Article  PubMed  Google Scholar 

  126. Caraballo C, Desai NR, Mulder H, et al. Clinical implications of the New York Heart Association classification. J Am Heart Assoc. 2019;8(23):e014240. https://doi.org/10.1161/JAHA.119.014240

    Article  PubMed  PubMed Central  Google Scholar 

  127. Aguirre Dávila L, Weber K, Bavendiek U, et al. Digoxin–mortality: randomized vs. observational comparison in the DIG trial. Eur Heart J. 2019;40(40):3336–41. https://doi.org/10.1093/eurheartj/ehz395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Neuberg GW, Miller AB, O’Connor CM, et al. Diuretic resistance predicts mortality in patients with advanced heart failure. Am Heart J. 2002;144(1):31–8. https://doi.org/10.1067/mhj.2002.123144

    Article  PubMed  Google Scholar 

  129. Masson S, Anand I, Favero C, et al. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure. Circulation. 2012;125(2):280–8. https://doi.org/10.1161/CIRCULATIONAHA.111.044149

    Article  CAS  PubMed  Google Scholar 

  130. Gravning J, Askevold ET, Nymo SH, et al. Prognostic effect of high-sensitive troponin T assessment in elderly patients with chronic heart failure. Circ Heart Fail. 2014;7(1):96–103. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000450

    Article  CAS  PubMed  Google Scholar 

  131. Greene SJ, Butler J, Fonarow GC, et al. Pre-discharge and early post-discharge troponin elevation among patients hospitalized for heart failure with reduced ejection fraction: findings from the ASTRONAUT trial. Eur J Heart Fail. 2018;20(2):281–91. https://doi.org/10.1002/ejhf.1019

    Article  CAS  PubMed  Google Scholar 

  132. Vaduganathan M, Sattar N, Xu J, et al. Stress cardiac biomarkers, cardiovascular and renal outcomes, and response to canagliflozin. J Am Coll Cardiol. 2022;79(5):432–44. https://doi.org/10.1016/j.jacc.2021.11.027. This study highlights the delayed rise in high-sensitivity troponin levels in HFrEF patients treated with canagliflozin, suggesting the potential use of troponin levels as a therapeutic biomarker.

    Article  CAS  PubMed  Google Scholar 

  133. Weinberg EO, Shimpo M, De Keulenaer GW, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–6. https://doi.org/10.1161/01.CIR.0000038705.69871.D9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Januzzi JL, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-brain natriuretic peptide investigation of dyspnea in the emergency department) study. J Am Coll Cardiol. 2007;50(7):607–13. https://doi.org/10.1016/j.jacc.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  135. Rehman SU, Mueller T, Januzzi JL. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52(18):1458–65. https://doi.org/10.1016/j.jacc.2008.07.042

    Article  CAS  PubMed  Google Scholar 

  136. Sanders-van Wijk S, van Empel V, Davarzani N, et al. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail. 2015;17(10):1006–14. https://doi.org/10.1002/ejhf.414

    Article  CAS  PubMed  Google Scholar 

  137. Boisot S, Beede J, Isakson S, et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Card Fail. 2008;14(9):732–8. https://doi.org/10.1016/j.cardfail.2008.06.415

    Article  PubMed  Google Scholar 

  138. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of soluble ST2 in the valsartan heart failure trial. Circ Heart Fail. 2014;7(3):418–26. https://doi.org/10.1161/CIRCHEARTFAILURE.113.001036

    Article  CAS  PubMed  Google Scholar 

  139. Broch K, Ueland T, Nymo SH, et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail. 2012;14(3):268–77. https://doi.org/10.1093/eurjhf/hfs006

    Article  CAS  PubMed  Google Scholar 

  140. Weir RAP, Miller AM, Murphy GEJ, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55(3):243–50. https://doi.org/10.1016/j.jacc.2009.08.047

    Article  CAS  PubMed  Google Scholar 

  141. Gaggin HK, Motiwala S, Bhardwaj A, Parks KA, Januzzi JL. Soluble Concentrations of the interleukin receptor family member ST2 and β-blocker therapy in chronic heart failure. Circ Heart Fail. 2013;6(6):1206–13. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000457

    Article  CAS  PubMed  Google Scholar 

  142. Yu L, Ruifrok WPT, Meissner M, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6(1):107–17. https://doi.org/10.1161/CIRCHEARTFAILURE.112.971168

    Article  CAS  PubMed  Google Scholar 

  143. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8. https://doi.org/10.1161/01.CIR.0000147181.65298.4D

    Article  CAS  PubMed  Google Scholar 

  144. Meijers WC, Januzzi JL, deFilippi C, et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: a pooled analysis of 3 clinical trials. Am Heart J. 2014;167(6):853–860.e4. https://doi.org/10.1016/j.ahj.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  145. Imran TF, Shin HJ, Mathenge N, et al. Meta-analysis of the usefulness of plasma galectin-3 to predict the risk of mortality in patients with heart failure and in the general population. Am J Cardiol. 2017;119(1):57–64. https://doi.org/10.1016/j.amjcard.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  146. Gandhi PU, Motiwala SR, Belcher AM, et al. Galectin-3 and mineralocorticoid receptor antagonist use in patients with chronic heart failure due to left ventricular systolic dysfunction. Am Heart J. 2015;169(3):404–411.e3. https://doi.org/10.1016/j.ahj.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  147. Kempf T, von Haehling S, Peter T, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(11):1054–60. https://doi.org/10.1016/j.jacc.2007.04.091

    Article  CAS  PubMed  Google Scholar 

  148. Chan MMY, Santhanakrishnan R, Chong JPC, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18(1):81–8. https://doi.org/10.1002/ejhf.431

    Article  CAS  PubMed  Google Scholar 

  149. Stahrenberg R, Edelmann F, Mende M, et al. The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction. Eur J Heart Fail. 2010;12(12):1309–16. https://doi.org/10.1093/eurjhf/hfq151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Anand IS, Kempf T, Rector TS, et al. Serial measurement of growth-differentiation factor-15 in heart failure. Circulation. 2010;122(14):1387–95. https://doi.org/10.1161/CIRCULATIONAHA.109.928846

    Article  CAS  PubMed  Google Scholar 

  151. Omar M, Jensen J, Kistorp C, et al. The effect of empagliflozin on growth differentiation factor 15 in patients with heart failure: a randomized controlled trial (Empire HF Biomarker). Cardiovasc Diabetol. 2022;21(1):1–12. https://doi.org/10.1186/s12933-022-01463-2

    Article  CAS  Google Scholar 

  152. Bouabdallaoui N, Claggett B, Zile MR, et al. Growth differentiation factor-15 is not modified by sacubitril/valsartan and is an independent marker of risk in patients with heart failure and reduced ejection fraction: the PARADIGM-HF trial. Eur J Heart Fail. 2018;20(12):1701–9. https://doi.org/10.1002/ejhf.1301

    Article  CAS  PubMed  Google Scholar 

  153. Cotter G, Voors AA, Prescott MF, et al. Growth differentiation factor 15 (GDF-15) in patients admitted for acute heart failure: results from the RELAX-AHF study. Eur J Heart Fail. 2015;17(11):1133–43. https://doi.org/10.1002/ejhf.331

    Article  CAS  PubMed  Google Scholar 

  154. Zhang L, Smyth D, Al-Khalaf M, et al. Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure. Nat Cardiovasc Res. 2022;1(12):1195–214. https://doi.org/10.1038/s44161-022-00181-y

    Article  Google Scholar 

  155. Shimizu I, Minamino T. Cellular senescence in cardiac diseases. J Cardiol. 2019;74(4):313–9. https://doi.org/10.1016/j.jjcc.2019.05.002

    Article  PubMed  Google Scholar 

  156. Gandhi PU, Gaggin HK, Sheftel AD, et al. Prognostic usefulness of insulin-like growth factor-binding protein 7 in heart failure with reduced ejection fraction: a novel biomarker of myocardial diastolic function? Am J Cardiol. 2014;114(10):1543–9. https://doi.org/10.1016/j.amjcard.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  157. Gandhi PU, Gaggin HK, Redfield MM, et al. Insulin-like growth factor–binding protein-7 as a biomarker of diastolic dysfunction and functional capacity in heart failure with preserved ejection fraction: results from the RELAX trial. JACC Heart Fail. 2016;4(11):860–9. https://doi.org/10.1016/j.jchf.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  158. Gandhi PU, Chow SL, Rector TS, et al. Prognostic value of insulin-like growth factor-binding protein 7 in patients with heart failure and preserved ejection fraction. J Card Fail. 2017;23(1):20–8. https://doi.org/10.1016/j.cardfail.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  159. Hage C, Bjerre M, Frystyk J, et al. Comparison of prognostic usefulness of serum insulin-like growth factor-binding protein 7 in patients with heart failure and preserved versus reduced left ventricular ejection fraction. Am J Cardiol. 2018;121(12):1558–66. https://doi.org/10.1016/j.amjcard.2018.02.041

    Article  CAS  PubMed  Google Scholar 

  160. Januzzi JL Jr, Packer M, Claggett B, et al. IGFBP7 (insulin-like growth factor-binding protein-7) and neprilysin inhibition in patients with heart failure. Circ Heart Fail. 2018;11(10):e005133. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005133

    Article  CAS  PubMed  Google Scholar 

  161. Kalayci A, Peacock WF, Nagurney JT, et al. Echocardiographic assessment of insulin-like growth factor binding protein-7 and early identification of acute heart failure. ESC Heart Fail. 2020;7(4):1664–75. https://doi.org/10.1002/ehf2.12722

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ibrahim NE, Afilalo M, Chen-Tournoux A, et al. Diagnostic and prognostic utilities of insulin-like growth factor binding protein-7 in patients with dyspnea. JACC Heart Fail. 2020;8(5):415–22. https://doi.org/10.1016/j.jchf.2020.02.009

    Article  PubMed  Google Scholar 

  163. Bracun V, van Essen B, Voors AA, et al. Insulin-like growth factor binding protein 7 (IGFBP7), a link between heart failure and senescence. ESC. Heart Fail. 2022;9(6):4167–76. https://doi.org/10.1002/ehf2.14120. This study demonstrates how IGFBP7 is an independent and robust biomarker for HF prognostication

    Article  Google Scholar 

  164. Adamson C, Welsh P, Docherty KF, et al. IGFBP-7 and outcomes in heart failure with reduced ejection fraction: findings from DAPA-HF. JACC Heart Fail. 2023;11(3):291–304. https://doi.org/10.1016/j.jchf.2022.09.004. This study demonstrates how IGFBP7 is an independent and robust biomarker for HF prognostication.

    Article  PubMed  Google Scholar 

  165. Blum S, Aeschbacher S, Meyre P, et al. Insulin-like growth factor-binding protein 7 and risk of congestive heart failure hospitalization in patients with atrial fibrillation. Heart Rhythm. 2021;18(4):512–9. https://doi.org/10.1016/j.hrthm.2020.11.028

    Article  PubMed  Google Scholar 

  166. Januzzi JL Jr, Butler J, Sattar N, et al. Insulin-like growth factor binding protein 7 predicts renal and cardiovascular outcomes in the canagliflozin cardiovascular assessment study. Diabetes Care. 2020;44(1):210–6. https://doi.org/10.2337/dc20-1889

    Article  PubMed  Google Scholar 

  167. Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20. https://doi.org/10.1056/NEJMoa1908655

    Article  CAS  PubMed  Google Scholar 

  168. Demissei BG, Cotter G, Prescott MF, et al. A multimarker multi-time point-based risk stratification strategy in acute heart failure: results from the RELAX-AHF trial. Eur J Heart Fail. 2017;19(8):1001–10. https://doi.org/10.1002/ejhf.749

    Article  CAS  PubMed  Google Scholar 

  169. Ahmad T, Fiuzat M, Pencina MJ, et al. Charting a roadmap for heart failure biomarker studies. JACC Heart Fail. 2014;2(5):477–88. https://doi.org/10.1016/j.jchf.2014.02.005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Ezekowitz.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuen, T., Gouda, P., Margaryan, R. et al. Do Heart Failure Biomarkers Influence Heart Failure Treatment Response?. Curr Heart Fail Rep 20, 358–373 (2023). https://doi.org/10.1007/s11897-023-00625-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-023-00625-x

Keywords

Navigation