Skip to main content

Vasopressin and Vasopressin Antagonists in Heart Failure

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 243))

Abstract

Despite the introduction of multiple new pharmacological agents over the past three decades in the field of heart failure (HF), overall prognosis remains poor. Hyponatremia is prevalent in HF patients and has been suggested as a contributor to poor response to standard therapy. Elevated levels of arginine vasopressin (AVP), a peptide hormone produced in the hypothalamus, play a role in development of hyponatremia, and AVP and its surrogate, copeptin, are related to changes in osmolality, hemodynamics, neuro-hormones as well as in overall outcome in HF patients. Of current pharmacological interest are the selective and non-selective vasopressin receptor antagonists (VRAs), which inhibit vasoconstriction and cardiac remodeling mediated by the V1a receptors in smooth blood vessels, and water retention (increased urine osmolality and decreased water excretion) by increasing aquaporin-2 water channels mediated by the V2 receptors in the renal collecting tubules. The optimal use of VRAs is yet to be determined, especially in patients with congestive HF. Although long-term effects on improvement in mortality have not been shown in the Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST) trial, the only long-term outcome trial to date, many short-term studies indicate beneficial aquaretic- and hemodynamic-effects of the VRAs. In contrast to loop diuretics, these new agents tend to increase urine flow and the excretion of electrolyte-free water (so-called aquaresis) in patients with HF, without substantial changes in sodium or potassium excretion. This chapter reviews the role of AVP and copeptin in HF, and the treatment potential of VRAs in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTIV:

Acute and chronic therapeutic impact of a vasopressin 2 antagonist

ADHF:

Acute decompensated heart failure

AE:

Adverse event

AVP:

Arginine vasopressin

BNP:

B-type natriuretic peptide

BP:

Blood pressure

BUN:

Blood urea nitrogen

BW:

Body weight

CHF:

Congestive heart failure

CI:

Cardiac index

CIBIS-II:

Cardiac insufficiency bisoprolol study II

CO:

Cardiac output

CV:

Cardiovascular

CVP:

Central venous pressure

DILIPO:

DILutIonal hyponatremia

ECLIPSE:

EffeCt of toLvaptan on hemodynamIc Parameters in Subjects with hEart failure

EF:

Ejection fraction

eGFR:

Estimated glomerular filtration rate

EVEREST:

Efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan

HF:

Heart failure

HR:

Heart rate

iv:

Intravenous

KCCQ:

Kansas City Cardiomyopathy Questionnaire

LV:

Left ventricular

MAP:

Mean arterial pressure

METEOR:

Multicenter evaluation of tolvaptan effect on remodeling

NE:

Norepinephrine

NT-proBNP:

N-terminal pro-B-type natriuretic peptide

NYHA:

New York Heart Association

OD:

Once daily

PARADIGM-HF:

Prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure

PCWP:

Pulmonary capillary wedge pressure

p-Na+ :

Plasma sodium

PVR:

Pulmonary vascular resistance

QOL:

Quality of life

RA:

Renin activity

RALES:

Randomized aldactone evaluation study

RAP:

Right atrial pressure

RAS:

Renin angiotensin system

SD:

Standard deviation

SIADH:

Syndrome of inappropriate antidiuretic hormone

s-K+ :

Serum potassium

s-Na+ :

Serum sodium

SOLVD:

Studies of left ventricular dysfunction

SV:

Stroke volume

SVR:

Systemic vascular resistance

VRA:

Vasopressin receptor antagonist

WRF:

Worsening renal function

References

  • Aronson D, Verbalis JG, Mueller M et al (2011) Short- and long-term treatment of dilutional hyponatraemia with satavaptan, a selective arginine vasopressin V2-receptor antagonist: the DILIPO study. Eur J Heart Fail 13:327–336

    Article  CAS  PubMed  Google Scholar 

  • Balling L, Gustafsson F (2016) Copeptin in heart failure. Adv Clin Chem 73:29–64

    Article  PubMed  Google Scholar 

  • Balling L, Schou M, Videbaek L et al (2011) Prevalence and prognostic significance of hyponatraemia in outpatients with chronic heart failure. Eur J Heart Fail 13:968–973

    Article  CAS  PubMed  Google Scholar 

  • Balling L, Kistorp C, Schou M et al (2012) Plasma copeptin levels and prediction of outcome in heart failure outpatients: relation to hyponatremia and loop diuretic doses. J Card Fail 18(5):351–358

    Article  CAS  PubMed  Google Scholar 

  • Bettari L, Fiuzat M, Felker GM et al (2012) Significance of hyponatremia in heart failure. Heart Fail Rev 17:17–26

    Article  PubMed  Google Scholar 

  • CIBIS-II (1999) The cardiac insufficiency bisoprolol study II (CIBIS-II): a randomized trial. CIBIS-II Investigators and Committees. Lancet 353(9146):9–13

    Article  Google Scholar 

  • Cooper HA, Dries DL, Davis CE et al (1999) Diuretics and risk of arrhythmic death in patients with left ventricular dysfunction. Circulation 100:1311–1315

    Article  CAS  PubMed  Google Scholar 

  • Creager MA, Faxon DP, Cutler SS et al (1986) Contribution of vasopressin to vasoconstriction in patients with congestive heart failure: comparison with the renin-angiotensin system and the sympathetic nervous system. J Am Coll Cardiol 7:758–765

    Article  CAS  PubMed  Google Scholar 

  • Decaux G, Soupart A, Vassart G (2008) Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet 371:1624–1632

    Article  CAS  PubMed  Google Scholar 

  • Domanski M, Norman J, Pitt B et al (2003) Diuretic use, progressive heart failure and death in patients in the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 42:705–708

    Article  CAS  PubMed  Google Scholar 

  • Ghali JK, Tam SW (2010) The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. J Card Fail 16:419–431

    Article  CAS  PubMed  Google Scholar 

  • Ghali JK, Orlandi C, Abraham WT (2012) The efficacy and safety of lixivaptan in outpatients with heart failure and volume overload: results of a multi-centre, randomized, double-blind, placebo-controlled, parallel-group study. Eur J Heart Fail 14:642–651

    Article  CAS  PubMed  Google Scholar 

  • Gheorghiade M, Gattis WA, O’Conner CM et al (2004) Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA 291:1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Gheorghiade M, Konstam MA, Burnett JC Jr et al (2007) Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST clinical status trials. JAMA 297:1332–1343

    Article  CAS  PubMed  Google Scholar 

  • Gines P, Wong F, Watson H et al (2008) Effects of satavaptan, a selective vasopressin V(2) receptor antagonist, on ascites and serum sodium in cirrhosis with hyponatremia. A randomized trial. Hepatology 48:204–213

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SR (1988) Baroreflex control of vasopressin secretion in normal humans. In: Cowley AW, Liard J-F, Ausiello DA (eds) Vasopressin: cellular and integrative functions. Raven Press, New York, pp 389–397

    Google Scholar 

  • Goldsmith SR (1992) Baroreflex loading maneuvers do not suppress increased plasma arginine vasopressin in patients with congestive heart failure. J Am Coll Cardiol 19:1180–1184

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SR (2013) Hyponatremia in heart failure: time for a trial. J Card Fail 19(6):398–400

    Article  PubMed  Google Scholar 

  • Goldsmith SR, Gheorghiade M (2005) Vasopressin antagonism in heart failure. J Am Coll Cardiol 46:1785–1791

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SR, Francis GS, Cowley AW et al (1983) Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol 1:1385–1390

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SR, Francis GS, Cowley AW et al (1986) Hemodynamic effects of infused arginine vasopressin in congestive heart failure. J Am Coll Cardiol 8:779–783

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SR, Dodge D, Cowley AW (1989) The effect of moderate hypotension on arginine vasopressin levels in normal humans. Am J Med Sci 298:295–298

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SR, Elkayam U, Haught H et al (2008) Efficacy and safety of the vasopressin V1A/V2-receptor antagonist conivaptan in acute decompensated heart failure: a dose-ranging pilot study. J Card Fail 14:641–647

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith SR, Gilbertson DT, Mackedanz SA et al (2011) Renal effects of conivaptan, furosemide, and the combination in patients with chronic heart failure. J Card Fail 17:982–989

    Article  CAS  PubMed  Google Scholar 

  • Hauptman PJ, Burnett J, Gheorghiade M et al (2013) Clinical course of patients with hyponatremia and decompensated systolic heart failure and the effect of vasopressin receptor antagonism with tolvaptan. J Card Fail 19:390–397

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Yamamura Y, Nakamura S et al (2000) Effects of the V2-receptor antagonist OPC-41061 and the loop diuretic furosemide alone and in combination in rats. J Pharmacol Exp Ther 292:288–294

    CAS  PubMed  Google Scholar 

  • Holmes CL, Landry DW, Granton JT (2003) Science review: vasopressin and the cardiovascular system part 1 – receptor physiology. Crit Care 7(6):427–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson EK (2006) Vasopressin and other agents affecting the renal conservation of water. In: Brunton L, Lazo JS, Parker KL (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York, pp 771–778

    Google Scholar 

  • Jovanovich AJ, Berl T (2013) Whereas vaptans do and do not fit in the treatment of hyponatremia. Kidney Int 83:563–567

    Article  CAS  PubMed  Google Scholar 

  • Konstam MA, Gheorghiade M, Burnett JC Jr et al (2007) Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA 297:1319–1331

    Article  CAS  PubMed  Google Scholar 

  • Lanfeur D, Sabbah HN, Goldsmith SR et al (2013) Association of arginine vasopressin levels with outcomes and the effect of V2 blockage in patients hospitalized for heart failure with reduced ejection fraction. Insights from the EVEREST trial. Circ Heart Fail 6:47–52

    Article  Google Scholar 

  • Lilly LS, Dzau VJ, Williams GH et al (1984) Hyponatremia in congestive heart failure: implications for neurohumoral activation and responses to orthostasis. J Clin Endocrinol Metab 59:924–930

    Article  CAS  PubMed  Google Scholar 

  • Maggioni AP, Dahlström U, Filippatos G et al (2013) EUR observational research programme: regional differences and 1-year follow-up results of the heart failure pilot survey (ESC-HF Pilot). Eur J Heart Fail 15:808–817

    Article  PubMed  Google Scholar 

  • Mao ZL, Stalker D, Keirns J (2009) Pharmacokinetics of conivaptan hydrochloride, a vasopressin V1A/V2-receptor antagonist, in patients with euvolemic or hypervolemic hyponatremia and with or without congestive heart failure from a prospective, 4-day open-label study. Clin Ther 31:1542–1550

    Article  CAS  PubMed  Google Scholar 

  • McMurray JJ, Packer M, Desai AS et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004

    Article  PubMed  Google Scholar 

  • Mondritzki T, Kolkhof P, Sabbah HN et al (2011) Differentiation of arginine vasopressin antagonistic effects by selective V2 versus dual V2/V1a receptor blockage in a preclinical heart failure model. Am J Ther 18:31–37

    Article  PubMed  Google Scholar 

  • Morgenthaler NG, Struck J, Alonso C et al (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52(1):112–119

    Article  CAS  PubMed  Google Scholar 

  • Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93:1137–1146

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuhold S, Huelsmann M, Strunk G et al (2008) Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure. J Am Coll Cardiol 52:266–272

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi A, Orita Y, Okahara R et al (1993) Potent aquaretic agent: a novel nonpeptide selective vasopressin 2 antagonist (OPC-31260) in men. J Clin Invest 92:2653–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer M, Lee WH, Kessler PD et al (1987) Role of neurohormonal mechanisms in determining survival in patients with severe chronic heart failure. Circulation 75:IV80–IV92

    CAS  PubMed  Google Scholar 

  • Peri A (2013) Clinical review: the use of vaptans in clinical endocrinology. J Clin Endocrinol Metab 98:1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    Article  CAS  PubMed  Google Scholar 

  • Robinson FH, Farr LE (1940) The relation between clinical edema and the excretion of an antidiuretic substance in the urine. Ann Intern Med 14:42

    Article  CAS  Google Scholar 

  • Schrier RW, Berl T, Anderson RJ (1979) Osmotic and nonosmotic control of vasopressin release. Am J Physiol 236:F321–F332

    CAS  PubMed  Google Scholar 

  • Schrier RW, Gross P, Gheorghiade M et al (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355:2099–2112

    Article  CAS  PubMed  Google Scholar 

  • Serradeil-Le Gal C, Lacour C, Valette G et al (1996) Characterization of SR 121463A, a highly potent and selective, orally active vasopressin V2 receptor antagonist. J Clin Invest 98:2729–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SOLVD (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325(5):293–302

    Article  Google Scholar 

  • Stoiser B, Mörtl D, Hülsmann M et al (2006) Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur J Clin Invest 36:771–778

    Article  CAS  PubMed  Google Scholar 

  • Szatalowicz VL, Arnold PE, Chaimovitz C et al (1981) Radio-immunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N Engl J Med 305:263–266

    Article  CAS  PubMed  Google Scholar 

  • Tahara A, Tomura Y, Wada K-I et al (1997) Pharmacological profile of YM087, a novel potent nonpeptide vasopressin V1A and V2 receptor antagonist, in vitro and in vivo. J Pharmacol Exp Ther 282:301–308

    CAS  PubMed  Google Scholar 

  • Udelson JE, Smith WB, Hendrix GH et al (2001) Acute hemodynamic effects of conivaptan, a dual V1A and V2 vasopressin receptor antagonist, in patients with advanced heart failure. Circulation 104:2417–2423

    Article  CAS  PubMed  Google Scholar 

  • Udelson JE, McGrew FA, Flores E et al (2007) Multicenter, randomized, double-blind, placebo-controlled study on the effect of oral tolvaptan on left ventricular dilation and function in patients with heart failure and systolic dysfunction. J Am Coll Cardiol 49:2151–2159

    Article  CAS  PubMed  Google Scholar 

  • Udelson JE, Orlandi C, Ouyang J et al (2008) Acute hemodynamic effects of tolvaptan, a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction. J Am Coll Cardiol 52:1540–1545

    Article  CAS  PubMed  Google Scholar 

  • Udelson JE, Bilsker M, Hauptman PJ et al (2011) A multi-center, randomized, double-blind, placebo-controlled study of tolvaptan monotherapy compared to furosemide and the combination of tolvaptan and furosemide in patients with heart failure and systolic dysfunction. J Card Fail 17:973–981

    Article  CAS  PubMed  Google Scholar 

  • Verbalis JG (2006) Whole-body volume regulation and escape from antidiuretics. Am J Med 119:S21–S29

    Article  PubMed  Google Scholar 

  • Yamamura Y, Nakamura S, Itoh S et al (1998) OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther 287:860–867

    CAS  PubMed  Google Scholar 

  • Yamane Y (1968) Plasma ADH level in patients with chronic congestive heart failure. Jpn Circ J 32:745–759

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn Gustafsson .

Editor information

Editors and Affiliations

Appendix: Main Study Characteristics and Results of the Vasopressin Receptor Antagonist Clinical Trials

Appendix: Main Study Characteristics and Results of the Vasopressin Receptor Antagonist Clinical Trials

Study

Design

Treatment

Target receptor

Patient characteristics

Effect on primary (important secondary) endpoints

Creager et al. (1986), n = 10

Controlled

iv V1a RA of 0.5 mg administered over 5 min % diuretics 24 h prior to experiment

V1A

Chronic NYHA III–IV average EF = 24 ± 10% only men

↓ SVR and ↑ CI when baseline AVP was above normal

Udelson et al. (2001), n = 142

Multicenter trial with a baseline inpatient phase, and a randomized, double-blind treatment phase

Single dose iv conivaptan (10, 20, or 40 mg) vs. placebo in a 1:1:1:1 ratio + standard therapy

V1A/V2

Chronic NYHA III–IV EF ≤ 40%

↓ PCWP, ↓ RAP and dose-dependent ↑ in urine output in the treatment group vs. placebo no difference in CI, SVR, PVR, BP, HR between the groups

The ACTIV in CHF study (Gheorghiade et al. 2004), n = 319

Multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-ranging, phase 2 feasibility trial

Oral tolvaptan OD (30, 60, or 90 mg) vs. placebo in a 1:1:1:1 ratio up to 60 days + standard therapy

V2

Acute/chronic NYHA III–IV EF ≤ 40%

Day 1+ at discharge: non-dose-dependent ↓ BW and ↑ urine volume in the treatment group vs. placebo60-day mortality: trend toward ↓ mortality in the treatment group

The EVEREST clinical status trials (Gheorghiade et al. 2007) trial A: n = 2,048, trial B: n = 2,085

Multicenter, randomized, double-blind, placebo-controlled, phase 3

Oral tolvaptan 30 mg OD vs. placebo in a 1:1 ratio for minimum 60 days + standard therapy

V2

Acute NYHA III–IV EF ≤ 40%

At day 7/discharge: ↓ BW, ↑ Na+, ↓ dyspnea, and ↓ edema in the treatment group vs. placebo general clinical status did not differ between the groups

The EVEREST outcome trial (Konstam et al. 2007), trials A and B: n = 4,133

Multicenter, randomized, double-blind, placebo-controlled, phase 3

Oral tolvaptan 30 mg OD vs. placebo in a 1:1 ratio for minimum 60 days + standard therapy

V2

Acute NYHA III–IV EF ≤ 40%

No difference in mortality or re-hospitalization between groups KCCQ summary score not improved at outpatient week 1 sustained ↓ BW and ↑ Na+ in the treatment group

The METEOR trial (Udelson et al. 2007), n = 240

Multicenter, randomized, double-blind, placebo-controlled

Oral tolvaptan 30 mg OD vs. placebo in a 1:1 ratio for 1 year + standard therapy

V2

Chronic NYHA II–III EF ≤ 30%

No effect on LV remodeling, although small ↓ LVEDV index in the treatment group vs. placebo (no significant between group difference) favorable effect of treatment on mortality/HF hospitalization

The ECLIPSE trial (Udelson et al. 2008), n = 181

International, multicenter, randomized, placebo-controlled

Oral tolvaptan 15, 30, or 60 mg OD vs. placebo in a 1:1 ratio

V2

Acute NYHA II–III EF ≤ 30%

↓ PCWP, ↓ PAP (all treatment groups), ↓ RAP (tolvaptan 15 and 30 mg) vs. placebo dose-dependent ↑ in urine output no difference in CI, PVR, SVR between groups

Goldsmith et al. (2008), n = 170

Multicenter, double-blind, dose-ranging pilot study

iv loading dose of conivaptan 20 mg, followed by two successive 24 h continuous infusions of 40, 80, or 120 mg/day vs. placebo in a 1:1:1:1 ratio+ standard therapy

V1A/V2

Acute pulmonary congestion, respiratory symptoms NYHA III–IV mean (SD) EF = 29.5% (15.6)

↑ urine output, ↓ BW in the treatment group vs. placebo no difference in worsening HF, respiratory status at 48 hours, or electrolyte disturbances between the groups

Mao et al. (2009), n = 203

Multicenter, 4-day open-label

iv loading dose over 30 min of conivaptan 20 mg, followed by a continuous 4-day infusion of 20 or 40 mg/day

V1A/V2

CHF (n = 90) s-Na+ ≤ 130 mmol/L euvolemic- or hypervolemic-hyponatremia

Conivaptan concentrations: highest after 30 min loading dose, declined during day 1, and were maintained by the continuous infusion no difference with regard to status of volume or CHF

Udelson et al. (2011), n = 83

Multicenter, randomized, double-blind, placebo-controlled, parallel group

Oral tolvaptan 30 mg, furosemide 80 mg, or tolvaptan 30 mg + furosemide 80 mg vs. placebo in a 1:1:1:1 ratio + standard therapy

V2

Acute: signs of congestion (edema, rales) NYHA II–III EF ≤ 40%

Day 8: ↓ BW in all treatment groups, and ↑ urine volume in the two treatment groups with tolvaptan vs. placebo ↑ Na+ within the normal range, no change in K+ or BP in the group with tolvaptan

Goldsmith et al. (2011), n = 8

Randomized, cross-over study

Three separate study days separated with a 7-day washout periods: iv furosemide (<80 mg), iv loading dose of conivaptan 20 mg, followed by a continuous infusion at 1.2 mg/h for 4 h, or the combination

V1A/V2

Chronic NYHA II–III EF ≤ 23 ± 7% only men

↑ urine volume in all treatment groups and ↑ urinary Na+ excretion with furosemide therapy (combination > monotherapy) no difference in hemodynamics, neurohormonal levels, renal blood flow, or GFR

The DILIPO study (Aronson et al. 2011), n = 118

Multicenter, randomized, double-blind, placebo-controlled phase; followed by a 1-year open-label non-comparative phase

Oral satavaptan OD (25 or 50 mg) vs. placebo in a 1:1:1 ratio up to 4 days, followed by satavaptan 12.5–25 mg + fluid restriction 1–1.5 L

V2

Chronic (n = 90) NYHA III–IV s-Na+ = 115–132 mmol/L

Higher ↑ in Na+, ↓ time to response, and ↑ BW reduction in the treatment group vs. placebo similar results in the CHF subgroup the increase in Na+ was maintained long-term

Mondritzki et al. (2011), n = 6

Randomized, controlled

After iv infusion of AVP to keep its levels controlled, randomization to either conivaptan or tolvaptan, both iv 0.1 mg/kg bolus

V2 vs. V1A/V2

Mongrel dogs were paced continuously at 220 beats/min after 14 days they underwent acute testing

↑ CO and ↓ SVR with conivaptan ↓ CO and ↑ SVR with tolvaptan no difference in effect on MAP, dP/dtmax, CVP, and urine output between the groups

Ghali et al. (2012), n = 170

Multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 2

Oral lixivaptan 100 mg OD vs. placebo in a 2:1 ratio for 8 weeks + standard therapy

V2

Chronic NYHA II–III EF < 40% (n = 57%) EF ≥ 40% (n = 43%)

Day 1 + weeks 1, 2, 4: ↓ BW in the treatment group vs. placebo improvement in orthopnea and dyspnea in the treatment group

  1. iv intravenous, RA receptor antagonist, NYHA New York Heart Association, EF ejection fraction, SVR systemic vascular resistance, CI cardiac index, AVP arginine vasopressin, PCWP pulmonary capillary wedge pressure, PAP pulmonary artery pressure, RAP right atrial pressure, PVR pulmonary vascular resistance, BP blood pressure, HR heart rate, Na + sodium, KCCQ Kansas City Cardiomyopathy Questionnaire, LV left ventricular, LVEDV LV end-diastolic volume, HF heart failure, SD standard deviation, CHF congestive HF, K + potassium, CO cardiac output, MAP mean arterial pressure, CVP central venous pressure

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vishram-Nielsen, J.K., Gustafsson, F. (2017). Vasopressin and Vasopressin Antagonists in Heart Failure. In: Bauersachs, J., Butler, J., Sandner, P. (eds) Heart Failure. Handbook of Experimental Pharmacology, vol 243. Springer, Cham. https://doi.org/10.1007/164_2017_28

Download citation

Publish with us

Policies and ethics